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Abstract: Node localization is critical for accessing diverse nodes that provide services in remote
places. Single-anchor localization techniques suffer co-linearity, performing poorly. The reliable
multiple anchor node selection method is computationally intensive and requires a lot of processing
power and time to identify suitable anchor nodes. Node localization in wireless sensor networks
(WSNs) is challenging due to the number and placement of anchors, as well as their communication
capabilities. These senor nodes possess limited energy resources, which is a big concern in localiza-
tion. In addition to convention optimization in WSNs, researchers have employed nature-inspired
algorithms to localize unknown nodes in WSN. However, these methods take longer, require lots of
processing power, and have higher localization error, with a greater number of beacon nodes and
sensitivity to parameter selection affecting localization. This research employed a nature-inspired
crow search algorithm (an improvement over other nature-inspired algorithms) for selecting the
suitable number of anchor nodes from the population, reducing errors in localizing unknown nodes.
Additionally, the weighted centroid method was proposed for identifying the exact location of an
unknown node. This made the crow search weighted centroid localization (CS-WCL) algorithm
a more trustworthy and efficient method for node localization in WSNs, with reduced average
localization error (ALE) and energy consumption. CS-WCL outperformed WCL and distance vector
(DV)-Hop, with a reduced ALE of 15% (from 32%) and varying communication radii from 20 m to
45 m. Also, the ALE against scalability was validated for CS-WCL against WCL and DV-Hop for a
varying number of beacon nodes (from 3 to 2), reducing ALE to 2.59% (from 28.75%). Lastly, CS-WCL
resulted in reduced energy consumption (from 120 mJ to 45 mJ) for varying network nodes from 30
to 300 against WCL and DV-Hop. Thus, CS-WCL outperformed other nature-inspired algorithms in
node localization. These have been validated using MATLAB 2022b.

Keywords: localization; anchor nodes; crow search algorithm; range free

1. Introduction

Localization methods are used in many real-world applications, including in the
industrial realm [1] (for inventory stock identification), in underwater environments, and
for outdoor activities [2]. It is used in classic global positioning systems (GPS) to achieve a
high level of localization accuracy in outdoor environments. It is impracticable to equip
every sensor node in a large-scale wireless sensor network (WSN) with a GPS device due
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to the costs and power requirements. In a WSN, node localization requires data analysis
and node position information. Localization techniques can help to resolve this issue. One
technique for identifying a sensor node in WSNs is beacon-based localization [3]. The
technique entails choosing one or more beacon nodes whose positions are known and
calculating the received signal strength (RSS) between these beacons and the target node.
The target node can then determine its location based on the measured distances or RSS
values, using trilateration or multilateration [4].

When selecting beacon nodes, several factors should be considered, including the
number of beacons needed, their placement, and their communication capabilities. In
general, additional beacon nodes will improve accuracy but also make the localization
system more complex and expensive [5]. Several techniques can be used for node localiza-
tion in WSN, including anchor-based localization [6,7], range-free localization [8], hybrid
localization [9], and multidimensional scaling.

When implementing node localization in a WSN, several factors should be consid-
ered, including the number of anchors needed, their placement, and the communication
capabilities of the nodes [10]. The accuracy and efficiency of the localization algorithm
also play a crucial role in determining the overall performance of the localization system.
Additionally, the energy consumption of the localization process should be considered, as
sensor nodes typically have limited energy resources [11]. Selecting and implementing
a technique should be based on the required application and resources available in the
network. One method for locating a target node is triangulation, which uses the distance
from several anchor nodes [12]. The drawback of this technique is that it requires a high
degree of accuracy in distance measurement and can be affected by multipath fading.
Multidimensional scaling (MDS) has been proposed [13], which maps the distance between
nodes in a low-dimensional space. Although it is computationally difficult and involves
several distance measurements, it makes it easier to locate a target node.

