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Abstract: In this work, we investigate the impact of annotation quality and domain expertise on
the performance of Convolutional Neural Networks (CNNs) for semantic segmentation of wear
on titanium nitride (TiN) and titanium carbonitride (TiCN) coated end mills. Using an innovative
measurement system and customized CNN architecture, we found that domain expertise significantly
affects model performance. Annotator 1 achieved maximum mIoU scores of 0.8153 for abnormal wear
and 0.7120 for normal wear on TiN datasets, whereas Annotator 3 with the lowest expertise achieved
significantly lower scores. Sensitivity to annotation inconsistencies and model hyperparameters were
examined, revealing that models for TiCN datasets showed a higher coefficient of variation (CV) of
16.32% compared to 8.6% for TiN due to the subtle wear characteristics, highlighting the need for
optimized annotation policies and high-quality images to improve wear segmentation.

Keywords: semantic segmentation; wear detection; machining tools; image annotation; U-Net model;
domain expertise; labeling quality; IoU metrics; neural network performance; annotation protocols;
annotation quality

1. Introduction

Deep convolutional neural networks (DCNN) are revolutionizing visual inspection
in manufacturing industries. For supervised learning, high-quality annotated datasets
are crucial, as the quality of annotations significantly influences model performance [1–4].
However, many available datasets suffer from improper annotations and instance labeling
errors, adversely impacting the performance of learning algorithms [5,6].

Restricting annotations to a single label, similar to ImageNet, can result in inaccuracies
because images might encompass multiple objects, which in turn may contain sub-objects
or different classes. Furthermore, encouraging users to annotate images that should not
be included in the dataset introduces inconsistencies and biases [7,8]. Growing skepticism
surrounding datasets derived from user-generated content on the Internet has led to dis-
continuation or revision of several popular benchmarks. The ongoing use and distribution
of these datasets in the form of duplicates or subsets also raise concerns. AI-based qual-
ity control in manufacturing faces similar challenges [9]. A survey [10] that interviewed
227 participants from five continents and 20 different industries found that 76% of the par-
ticipants agree that training data quality and its labeling represent significant challenges in
AI projects. To get AI systems off the ground, training data must be extensive and precisely
labeled and commented. The use of AI is becoming an increasing priority for companies.
Data scientists are under pressure to deliver projects but often need to provide training data
of the required size and quality. In the manufacturing sector, the challenges extend beyond
data aggregation to dataset selection and labeling, introducing potential biases. In object
recognition tasks, even ensuring accurate and consistent placement of bounding boxes
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around objects is challenging in terms of labeling quality. The authors of [11] observed
that sketching a bounding box is both more intricate and time-consuming than annotating
classification labels, typically achieved via multiple-choice queries. The author showed that
labeling through a suitable process and guideline, in several steps from quality control and
training the performance model, can be significantly improved. Therefore, it can be strongly
expected that the task of annotating different types of wear presents a higher number of
challenges. Tool wear is divided into two main categories: normal wear and abnormal
wear. Normal wear occurs as a normal consequence of machining and is influenced by
factors such as cutting parameters, tool material and workpiece material [12,13]. However,
abnormal wear occurs due to unfavorable reasons such as excessive cutting forces, poor
lubrication, material adhesion or complete tool failure. The identification of abnormal wear
can be used to take appropriate measures to optimize the geometric parameters of a tool
and to ensure the quality of the workpieces.

In order to distinguish between normal and abnormal wear, the neural network must
be fed a dataset with consistent annotation to differentiate between the different wear
categories for semantic segmentation. In the standard semantic segmentation approach,
including our CNN architecture, each pixel is assigned to a single category (e.g., normal
wear, abnormal wear, tool).

In this paper, in addition to the deep approach of wear detection, we will also analyze
in detail the difficulties that arise in labeling with respect to the normal and abnormal wear
of geometrically complex cutting tools by using our CNN systematically.

To the best of our knowledge, there is no previous work that specifically addresses this
problem of annotating datasets for wear detection and systematically addresses the effects of
different annotations on the performance of the model. Here, we clearly show the challenges
in wear detection reduction and at the same time the role of expertise in developing an
AI-based wear detection model with respect to the four classes: “Abnormal Wear”, “Normal
Wear”, “Tool” and “Background”. This is only feasible due to our innovative detection
system, which has already been registered and published at the European Patent Office [14].
This system enables reproducible imaging of the tool and signs of wear, thus reducing
effects such as reflections on the surface and fluctuations in the light source. Otherwise, it
would not be possible to compare the models from different annotators using conventional
imaging methods.

The article is organized as follows: Section 2 discusses the state of the art regarding the
relevance of marking quality and CNN-based approaches for AI applications and research.
Section 3 introduces the methods and discusses the background and the challenge of tool
manufacturers in image-based inspection of cutting tools. The focus is on their optical
properties, especially their technical and geometrical parameters. Section 3 also presents
the CNN-based methods and the guidelines for the detection of normal and abnormal
wear. Section 4 discusses the performance of the different modelers trained by different
annotators. Finally, the wear segmentation results of the different annotators with different
grades of expertise are reviewed using the CV to identify the main inconsistencies during
labeling and to evaluate the performance of the model on two different types of end
mill datasets.

2. State of the Art

In this section, we consider the related studies, which cover two main areas. First,
we deal with data-based AI. This includes an examination of existing annotations for
benchmark datasets. We then look at new AI-based methods for wear detection. We then
give a brief overview of the state of the art in artificial neural network techniques such
as semantic segmentation and object recognition, where we also focus on the quality of
labeling in terms of wear detection.

It is well known that the importance of data quality and preparation is of particular
interest in the development of artificial intelligence models. Data-centric AI and the
improvement of datasets are not equivalent. A data-centric AI competition focuses on the
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quality, relevance, and robustness of the data used to train AI models. Data-centric AI
approaches focus mostly on systematically improving data to achieve a model with the best
performance. Meanwhile, model-centric approaches focus on code or model architecture
improvement to enhance performance. Both methods can be balanced well to provide a
robust AI solution [15]. There has been a significant effort to improve the performance of
CNN models using data-centric approaches. The authors in [16] discuss the relevance of
data-centric methods for structural health monitoring and resilience.