With a map of the network environment and a target node′s specific characteristics,
fingerprinting includes locating the target node. It requires a lot of prior knowledge about
the network environment and can be affected by changes in the environment [14]. A nature-
inspired optimization technique called particle swarm optimization (PSO) uses a swarm of
particles to search for the best solution, but it is computationally intensive and requires a
lot of processing power [15]. The requirements and constraints of the network environment
determine the localization approach to be used. Each of these tactics has its advantages and
disadvantages. The evolutionary [16] and salp swarm algorithms [17] are two examples of
nature-inspired algorithms that are used to solve the node localization issues in isotropic
WSNs. Anisotropic WSNs suffer localization problems, even though they are employed in
practical applications. The multilateration approach to position calculation and hop-based
range-free [18] distance measuring are the foundation for the localization algorithms created
to overcome anisotropic WSN localization challenges. Most nature-inspired algorithms [19]
offer more benefits than conventional optimization techniques, including the capacity to
efficiently explore a vast solution space and locate optimal solutions in the presence of
noise. However, they can also be computationally and time demanding, requiring a lot of
processing power to solve. Furthermore, these methods might be sensitive to parameter
selection, which might affect the precision and dependability of the localization findings.

Therefore, in this paper, we have proposed the crow search-based weighted centroid
localization (CS-WCL), which is an improvement over other nature-inspired algorithms
used for localization. CS-WCL is a two-step process. In the first step, the crow search
optimization is analyzed, and the best three anchor nodes are selected. In the second
step, the selected anchor nodes participate in the localization process using the weighted
centroid method to estimate the location of the unknown nodes. This algorithm aims to
provide a more accurate localization solution for unknown nodes in WSNs by considering
the trade-off between searchability and the change of awareness probability. The proposed
strategy outperformed previously implemented soft computing localization algorithms in
most of the simulated network topologies. The paper contributes by:
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• Optimizing the anchor node selection using the crow search algorithm.
• Identifying the location of unknown nodes’ using weighted centroid localization.
• Validating and comparing CS-WCL to WCL and distance vector (DV)-Hop for varying

numbers of nodes.

1.1. Motivation

Node localization in a WSN is very challenging due to the number and placement of
anchors and the communication capabilities of the nodes. Moreover, the energy requirement
of the localization process is very important, as sensor nodes typically have limited energy
resources. Also, the biological inspired algorithms previously employed for localization
are associated with higher localization errors and a greater number of beacon nodes for
small- to large-scale networks. An improved localization algorithm called the CS-WCL,
which reduces localization error for varying communication radii and beacon nodes, as
well as energy consumption, has addressed these.

1.2. Significance of the Proposed Work

Anchor nodes are helpful for node localization in WSNs. Instead of taking all the
anchors in the region, we employed the crow-based search optimization method to select
the best anchor nodes. The best anchor nodes, selected by optimization, participated in
the localization process using the weighted centroid method for estimating the location
of the unknown nodes. The major advantage of this algorithm is that it provides a more
accurate localization solution for unknown nodes in WSNs by considering the trade-off
between the searchability and change of awareness probability. The major significance of the
proposed algorithm is its accurate localization of unknown nodes with a minimum number
of anchor nodes chosen, resulting in reduced localization error and energy consumption in
comparison to previously implemented nature-inspired localization algorithms.

The remaining part of the paper is divided into the following sections. The related
work on WSN localization techniques is presented in Section 2. Section 3 discusses the
proposed work, which is the CS-WCL method for selecting the best anchor nodes, us-
ing the weighted centroid method for localization with the conceptual block diagram,
the crow search optimization process, and WCL, with respective algorithms and flow
charts. Section 4 discusses the implementation methodology, with simulation setup and
performance metrics followed by the implementation of the proposed method that is CS-
WCL, against DV-Hop and WCL, in terms of localization error, total data packets, and
energy consumption, along with a comparative analysis of previous literature. The same
has been tabulated and is shown through graphs. Section 5 concludes the paper, with
recommendations for future work.

2. Literature Review

The algorithm for localization findings in various networks is fairly accurate and
reasonable. However, in random sensor networks with uneven density, there is significant
localization inaccuracy. As the amount of cumulative error rises, the minimum hop-
count from the localization node to the beacon node decreases. Since the error is directly
proportional to the hop-count value, the node localization coordinates are calculated using
the estimated distance, with a significant error. This section will give a detailed review of
various related work about node localization in WSN.

The WSN node localization approach called MA*-3DDV-Hop enhances the DV-Hop
algorithm’s poor three-dimensional (3D) accuracy by adjusting the average distance per
hop error and optimizing the hop-count values [20]. Additionally, the approach overcomes
issues with premature and poor convergence by using the non-dominated sorting genetic
algorithm (NSGA-II) to locally optimize coordinates and produce a Pareto optimal solution.
Due to their quick convergence, effective memory usage, and capacity for producing good
outcomes in real-world problems, optimization algorithms are well liked in WSN.
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Sharma and Kumar, in their research work, proposed a method for finding an optimal
hop size using the line search algorithm and optimizing the distance error using the genetic
algorithm. This ultimately increased the accuracy of DV-Hop localization. It was done by
employing only the selected anchor nodes [21]. The concept of co-planarity is useful for
locating the anchor nodes that are used to localize unknown nodes because the model that
was provided is an algorithm for 3D localization. These anchor nodes have been chosen
to take part in the process of localizing the unknown nodes. The localization accuracy is
unquestionably improved because of the suggested improvements; however, this comes at
the expense of an increased computing burden for the optimization algorithms.

Messous et al. [22] presented their enhanced recursive DV-Hop technique. With the
aid of a pair of polynomial coefficients, a connection was created between the number
of hops taken and distance traveled. The inclusion of an error correction component
resulted in an improvement in this connection. Additionally, localization was carried out
using the least-squares method, which makes use of the enhanced distance estimate. The
least-squares method is carried out recursively by selecting a small number of anchor
nodes at random throughout each iteration. The challenge with this work is that the
proposed technique behaves unpredictably if a random selection of anchor nodes is made
for each iteration, and the iterative execution of the least square method would incur more
complexity in computation.

Adaptive WCL (A-WCL) [23], which employs a link quality indicator (LQI), is pro-
posed in this work. The algorithm uses the LQI difference as the weight rather than to
increase precision. A-WCL uses quadratic weights to attain the same peer accuracy as WCL
but does not require the intricate WCL calculation. Although it has a good strategy for
increasing WCL when communication ranges change, the cutoff for the minimum LQI
changes drastically, which is one of its challenges. Herein, an approach that enhances WCL
in an intelligent ubiquitous environment by employing dynamic weighting parameters
(which consider the RSSI of anchors where the method offers an improvement) is presented.
The algorithm only requires WCL from the surrounding environment and can attain greater
localization accuracy. The algorithm uses various adaptation degrees in various sub-regions.
After segmenting the region composed of anchors into numerous sub-regions, the accuracy
of WCL increases [24].

The authors provided a strategy that computes a weighting factor to enhance WCL
and employs a global localization error as a corrective mechanism to adjust the initial
localization result. To increase localization accuracy with global localization error factors,
the method raises the bar for even distribution and high anchor densities. However, it has
a limitation, which is that it is impossible to precisely obtain the global factors in a scenario
where the region has various sub-regions with various location error factors [25].

The authors of this work used weights that have been modified by the degree of
adaptation. To increase localization accuracy, they put forth the modified WCL algorithm,
which modifies the weight structure but still relies on adjusting the degree to get the best
localization accuracy. We are aware that the localization to the anchor has the greatest
influence when it is the closest and the adaptation degree is higher. Therefore, the exact
influence cannot be determined by adjusting the weights [26].

Several studies have been conducted involving placing a movable anchor with GPS
capabilities into a sensing area and occasionally broadcasting the anchor′s most recent
geometric coordinates [27]. The movable anchor node′s coordinates are gathered by the
other sensor nodes. Later, the sensor nodes select three of the movable anchor node′s non-
collinear coordinate points and use various mechanisms to estimate position. Numerous
localization techniques have been developed based on this idea. In one study [28], the
author created a range-free localization method based on a geometric theory on the per-
pendicular bisector of a chord in a virtual circle. The technique used a mobile anchor that
moves through a sensing region while periodically broadcasting its coordinates. Nearby
sensor nodes recorded the coordinates of the anchor to draw a chord on their communi-
cation range. This process was repeated until the sensor node had three moving anchor
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coordinate points or more within its communication range, resulting in the construction of
two chords. The perpendicular bisector of these two chords was then used to determine
where the sensor nodes were located.

The maximum-likelihood, min-max, and trilateration algorithms [29] were also devel-
oped, which resulted in significant inaccuracy. They fully utilize the position and distance
of nearby anchor nodes and then use k-means to eliminate the results with large errors.
K-means clustering uses a randomly chosen starting cluster center and may go several
rounds before reaching a stable state. Here, there is a possibility that the ultimate state is
not ideal. The localization problem is NP-hard in general, and it is crucial to quickly locate
sensor nodes, especially for highly sensitive applications like military operations. The
computing time required to find sensor nodes has decreased due to a stochastic process.