In computer vision, most research on dataset validation has traditionally focused
on validation against the image database such as [17] and the verification of associated
annotations. ImageNet has been the subject of numerous studies recently. ImageNetV2,
which is described in detail in [18], experienced a significant drop in performance for
numerous classification models, as [18,19] shows. Labeling discrepancies were found in
several prominent datasets, leading to performance degradation, especially in DCNN [5].
In a study by [20], bird specialists discovered about 4% of annotation errors in bird images
from the CUB-200-2011 [21] and ImageNet datasets. In principle, biases within datasets can
lead to reduced model performance. According to Esteva et al. [22], the lack of extensive,
high-quality labeled datasets is a major obstacle to the use of supervised deep learning for
medical imaging. Taran and colleagues [23] used the Cityscapes dataset, which contains
both fine and coarse annotated ground truth data, to investigate the effects of annotation
quality on the performance of semantic image segmentation in traffic conditions [24]. The
authors investigated two scenarios: first, using the fine ground truth annotations for both
training and inference; second, training with the fine annotations followed by inference
using the coarse ground truth annotations. For the semantic segmentation model, the
research group in [25] used a Pyramid Scene Parsing Network (PSPNet), and they analyzed
a subset of the Cityscapes dataset, which included data from three different cities and
the following classes: roads, cars, pedestrians, traffic lights, and traffic signs. The dataset
intentionally contains 20,000 additional images with coarse annotations to support methods
that utilize large amounts of weakly annotated data. The authors used average IoU as
a metric. In their results, they found that IoU values for training data using both fine
and coarse labeled data were generally higher than those for images with fine ground
truth. Based on the results of these comparisons between fine and coarse ground truth
annotations, the authors suggested that deep neural networks could be used to generate
datasets with coarse ground truth. These could then be modified and used to fine-tune
pre-trained models for specific applications.

Currently, to our knowledge, there is no research on the influence of annotation quality
and skill level of a worker on model performance for identifying various wear types of
cutting tools, despite the high demand for AI-based tool wear inspection systems. Recent
research in tool condition monitoring (TCM) has widely been focused on wear detection
using various CNN architectures such as [26,27]. Employing the automatic convolutional
encoder (CAE), Xuefeng Wu and colleagues adapted a network model specifically for wear
detection, refining model parameters through the backpropagation method in tandem
with the stochastic gradient descent (SGD) algorithm [26]. In a parallel vein, Thomas
Bergs and team employed the Fully Convolutional Network (FCN) and U-Net for the
semantic segmentation of individual tool datasets. Their objective was to identify wear
on a microscopic scale. For the labeling process, both [26,27] use a standard direct light
source to generate high-resolution images from optical microscopy for tool wear labeling
and inspection. In contrast, our approach ensures proper illumination of the tool to obtain
high-quality images without reflections from the entire tool. While the referenced methods
use a microscope and capture images under a single lighting condition, making it difficult
to inspect the entire tool and detect wear in different shapes and forms, our approach
overcomes these limitations by eliminating illumination artifacts and thereby improving
wear detection. The results for a limited tool scene, due to changes such as light exposure,
yield a mean IoU coefficient of 0.73 [28]. However, due to the complicated geometry and
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structure of the tools, capturing suitable images for advanced AI applications remains a
challenge [29].

U-Net [30] and Mask R-CNN [31] are two of the leading deep learning frameworks
known for their superior performance in instance segmentation. Both achieved remark-
able results during the 2018 Kaggle Data Science Bowl [32,33]. Mask R-CNN utilizes
multiscale feature maps to capture robust semantic features, with the aim of effectively
delineating the boundaries of the cervical nuclei [34]. However, Mask R-CNN demands
significant computational power, rendering it less suitable for large-scale classification tasks
in industrial inspections.

In the context of semantic segmentation, the U-Net has demonstrated superior per-
formance compared to conventional convolutional networks by using the sliding window
approach. U-Net architecture has been used for various applications such as medical
and biomedical imaging and remote sensing image analysis [35,36]. This method entails
applying a fixed-size window across different segments of the input image to discern fea-
tures. U-Net’s distinctive “U-shaped” architecture enables it to adeptly capture context and
precisely localize it, presenting a more efficient strategy than the sliding-window technique.
U-Net’s architecture comprises encoder blocks and decoder blocks. The encoder blocks
condense the input image to discern features across varied scales via convolutional layers.
Max-pooling operations further diminish the spatial dimensions of these feature maps. In
contrast, the decoder blocks are tasked with upsampling the feature maps. Transposed
convolutions are used for this upsampling process to recapture spatial information that was
previously lost during the downsampling phase. Skip connections are integrated to merge
the feature maps from both encoder and decoder blocks, ensuring the network preserves
crucial details during the upsampling process. For our analysis, inspired by the U-Net
presented in [30], we developed a CNN architecture with three encoding and decoding
blocks utilized for images with three channels (RGB) to maintain visual information. The
bottleneck layer between the encoding and the decoding blocks represents the latent space
that holds the most compressed representation of the training dataset.

3. Materials and Methods
3.1. Structure Parameter-Related Annotation Challenges

In this section, we discuss the challenges associated with annotating images from
integral spiral cutters, focusing on their pivotal technical and geometric parameters. We
then introduce the innovative Image Acquisition System (IAS), designed to capture no-
reflection images of tools, ensuring optimal visibility of wear for annotation purposes.

Integral spiral milling cutters are routinely used in milling processes to machine
complicated workpieces made of different materials. The geometry of the tool is crucial
for the efficiency and quality of the milling process. Different geometric properties of
the cutting edges have a major influence on the overall quality of the milled product.
Figure 1a,b show the complexity of describing the wear characteristics of these tools, while
taking into account their specific geometric parameters and the resulting reflection behavior
on the end mill surface, which makes the annotation process difficult. We solve this problem
by capturing images with IAS (Section 3.2), which avoid reflection in imaging the tools, as
shown in Figure 1c.

In addition to the optical properties, the complex geometry of these tools makes it
difficult to identify wear patterns and even more difficult to differentiate between normal
and abnormal wear. Fluctuating light conditions further complicate the detection and
differentiation of signs of wear [37]. Consequently, such complex-shaped and optically
critical tools provide an ideal way to investigate the role of expertise in providing labeled
datasets and its impact on the quality of the annotations when evaluating the performance
of different models.
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(a)

(b) (c)

Figure 1. (a) Important geometric parameters of an end mill, such as relief face, end angle on the axial
rake, rake face, axial relief face, and helix angle. (b) Illustration of light reflection on a TiN-coated
end mill when illuminated by standard direct diffuse lighting. Notably, the most intense reflection is
observed along the cutter’s edges, while shadowing is evident within the inner rake space. (c) Image
captured by the IAS.

3.2. Acquisition System

To ensure high reproducibility when capturing images of end mills, we utilized the
acquisition system depicted in Figure 2. The system employs a centrally-aligned three-jaw
clamping chuck (4) to secure the tool (3) precisely at the center of the housing cavity (1). An
LED ring, positioned on the inner surface of the hemisphere, disperses the electromagnetic
radiation emitted from the emitter uniformly across the object. The housing’s (1) design in-
cludes a radially symmetrical segment, further promoting multidirectional light scattering.
This layout allows for the electromagnetic radiation to undergo multiple reflections within
a U-shaped region, thereby amplifying the diffusion effect produced by the diffuser.