The trust-based beacon node localization algorithm [30] is a technique used for local-
ization in underwater WSNs that uses a combination of trust-based and nature-inspired
meta-heuristic strategies to improve the accuracy and efficiency of the localization process.
It uses trust-based techniques to identify and select trustworthy beacon nodes for localiza-
tion. Trust is computed based on the node′s past behavior and communication patterns.
This helps to eliminate the effect of false or malicious nodes in the localization process. The
nature-inspired meta-heuristic strategies used in this algorithm include techniques such as
PSO and ant colony optimization. The use of these nature-inspired meta-heuristic strategies
improved the accuracy and efficiency of the localization process by effectively exploring the
search space and finding the optimal solution. Additionally, using trust-based techniques,
the algorithm can also improve the security and reliability of the localization process.

The authors of this work have proposed an error minimization protocol for the local-
ization of sensor nodes in WSNs to enhance the accuracy and efficiency of the localization
process [31]. Both RSS and time of arrival (TOA) are used to accurately estimate the range
of nodes in a 3D application area. The protocol leverages the anchor node′s location, which
is presumably already known, to restrict the received signal to line-of-sight (LOS) and
single or double reflection. Consequently, localization errors for non-LOS (NLOS) signals
are reduced. The protocol employs the geometrical relationship between the anchor and
sensor nodes for both LOS and NLOS signals to first address the misclassification problem.
To accomplish precise range estimation, it starts at the wrong node position and gradually
shrinks the 3D space with each iteration.

The authors of this work have proposed a modified Archimedes optimization (MAOADV)
Distance Vector Hop algorithm to improve the localization accuracy of the DV-Hop algo-
rithm in WSNs [32]. By combining chaotic mapping and PSO into the Archimedes opti-
mization method, the technique increases the initial population diversity. The algorithm′s
capability for global convergence and speed is enhanced. To increase the localization accu-
racy, it then swaps out the least-squares component of the DV-Hop localization technique
for the MAOA. The DV-Hop technique for localizing nodes in WSNs has been improved
by the genetic technique DV (GADV) [33] Hop algorithm. It uses a genetic algorithm to
enhance node-positioning precision and reduce localization mistakes in WSNs. By limit-
ing the viable region of the starting population and boosting its quality, the GADV-Hop
algorithm outperforms the DV-Hop. Consequently, the GADV-Hop method may converge
more quickly and detect unknown nodes more precisely. A comparative analysis has been
shown in Table 1.

The major advantage and improvement of the proposed algorithm, CS-WCL, is its
accurate localization of unknown nodes with a minimum number of anchor nodes chosen,
resulting in reduced localization error and energy consumption in comparison to previously
implemented nature-inspired localization algorithms.
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Table 1. Summary of previous works.

Reference Localization Approach Improvements Research Findings Challenges

Huang et al. [20] MA*-3DDV-Hop 3D Accuracy,
NSGA-II Optimization

Overcoming Convergence
Issues, Effective
Memory Usage

Increased computing burden
for optimization algorithms

Sharma et al. [21] Line Search and
Genetic Algorithm

Optimal Hop Size,
Distance

Error Optimization

Enhanced Accuracy with
Selected Anchor Nodes,

Increased
Computing Burden

Increased computing burden
for optimization algorithms

Messous et al. [22] Enhanced Recursive
DV-Hop

Polynomial Coefficients,
Error Correction

Improved Connection
between Hops and

Distances, Challenges in
Unpredictable Behavior

Unpredictable behavior with
random anchor node
selection, increased

computation complexity

Jondhale et al. [23]
Adaptive Weighted

Centroid Localization
(A-WCL)

LQI Difference,
Quadratic Weights

Precision Increase without
Complex WCL Calculation,
Drastic LQI Cutoff Changes

Drastic changes in cutoff for
minimum LQI with

changing
communication ranges

Saad et al. [24] Dynamic Weighting
Parameters

RSSI Consideration,
Global Error Correction

Sub-Region Adaptation for
Accuracy Increase,

Challenges in Obtaining
Global Factors

Difficulty in obtaining global
factors in scenarios with

various sub-regions

Kaur et al. [25]
Modified Weighted

Centroid Localization
(MWCL)

Weight Structure
Modification

Adjusting Degree for Best
Localization Accuracy,

Challenges in Influence
Determination

Uncertain influence
determination by
adjusting weights

Han et al. [26] Movable Anchor
with GPS

Geometric Coordinates
Broadcasting

Various Localization
Techniques Developed

Based on Mobile
Anchor Node

GPS Hardware required

Singh et al. [27] Range-Free Localization Geometric Theory on
Virtual Circle

Chord-Based Estimation,
Iterative Procedure,

Improved
Localization Precision

Limited Accuracy in
Dense Networks.