For a complete tool inspection, a motorized rotating plate (5) holds the three-jaw chuck.
This arrangement allows for the continuous capture of the end mill from various angles
using a single camera. While parts of the structure reflect the electromagnetic radiation,
they incorporate openings or transparent sections, enabling the radiation to traverse from
the interior to the camera system (6) and interface for data transfer of the images (7). The
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images were taken with a commercial Nikon camera (Nikon D800E, Nikon Corporation,
Tokyo, Japan), with a 105 mm lens. The tool was a four-edged end mill (106.5 mm in
length, 40 mm in flute length, 15.4 mm in diameter, 16 mm in shank diameter). For the
TiCN dataset, an aperture of f/29 was used with a similar four-edged end mill (93 mm
length, 37 mm flute length, 16 mm diameter, 16 mm shank diameter). Both sets of data
were taken in equidistant angular steps of 15° from 0° to 360° with white illumination.
The field of view of the 105 mm lens on a full-frame sensor is approximately 23.3 degrees
diagonal. Smaller apertures such as f/32 and f/29 provide a large depth of field, which
is beneficial for capturing detailed images of tool wear. The images have been cropped
to focus on the tool and minimize background noise. The Nikon D800E’s pixel pitch of
4.87 microns ensures that each pixel corresponds to approximately 4.87 microns on the tool
surface. Given the importance of high-resolution images for effective model training and
enhanced wear and damage detection, it is essential to capture high-quality images with
great resolution. Consequently, high-resolution images were segmented into 32 discrete
smaller images. This not only bolsters model training but also refines the detection of wear
and damage on a microscopic scale.

Figure 2. Schematic representation of the measurement setup for capturing high-quality images
of end mills. The acquisition system consists of (1) a hemisphere with barium sulfate coating,
(2) 12 LEDs located at the edge of the hemisphere, (3) a tool to be examined, which is held by (4) a
three-jaw chuck, (5) represents the rotating plate for a 360° recording, (6) is a camera with an interface
(7) connected to the computer.

3.3. Annotation Guideline

The annotation of our dataset was carried out by three annotators, each having varying
levels of experience in machining. They all commenced their annotation tasks concurrently.
Annotation was performed on the full images. We divided the images into 32 small
fragments. Prior to the main annotation task, each was required to undergo training on
a predefined dataset, ensuring their annotations aligned with established ground truths.
They were also provided with examples of both normal and abnormal wear conditions to
achieve a consistent annotation baseline. To ensure high-quality annotations, we formulated
detailed instructions for the annotations:

1. Definition: Normal wear is characterized by wear without fractures. In contrast,
abnormal wear signifies wear with fractures. Both types of wear are considered con-
tiguous surfaces.

2. Positive Examples (refer to Figure 3):
3. Negative Examples (please see Figure 4):

(a) Mislabeling abnormal wear as normal wear (Figure 4a)
(b) Annotations mistakenly marking the background as a part of the tool

(Figure 4b)
(c) Incorrect annotations marking impurities as abnormal wear (Figure 4c)
(d) Misidentifying worn regions within the chipping space as normal wear

(Figure 4d)

4. Additional Guidelines:
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(a) Only label damage present on the cutting edges or phase, excluding the chip-
ping space.

(b) Wear that is ambiguous and cannot be distinctly labeled should be excluded
from the dataset.

(c) Instances can appear overlapped, but in effect, they do have finer boundaries
that can merge into one another, especially at the cutting edges. Here, careful
annotation is required.

Figure 3. Positive annotation examples. The wear classification includes two primary categories: “yel-
low” represents typical wear and “green” denotes abnormal wear and the two additional categories:
“red” for the background and “black” for the tool.

(a) (b)

(c) (d)

Figure 4. Negative examples of annotations. Each sub-figure highlights a distinct type of incorrect
annotation. The classifications include: “yellow” for normal wear, “green” for abnormal wear, “red”
for the background, and “black” for the tool itself. (a) shows mislabeling abnormal wear as normal
wear, (b) incorrect annotations mistakenly marking the background as a part of the tool surface,
(c) impurities have been labeled as abnormal wear, (d) material removal due to chip residue at
chipping space has been marked as normal wear.

Before the annotators started working on a new dataset, they performed a trial run in
which they selected 10 difficult image examples from the dataset. The dataset of two tool
types with two different coatings contains four instances assigned to four target classes:
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normal wear conditions, abnormal wear conditions, tools, and background. During the
annotation process, it was discovered that certain images in the original dataset did not
contain clear recognizable wear patterns. These images were subsequently removed from
our dataset.

3.4. Cnn Model

A CNN architecture with three encoding and decoding blocks has been used to train
models for normal and abnormal wear detection. The detailed architecture is shown in
Figure 5. The CNN architecture consists of three encoding and decoding blocks utilized
for images with three channels (RGB) to maintain visual information. The bottleneck layer
between the encoding and the decoding blocks represents the latent space that holds the
most compressed representation of the training dataset. The training parameters have
been reduced to 2,140,740 and are listed with other relevant parameters below in Table 1.
BS stands for batch size, which refers to the number of training examples utilized in one
iteration. DO stands for dropout rate, which is a regularization technique used to prevent
overfitting in neural networks by randomly dropping units during training.

Table 1. Relevant training parameters for the CNN.

Parameters Value

Image Size 512 × 512 × 3
Image Format Jpeg

BS 8, 16
DO 0.0, 0.3, 0.5

Epochs 70
GPU’s 1

Trainable Parameters 2,140,740
Loss Sparse Categorical Cross Entropy

Optimizer RMS Prop
Metric IoU

Train/Valid/Test 0.8/0.1/0.1

3.5. Dataset Characteristics

A total of 24 high-resolution images of each tool were captured in 15° angle incre-
ments for this study. Each image was finally split into 32 fragments of pixel size 512 × 512.
For this purpose, only the cutting area of the tools was taken into account. Thus, a to-
tal of 768 images were generated for training and testing the neural network for each
tool. The participating employees came from Linner Werkzeug Schleif Fabrik GmbH
(https://herionlinner.com/linner-gmbh-werkzeugfabrik/ (accessed on 10 May 2024)), a
company specializing in tool regrinding, with varying work experience ranging from 1 to
20 years. The tools have been used on CNC machines to produce gear racks by CNC finish-
ing at WMH Herion Antriebstechnik GmbH (https://herionlinner.com/antriebstechnik/
(accessed on 10 May 2024)).

The average time taken to annotate an image was 45 min for a whole image, which is
approximately 1.5 min per image fragment. Annotation was performed on the full images.
The annotators used LabelMe software (v5.0.1) [38] (https://pypi.org/project/labelme/
(accessed on 10 May 2024)) to label sample images for this study. To qualify as proficient
annotators, each candidate was required to complete an image annotation training program.
This program consisted of three steps: tutorials on how to use the software for annotation
using polygons, distinguishing different types of wear, and adhering to the guidelines
outlined in Section 3.3.

https://herionlinner.com/linner-gmbh-werkzeugfabrik/
https://herionlinner.com/antriebstechnik/
https://pypi.org/project/labelme/
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Figure 5. CNN architecture for normal and abnormal wear segmentation. Encoding blocks are
colored in blue. The bottleneck layer is colored in brown. Decoding blocks are colored in green.

We compare a carefully annotated dataset with alternative annotations created by
individuals from diverse professional backgrounds. The three people did not follow the
same annotation instructions. The resulting models must be able to differentiate various
wear patterns in complex end mills. The annotation process involves participants with
varying skill sets, ranging from novices to experts. We expect that, even when detailed
guidelines are provided, annotations produced by experienced professionals will exhibit
a higher level of precision and consistency compared to those produced by their less
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experienced colleagues. The main relevant aspects that can affect CNN model performance
by the dataset are:

1. Tool Diversity and Wear Patterns: Our experimental framework leverages two
distinct datasets to ensure a comprehensive evaluation of various wear patterns.

• Dataset 1: encompasses tools coated with Titanium Nitride (TiN).
• Dataset 2: incorporates tools coated with Titanium Carbonitride (TiCN).

2. Optimizing CNN Models: Images from the datasets were strategically resized to
dimensions of 512 × 512 pixels, facilitating compatibility with our CNN model and
optimizing computational performance.

3. Data Partitioning: The assembled images are systematically divided into training, val-
idation, and testing segments, following a 8:1:1 distribution. A detailed enumeration
of the instances in the dataset is presented in Table 2.

To obtain an estimation of the instances, the number of individual instances labeled as
polygons by annotator 1 was calculated. The number of instances of Background and Tool
is easy to check here. Since each annotator labels its own dataset to independently train
its own model for wear detection, the number of instances and pixel sizes of normal and
abnormal wear may vary for each dataset of distinct annotators.

Table 2. Instance distribution across datasets.

Tool Coating Class Background Class Normal Wear Class Abnormal Wear Class Tool

TiCN 432 404 806 768

TiN 432 770 532 768

Marking wear phenomena requires a great deal of precision. Considering the time
involved in generating and annotating datasets, our efforts were focused on two particular
tool coatings: TiCN (Figure 6a) and TiN (Figure 6b). Apart from the differences in coating,
they have different wear patterns, wear contamination, and specific applications. Both
coatings have their unique strengths: TiCN, prevalent in end mills, is robust and widely
used for machining steel and cast iron. On the other hand, TiN is renowned for its wear
resistance and low friction coefficient, making it a popular choice for various cutting
applications [39].

To expedite model training without compromising on image quality, we segmented the
original images. This ensured quick training and preserved critical visual data that could
otherwise be lost by compression. For our ablation study, we used the CNN architecture
presented in Figure 5. Through an examination of various hyperparameters, such as
Learning rate (LR), Batch size (BS), and dropout rate (DO), we determined the optimal
settings for the multiple-class segmentation results.

(a) (b)

Figure 6. Illustrative images captured via the acquisition system: (a) TiCN-coated endmill
and (b) TiN-coated endmill.

3.6. Annotators

For a comprehensive evaluation of the impact of annotation quality on modeling results,
we assigned several annotators with different levels of expertise to annotate each dataset.

• Annotator 1: with more than two decades of experience in the field, this person
embodies the highest level of expertise and experienced insight into this topic.
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• Annotator 2: with 2 years of hands-on experience, this participant represents the
middle tier, bridging the gap between novices and veterans.

• Annotator 3: as a newcomer to the field of machining technology, this participant
offered a fresh perspective without deep-rooted biases or ingrained expertise.

3.7. Evaluation Indicators

To evaluate and compare segmentation models, we employ the accuracy metric known
as Intersection over Union (IoU). The Jaccard Index is used as a metric to investigate the
similarity in pixel-wise matter between Ground Truth (GT) and prediction.

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (1)

In this formula, J(A, B) represents the Jaccard Index between sets A and B. The numerator
|A ∩ B| is the size (cardinality) of the intersection of sets A and B, and the denominator
|A ∪ B| is the size of the union of sets A and B. This metric provides a measure of the
overlap or similarity between the two sets, with values ranging from 0 (no overlap) to 1
(complete overlap or similarity).

To evaluate the models on their overall performance, we introduce a weight adjustment
of the under-represented classes such as normal and abnormal wear compared to the over-
represented classes such as background and damage-free tool surface. The formula to
determine the weights for wmIoU are described below:

1. Determine the class frequencies by counting the occurrences of each class in the
dataset to obtain N1, N2, N3, and N4.

2. Calculate the inverse frequencies for each class as follows:

1
N1

,
1

N2
,

1
N3

, and
1

N4
. (2)

3. Normalize the weights by summing all the inverse frequencies and then divide each
inverse frequency by this sum to obtain weights w1, w2, w3, and w4 that add up to 1:

wi =
1
Ni

∑4
j=1

1
Nj

(3)

4. Apply the weights to calculate the weighted mean IoU:

wmIoU = w1 · IoU1 + w2 · IoU2 + w3 · IoU3 + w4 · IoU4 (4)

Using inverse frequencies, we ensure that underrepresented classes (with a lower
frequency Nj) are given more weight in the calculation. This increases the influence
of the underrepresented class on the average performance evaluation of the model. In
addition to our analysis, we used the CV to assess the relative variability of the mIoU
model performance of the three annotators. We use the CV as a standardized metric of
dispersion that is particularly useful for comparing the degree of variation in prediction
performance of the models that have been trained on different labeled datasets. The formula
for calculating the coefficient of variation is as follows:

CVIoUi =
σIoUi j

µIoUi j
× 100% (5)

where σ represents the standard deviation and µ the mean of the segmentation results for
the class i of all annotators j = 1, 2, 3.
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4. Results and Discussion

In this research paper, we address the following main goals. First, we investigate
the challenge of annotating wear of different types to improve our annotation guidelines
for wear segmentation in its different forms. Second, we compare the performance of the
different models from the different annotators and investigate the impact of annotation
quality on the performance of our proposed CNN models. Then we verify the impact
of the hyperparameters with respect to both datasets—TiN and TiCN—which have been
annotated by different annotators. Here, we investigate which of the hyperparameter
combinations are particularly sensitive to varying annotation quality.

4.1. Comparison of Annotation by Different Annotators

A comparative analysis of the annotations revealed interesting patterns. Although the
annotations for the categories “tools” and “background” show good agreement, there is a
noticeable variability in the labeling of “normal” and “abnormal” wear. This variability
can be clearly seen in Figures 7 and 8. The critical annotations have been marked in red.

The reasons for these discrepancies are complex:

1. Ambiguity in wear assessment: in particular, minute wear features on cutting edges,
such as on the edge of the TiCN cutter, presented a challenge in definitive categorization,
but still shows consistency in annotation (marked green and yellow in Figure 7b).

2. Concentration loss: as can be seen in Figure 7b,c, noticeable wear patterns (marked in
red at the top left part of Figure 7d) were occasionally missed. This oversight could be
due to diminishing concentration during the annotation process.

(a) Original Image (b) Mask-Annotator 1 (c) Mask-Annotator 2 (d) Mask-Annotator 3

Figure 7. Masks of endmill wear annotations for comparison of a TiCN-coated endmill dataset. The
annotations were performed by three annotators: Annotator 1, Annotator 2, and Annotator 3. The
dataset includes four classes: normal wear in green, abnormal wear in yellow, background in red,
and tool in black. The critical annotations have been marked in red.

(a) Original Image (b) Mask-Annotator 1 (c) Mask-Annotator 2 (d) Mask-Annotator 3

Figure 8. Masks of Endmill wear annotations for comparison of a TiN-coated endmill dataset. The
annotations were performed by three annotators: Annotator 1, Annotator 2, and Annotator 3. The
dataset includes four classes: normal wear in green, abnormal wear in yellow, background in red,
and tool in black. The critical annotations have been marked in red.
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Given these findings, it is of crucial importance that we include an additional control
level in the annotation process workflow. We propose an additional annotation check
aimed at preemptively identifying obvious inconsistencies in the annotation and taking
measures at an early stage.

4.2. Performance Comparison of Various CNN Models on Diverse Datasets from
Multiple Annotators

In this subsection, we present a detailed evaluation of the performance of our proposed
CNN model by varying hyperparameter combinations. The models have been trained on
both datasets, i.e., the TiN- and TiCN-coated ones. Each training dataset has been labeled
by one of the annotators, resulting in a total of six annotated datasets. We evaluate the
adaptability and performance of these wear inspection methods with respect to the labeling
quality and identify subtleties that arise from different data, hyperparameters, and different
annotations. All of these factors can affect the performance of a model. We will investigate
the factors that influence performance and conclude with potential strategies to improve
the robustness and generalization of models for wear detection tasks.

To examine the role of labeling in affecting the effect of annotation quality,
Tables A1 and A2 present the mean IoU in TiN and TiCN inference data predicted by
models trained on different datasets labeled by annotators 1, 2, and 3. We consider the
mIoU of the distinct classes: “Abnormal Wear”, “Normal Wear”, “Tool”, and “Background”,
as well as the overall performance wmIoU. The models have been trained with different
hyperparameters. The LR has been set to 0.001 and 0.0001. We also varied the DO rate
for each layer: 0.0, 0.3, 0.5, and experimented with different BS: 8 and 16. We employed
the sparse categorical cross-entropy loss function to train the model for all combinations
of parameters.

It can be seen from Tables A1 and A2 that all annotators achieve remarkable results
for the class “Background”, with a high mIoU of 0.99 for this class in both datasets, coated
with TiN and TiCN. Taking into account the class “Tool”, the annotators performed better
on the TiN dataset (Table A1) compared to the TiCN dataset (Table A2).

While Annotators 1, 2, and 3 achieved a higher mIoU of nearly 1.0 for multiple models
(except for Annotator 2) for the class “Tool” on the TiN dataset, the models from annotators
predicted on the TiCN-coated dataset achieved for the class “Tool” a maximum mIoU
of 0.96 for Annotator 1 (A1MTiCN 3, LR: 0.001, BS: 16, DO: 0) and 0.94 for Annotator 2
(A2MTiCN 2, LR: 0.001, BS: 8, DO: 0.5). The model A3MTiCN 1 (LR: 0.001, BS: 8, DO: 0.3)
of Annotator 3 achieved a maximum mIoU of 0.97. This suggests that the complexity
of tool features, possibly combined with variations in annotator labeling, affects model
performance, even for the class “Tool”.

For research interest, the classes “Normal Wear” and “Abnormal Wear” are mostly
relevant since their labeling quality and impact on performance can be dependent on
the level of expertise the annotators have. Regarding normal and abnormal wear, the
TiN-coated milling tool compared to the TiCN-coated milling tool achieved a significantly
higher mIoU value for almost all combinations of hyperparameters, as seen in Table A1.
The model A1MTiN 1 (LR: 0.001, BS: 8, DO: 0.3) of Annotator 1 achieved a remarkable
mIoU of 0.82 on the TiN-coated dataset for the class “Abnormal Wear”, and for the class
“Normal Wear”, an mIoU of 0.71. While model A2MTiN 6 (LR: 0.0001, BS: 8, DO: 0.0) from
Annotator 2 achieved similar high performance with an mIoU of 0.81 for abnormal wear
but only 0.46 for normal. The best model trained on the Annotator 3 dataset is A3MTiN 1
(LR: 0.001, BS: 8, DO: 0.3), achieving a maximum mIoU of 0.75 for the class “Abnormal
Wear” but only a poor mIoU of 0.57 for the class “Normal Wear”.

For comparison, ref. [40] achieved the highest score of 0.55 with LinkNet for flank
wear (normal wear), and for the class groove (abnormal wear), achieved the highest score of
0.80 with U-Net. It must be mentioned that these results [40] stem from optical microscopic
images that consider only a small region of the tool. In our case, our results come from the
entire tool itself.
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Considering the TiCN-coated endmill, the overall IoU results are rather poor, as can
be seen in Table A2 for abnormal wear and for normal wear classes.

Annotator 1 achieved the best wear segmentation results of mIoU = 0.66 for abnor-
mal wear and 0.59 for normal wear with the hyperparameter combination A1MTiCN 1
(LR: 0.001, BS: 8, DO: 0.3). Annotator 2, in model A2MTiCN 2 (LR: 0.001, BS: 8, DO: 0.5),
achieved the best IoU segmentation results of 0.60 for abnormal wear and 0.56 for normal
wear. Although Annotator 3’s performance in A3MTiCN 2 (LR: 0.001, BS: 8, DO: 0.5) for
abnormal wear segmentation was better than Annotator 2, the segmentation results for
normal wear were poorer, with an mIoU of 0.40.

Regarding the hyperparameter tuning, we can observe that models with adjusted
DO, in particular those at 0.3 and 0.5, tend to deliver the best performance, suggesting
that regularization via dropout could be impacting the model’s ability to generalize from
training data.

For generalization, the use of dropout layers as a regularization method, especially
with a DO of 0.3, generally seems to improve the wmIoU across all annotators. A higher
BS = 16 also appears to result in a slightly lower wmIoU for all models and datasets
compared to a smaller BS = 8. In comparison, wmIoU values tend to perform better with
LR = 0.001 than with LR = 0.0001.

4.3. Impact of Hyperparameters on Model Sensitivity to Annotation Quality

To consider the differences and sensitivity of the model with regard to possible an-
notation errors, the figures below present the segmentation results for “Normal Wear”
and “Abnormal Wear” classes from the TiN (Figure 9) and and TiCN (Figure 10) datasets,
evaluated using the mIoU and the standard deviation between the annotators. Each figure
compares the performance of various models, each defined by specific hyperparameters:
LR, BS, and DO. The results are evaluated by three different annotators and the variability
between their annotations is shown through standard deviation error bars.

The presence of a higher standard deviation in some models suggests that these
models are more sensitive to annotation differences. It can be observed that certain hy-
perparameters can make a model more sensible to incorrect annotations. This sensitivity
means that the performance of the model can vary significantly depending on the quality
and consistency of the annotations. The mIou results of normal and abnormal wear of the
TiN tool (Figure 9a,b) and normal wear (Figure 10b) of the TiCN tool show a similar trend
where the models with LR = 0.001 outperform the models with LR = 0.0001. The model with
hyperparameters LR = 0.0001, BS = 16, and DO = 0 shows greater performance variability
between the annotators in the class, as shown by the larger standard deviation error bars.
This trend cannot be observed for the abnormal wear of TiCN in Figure 10b. In general,
models with dropout rates of 0.3 and 0.5 tend to perform better. Annotator 1 consistently
yields higher mIoU values, but there is obvious variability between the annotators.

(a)
Figure 9. Cont.
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(b)

Figure 9. mIoU results of various models for classes of interest: (a) normal wear and (b) abnormal
wear. These models were trained using the same dataset but labeled by different annotators. The LR
was set to 0.001 and 0.0001, and hyperparameters such as BS and LR varied, as detailed in Table A1.
The dataset originates from a TiN-coated end mill. The standard deviation is depicted to illustrate the
performance variation among annotators 1, 2, and 3.

(a)

(b)

Figure 10. mIoU results of various models for classes of interest: (a) normal wear and (b) abnormal
wear. These models were trained using the same dataset but labeled by different annotators. The LR
was set to 0.001 and 0.0001, and hyperparameters such as BS and LR varied, as detailed in Table A2.
The dataset originates from a TiCN-coated end mill. The standard deviation is depicted to illustrate
the performance variation among annotators 1, 2, and 3.
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4.4. Visual Analysis

The segmentation result of the best-performing model of each annotator is visually
shown in Figure 11 for the TiN-coated dataset and in Figure 12 for the TiCN dataset. It can
be clearly seen that the reference annotation in the GT in Figure 11b was not correct, and
abnormal wear was mistakenly annotated as normal wear, highlighting the relevance of an
annotation guideline. For the TiN tool, all models that performed best for the annotators
were able to predict wear correctly (Figure 11c,e,g). In contrast for the TiCN tool, in
Figure 12c,e,h, it can be seen that abnormal wear was partially predicted as a background.
While the acquisition systems reduce reflections, the top of the tool still shows light artifacts,
especially in combination with wear. This is because the wear can behave as a scattering
source that can appear brighter at a certain angle to the observer, leading to misclassification
of wear as a background, as seen in Figure 12c,e,g. This can be improved by increasing the
number of training datasets or adjusting the lighting intensity or integrating time of the
camera sensor. Furthermore, it can be seen from Figure 12e,f that normal and abnormal
wear at the cutting edges remains completely undetected in the A2MTiCN model (marked
in red), while the other models of the two annotators detect wear but have difficulties,
especially in the subtle transition from normal to abnormal wear. Nevertheless, the results
are considered good in quantitative terms.

(a) Original Image (b) GT Mask (c) A1MTiN 1 (d) A1MTiN 1 Mask

(e) A2MTiN 7 (f) A2MTiN 7 Mask (g) A3MTiN 1 (h) A3MTiN 1 Mask

Figure 11. Prediction results and corresponding masks on test images from a TiN-coated milling tool,
predicted by the best-performing models of the three annotators, 1, 2 and 3, as detailed and bold in
Table A1. The prediction includes the four classes: normal wear in green, abnormal wear in yellow,
background in red, and tool in black. Wrong annotations in the GT Mask are marked red.

4.5. Coefficient of Variation Analysis of the Segmentation Results across Annotators, Classes, and
Hyperparameter Variations

In this section, we present the results of our analysis aimed at validating the inconsis-
tencies in the labeling process and its impact on model performance, which was performed
by three annotators with different levels of expertise. The analysis focuses on four different
classes: background, tool, normal wear, and abnormal wear. We used the coefficient of
variation of mIoU (Equation (5)) to assess the consistency and reliability of the method,
as well as evaluate the variation in the readings of individual classes by Annotator 1,
Annotator 2, and Annotator 3. Additionally, we investigated the CV associated with dif-
ferent hyperparameters, including DO, LR, and BS, which affected model performance.
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Our goal was to identify reference points for improving the annotation process and to
understand the influence of annotator expertise and model hyperparameters on the quality
of dataset annotations.

(a) Original Image (b) GT Mask (c) A1MTiCN 1 (d) A1MTiCN 1 Mask

(e) A2MTiCN 2 (f) A2MTiCN 2 Mask (g) A3MTiCN 1 (h) A3MTiCN 1 Mask

Figure 12. Prediction results and corresponding masks on test images from a TiN-coated milling tool,
predicted by the best-performing models of the three annotators, 1, 2 and 3, as detailed and bold in
Table A2. The prediction includes the four classes: normal wear in green, abnormal wear in yellow,
background in red, and tool in black. Critical regions, such as wrong predictions or missed wear
recognition, are marked in red.

The following tables (Table 3 for the TiN-coated dataset and Table 4 for the TiCN-
coated dataset) present the CV of the IoU values of different models across the different
classes, including the wmIoU. The mIoU CV values provide insights into the relative
variability of the IoU values for each category across different models. A higher CV
indicates greater dispersion around the mean, suggesting that the performance of the
models is less consistent in that category.

For the TiN-coated tool, the highest mean CV values are observed in the class “Normal
Wear” at 9.48% followed by “Abnormal Wear” at 8.61% , indicating significant variability
in model performance in these categories. In contrast, the “Background” class, with a CV
value of 0.07%, shows the least variability, followed by the class “Tool” with only 2.75%,
suggesting consistent performance across models. It seems that the novel acquisition
system enables the model with all hyperparameter combinations to segment the tool from
the background effectively, and annotations seem to be performed well by all annotators.

For the TiCN-coated tool, the background has a small mean CV value of 0.76%, but
the mean CV value of 9.97% is high compared to the one for the TiN-coated tool, indicating
that certain hyperparameters can be beneficial for enhancing the extraction of the tool
pixel-wise from the other classes. The mean CV for “Normal Wear” of 20.24% and for
the class “Abnormal Wear” of 18.53% exhibits the highest mean CV values, indicating
notable variability.
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Table 3. CV for TiN-coated tool.

Model Background
CV [%] Tool CV [%]

Abnormal
Wear CV

[%]

Normal
Wear CV

[%]
wmIoU CV

[%] LR BS DO

MTiN 0 0.13 0.24 7.39 9.61 8.91 0.001 8 0
MTiN 1 0.10 2.22 7.49 10.05 8.90 0.001 8 0.3
MTiN 2 0.04 0.37 2.82 10.05 8.07 0.001 8 0.5
MTiN 3 0.18 16.78 9.27 18.49 12.16 0.001 16 0
MTiN 4 0.08 1.69 8.07 2.04 3.12 0.001 16 0.3
MTiN 5 0.03 0.39 11.47 9.94 6.17 0.001 16 0.5
MTiN 6 0.04 2.58 9.92 11.24 10.66 0.0001 8 0
MTiN 7 0.01 1.09 10.02 8.14 7.43 0.0001 8 0.3
MTiN 8 0.03 2.73 7.32 7.42 7.30 0.0001 8 0.5
MTiN 9 0.03 0.81 20.50 17.74 18.45 0.0001 16 0
MTiN 10 0.03 1.41 3.89 4.43 4.26 0.0001 16 0.3
MTiN 11 0.04 1.89 5.41 3.67 3.35 0.0001 16 0.5

Mean CV 0.07 2.75 8.25 9.48 8.61 - - -

Table 4. CV for TiCN-coated tool.

Model Background
CV [%] Tool CV [%]

Abnormal
Wear CV

[%]

Normal
Wear CV

[%]
wmIoU CV

[%] LR BS DO

MTiCN 0 4.69 34.34 41.62 28.19 29.63 0.001 8 0
MTiCN 1 0.31 8.99 12.09 12.93 11.60 0.001 8 0.3
MTiCN 2 0.45 2.16 13.62 14.03 10.32 0.001 8 0.5
MTiCN 3 0.35 10.38 16.86 41.67 30.34 0.001 16 0
MTiCN 4 0.47 6.15 28.05 39.32 27.51 0.001 16 0.3
MTiCN 5 0.54 6.17 16.78 22.67 17.78 0.001 16 0.5
MTiCN 6 0.30 10.26 27.67 33.01 23.48 0.0001 8 0
MTiCN 7 0.31 2.15 4.14 13.69 8.54 0.0001 8 0.3
MTiCN 8 0.42 6.52 15.28 23.34 17.21 0.0001 8 0.5
MTiCN 9 0.26 4.93 28.74 16.33 9.64 0.0001 16 0
MTiCN 10 0.36 16.51 17.60 9.06 7.86 0.0001 16 0.3
MTiCN 11 0.44 2.84 10.02 8.05 5.69 0.0001 16 0.5

Mean CV 0.76 9.97 18.53 20.24 16.32 - - -

5. Conclusions

In this study, we presented an approach to compare the annotation quality and con-
sequent wear detection performance of different CNN models, each trained on datasets
created by annotators with varying levels of expertise. The images are derived from TiN-
and TiCN-coated milling tools. To achieve this, we utilized a new imaging system designed
to minimize reflection and produce high-quality images. Additionally, we analyzed the
influence of various hyperparameters to generalize the test datasets and discussed the
sensitivity of potentially inconsistent annotations.

The hyperparameters of DO of 0.3 and LR of 0.001 showed consistent model performance
in terms of wear detection across all annotations. Annotator 1 achieved a maximum mIoU
of 0.8153 for abnormal wear and 0.7120 for normal wear on the TiN datasets. Annotator 3’s
models delivered an mIoU of 0.7538 for abnormal wear and 0.5679 for normal wear, with
Annotator 2’s performance falling in between these values. The TiCN dataset exhibited a
similar trend but with significantly poorer results, indicating annotation challenges due to
the subtle wear nature of the tool. This was further demonstrated through the coefficient of
variation (CV). The TiN tool showed a low mean CV for overall wmIoU performance at 8.6%,
while the TiCN dataset performed significantly worse, with a mean CV of 16.32% for wmIoU.

The results demonstrate the complexity of wear annotation challenges. These findings
underscore the importance of professional annotation guidelines, high-resolution images,
and large datasets encompassing various types of wear. The three annotators illustrated
that specific expertise in machining technology is crucial for the labeling process.
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6. Patents

The illumination technique used in our research for the wear inspection system is based
on the European patent EP1430720, developed by Mühenad Bilal and Christian Mayer. This
specific illumination approach has been modified for wear characterization and enables the
identification of tiny wear features that cannot be detected with conventional inspection systems.
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Appendix A

Table A1. Comparison of the segmentation results as mIoU for the four classes: background, tool,
abnormal wear, normal wear, and the overall performance wmIoU using the test dataset of a TiN-
coated milling cutter labeled by Annotator 1, Annotator 2, and Annotator 3 with variation of the
hyperparameters: LR, DO and BS.

Annotator 1 Background
[mIoU] Tool [mIoU] Abnormal

Wear [mIoU]
Normal

Wear [mIoU]
wmIoU
[mIoU] LR BS DO

A1MTiN 0 0.9987 0.9895 0.7537 0.6134 0.6472 0.001 8 0
A1MTiN 1 0.9986 0.9979 0.8153 0.7120 0.7369 0.001 8 0.3
A1MTiN 2 0.9980 0.9890 0.6866 0.7120 0.7067 0.001 8 0.5
A1MTiN 3 0.9983 0.9459 0.6361 0.7120 0.6947 0.001 16 0
A1MTiN 4 0.9988 0.9982 0.8105 0.5935 0.6453 0.001 16 0.3
A1MTiN 5 0.9978 0.9962 0.5122 0.7039 0.6596 0.001 16 0.5
A1MTiN 6 0.9986 0.9410 0.6686 0.3597 0.4335 0.0001 8 0
A1MTiN 7 0.9978 0.9724 0.6243 0.5875 0.5970 0.0001 8 0.3
A1MTiN 8 0.9979 0.9888 0.6623 0.6619 0.6627 0.0001 8 0.5
A1MTiN 9 0.9986 0.9816 0.7119 0.4792 0.5350 0.0001 16 0
A1MTiN 10 0.9981 0.9800 0.6458 0.5161 0.5476 0.0001 16 0.3
A1MTiN 11 0.9981 0.9640 0.5671 0.4312 0.4643 0.0001 16 0.5

Annotator 2 Background
[mIoU] Tool [mIoU] Abnormal

Wear [mIoU]
Normal

Wear [mIoU]
wmIoU
[mIoU] LR BS DO

A2MTiN 0 0.9958 0.9845 0.6288 0.4853 0.5201 0.001 8 0
A2MTiN 1 0.9964 0.9518 0.6870 0.5933 0.6148 0.001 8 0.3
A2MTiN 2 0.9970 0.9969 0.6794 0.5933 0.6144 0.001 8 0.5
A2MTiN 3 0.9945 0.6453 0.5893 0.5933 0.5926 0.001 16 0
A2MTiN 4 0.9970 0.9626 0.6780 0.5933 0.6141 0.001 16 0.3
A2MTiN 5 0.9971 0.9969 0.6780 0.5933 0.6141 0.001 16 0.5
A2MTiN 6 0.9977 0.9980 0.8082 0.4618 0.5443 0.0001 8 0
A2MTiN 7 0.9980 0.9980 0.7778 0.5881 0.6335 0.0001 8 0.3
A2MTiN 8 0.9972 0.9386 0.6073 0.5775 0.5853 0.0001 8 0.5
A2MTiN 9 0.9979 0.9818 0.7234 0.4504 0.5157 0.0001 16 0
A2MTiN 10 0.9973 0.9647 0.5908 0.4646 0.4954 0.0001 16 0.3
A2MTiN 11 0.9972 0.9717 0.5334 0.3949 0.4287 0.0001 16 0.5

Annotator 3 Background
[mIoU] Tool [mIoU] Abnormal

Wear [mIoU]
Normal

Wear [mIoU]
wmIoU
[mIoU] LR BS DO

A3MTiN 0 0.9982 0.9895 0.7047 0.5400 0.5797 0.001 8 0
A3MTiN 1 0.9985 0.9981 0.7538 0.5679 0.6125 0.001 8 0.3
A3MTiN 2 0.9974 0.9968 0.6435 0.5679 0.5866 0.001 8 0.5
A3MTiN 3 0.9983 0.9470 0.7347 0.4478 0.5163 0.001 16 0
A3MTiN 4 0.9983 0.9976 0.6954 0.5681 0.5990 0.001 16 0.3
A3MTiN 5 0.9976 0.9883 0.5852 0.5599 0.5668 0.001 16 0.5
A3MTiN 6 0.9983 0.9899 0.6508 0.3757 0.4417 0.0001 8 0
A3MTiN 7 0.9981 0.9803 0.6432 0.4918 0.5285 0.0001 8 0.3
A3MTiN 8 0.9978 0.9299 0.5534 0.5599 0.5592 0.0001 8 0.5
A3MTiN 9 0.9983 0.9649 0.4452 0.3112 0.3442 0.0001 16 0
A3MTiN 10 0.9980 0.9467 0.6381 0.5037 0.5363 0.0001 16 0.3
A3MTiN 11 0.9977 0.9302 0.4966 0.4207 0.4397 0.0001 16 0.5

Table A2. Comparison of the segmentation results as mIoU for the four classes: background, tool,
abnormal wear, normal wear, and the overall performance wmIoU using the test dataset of a TiCN-
coated milling cutter labeled by Annotator 1, Annotator 2, and Annotator 3 with variation of the
hyperparameters: LR, DO and BS.

Annotator 1 Background
[mIoU] Tool [mIoU] Abnormal

Wear [mIoU]
Normal Wear

[mIoU]
wmIoU
[mIoU] LR BS DO

A1MTiCN 0 0.9961 0.8439 0.5229 0.4586 0.5305 0.001 8 0
A1MTiCN 1 0.9964 0.9548 0.6568 0.5847 0.6536 0.001 8 0.3
A1MTiCN 2 0.9958 0.9262 0.4596 0.5072 0.5842 0.001 8 0.5
A1MTiCN 3 0.9969 0.9551 0.6136 0.5445 0.6209 0.001 16 0
A1MTiCN 4 0.9959 0.8173 0.2934 0.2174 0.3290 0.001 16 0.3
A1MTiCN 5 0.9955 0.8322 0.5638 0.5934 0.6375 0.001 16 0.5
A1MTiCN 6 0.9975 0.8219 0.4585 0.4561 0.5239 0.0001 8 0
A1MTiCN 7 0.9975 0.8984 0.5759 0.4794 0.5576 0.0001 8 0.3
A1MTiCN 8 0.9966 0.8050 0.4100 0.4402 0.5076 0.0001 8 0.5
A1MTiCN 9 0.9971 0.7031 0.3886 0.3675 0.4301 0.0001 16 0
A1MTiCN 10 0.9964 0.5983 0.3486 0.3672 0.4104 0.0001 16 0.3
A1MTiCN 11 0.9963 0.7507 0.3119 0.2970 0.3812 0.0001 16 0.5
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Table A2. Cont.

Annotator 2 Background
[mIoU] Tool [mIoU] Abnormal

Wear [mIoU]
Normal Wear

[mIoU]
wmIoU
[mIoU] LR BS DO

A2MTiCN 0 0.8983 0.3533 0.1599 0.2571 0.2750 0.001 8 0
A2MTiCN 1 0.9961 0.7911 0.4870 0.4249 0.4933 0.001 8 0.3
A2MTiCN 2 0.9951 0.9407 0.5947 0.5617 0.6320 0.001 8 0.5
A2MTiCN 3 0.9962 0.7667 0.4076 0.1881 0.2970 0.001 16 0
A2MTiCN 4 0.9970 0.9378 0.5878 0.5555 0.6264 0.001 16 0.3
A2MTiCN 5 0.9958 0.9005 0.3705 0.5934 0.6485 0.001 16 0.5
A2MTiCN 6 0.9955 0.7428 0.3519 0.1957 0.2984 0.0001 8 0
A2MTiCN 7 0.9974 0.9396 0.5853 0.3547 0.4646 0.0001 8 0.3
A2MTiCN 8 0.9970 0.8960 0.5699 0.4499 0.5333 0.0001 8 0.5
A2MTiCN 9 0.9968 0.7905 0.4986 0.2600 0.3601 0.0001 16 0
A2MTiCN 10 0.9959 0.9018 0.5048 0.3617 0.4627 0.0001 16 0.3
A2MTiCN 11 0.9965 0.8019 0.3385 0.3434 0.4283 0.0001 16 0.5

Annotator 3 Background
[mIoU] Tool [mIoU] Abnormal

Wear [mIoU]
Normal Wear

[mIoU]
wmIoU
[mIoU] LR BS DO

A3MTiCN 0 0.9915 0.8627 0.4124 0.5363 0.5957 0.001 8 0
A3MTiCN 1 0.9896 0.9716 0.5922 0.5314 0.6132 0.001 8 0.3
A3MTiCN 2 0.9859 0.8933 0.6410 0.3969 0.4906 0.001 8 0.5
A3MTiCN 3 0.9893 0.7773 0.4876 0.3245 0.4097 0.001 16 0
A3MTiCN 4 0.9866 0.8350 0.5773 0.3129 0.4116 0.001 16 0.3
A3MTiCN 5 0.9843 0.7744 0.4834 0.3475 0.4277 0.001 16 0.5
A3MTiCN 6 0.9904 0.6380 0.2249 0.3151 0.3746 0.0001 8 0
A3MTiCN 7 0.9909 0.8976 0.6325 0.4854 0.5628 0.0001 8 0.3
A3MTiCN 8 0.9880 0.7684 0.4272 0.2561 0.3523 0.0001 8 0.5
A3MTiCN 9 0.9914 0.7691 0.2361 0.3842 0.4545 0.0001 16 0
A3MTiCN 10 0.9886 0.7510 0.5341 0.4391 0.4978 0.0001 16 0.3
A3MTiCN 11 0.9870 0.7921 0.2646 0.2860 0.3796 0.0001 16 0.5
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