Singh et al. [28]
Geometric

Constraint-Based
Localization

Intersection of Anchor
Coordinates, Average

Junction Points

Limited Area Minimization,
Enhanced Localization

Precision

Sensitivity to measurement
errors, limited robustness.

Luo et al. [29] Maximum-Likelihood,
Min-Max, Trilateration

Utilizes Anchor Position
and Distance,

K-Means Clustering

Decreased Computing Time,
Challenges in

NP-Hard Problems

NP-hard
localization problem

Draz et al. [30] Trust-Based Beacon
Node Localization

Trust-Based and
Nature-Inspired
Meta-Heuristics

(PSO, ACO)

Improved Security,
Reliability of Localization,

Nature-Inspired
Strategies Effective

Impact of false or
malicious nodes

Nain et al. [31] Error Minimization
Protocol

RSS and TOA for Range
Estimation, LOS/NLOS

Signal Consideration

Reduced Localization Errors
for NLOS Signals,

Addressing Misclassification

Addressing
misclassification problem

Cheng et al. [32] MAOADV Distance
Vector Hop

Chaotic Mapping, PSO,
Archimedes Optimization

Global Convergence, Speed
Enhancement, Challenges in
Initial Population Diversity

Sensitivity to Parameters.

Chen et al. [33]
GADV-Hop (Genetic
Technique Distance

Vector Hop)

Genetic Algorithm, Viable
Region Limitation

Faster Convergence,
Precision Improvement,

Improved Quality of
Starting Population

Insufficient Information for
Optimal Convergence

3. Crow Search Weighted Centroid Localization Algorithm (CSWCL)—Proposed Work

The proposed CS-WCL involves two phases as shown in Figure 1, which shows the
workflow architecture. The two phases are outlined below:
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Figure 1. Crow search weighted centroid localization workflow.

Figure 2 shows the CS-WCL method’s conceptual diagram. The details of the
two phases of this method shown in the workflow architecture are explained below in
Sections 3.1 and 3.2.

Figure 2. Conceptual diagram of CS-WLC.
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3.1. Crow Search Optimization Process

The crow search optimization process begins with a randomly placed set of potential
anchor nodes throughout the localization area. The crows of the group are n-dimension,
and the algorithm states random vectors. All crows have their memory, where mi = (mi1,
mi2, . . ., min). Crows do not know the source of food initially. In this algorithm, random
vectors are chosen as anchor nodes [34] The ith crow is allocated with a random vector,
i = 1, 2, . . ., n, which is attained from Equation (1).

xi = ((xi, 1), (xi, 2)) . . . ((xi, n)) (1)

The potential anchor node with the highest fitness value is chosen as the “leader” node.
The other potential anchor nodes imitate the foraging behavior of the crows by moving
toward the leader node. A search operator, based on the locations of the current potential
anchor node and the leader node, determines their distance and direction of movement.
A local search is performed by randomly perturbing the location of each potential anchor
node within a specified range.

The fitness value is based on two important factors. Equation (2) tells us how far the
anchor node is from other anchor nodes and helps us find its neighbors and the greatest
amount of residual energy. Equation (3) is used to find the fitness function. The number
of mobile nodes that a possible anchor node has access to is used to judge its fitness. The
fitness value is found by adding the inverse distance between the possible anchor node
and the visible mobile nodes.

Two main parameters determine the fitness value. The distance covered by the anchor
node compared to other anchor nodes is specified in Equation (2) to identify the neighbors
and maximum residual energy. The fitness function is attained using Equation (3). Each
potential anchor node evaluates its fitness based on the number of mobile nodes it can
communicate with. The inverse distance between the possible anchor node and visible
mobile nodes is added to determine the fitness value.

AXY = Nxy + Kxy
(

Nxy − Nzy
)

(2)

AXY = determines neighbor node for Nxy, where z = {1, 2, 3 . . .} and z ̸= x, K = random
number in the range [−1, 1], y = 1, 2, 3 . . . V, z, and y values are arbitrarily selected.

Pi =
f itx

∑s
n=1 f itn

f itx =

{
1

1 + wi
i f zi ≤ 0 1 + wi , i f zi > 0 (3)

where wi is the fitness value given by

Wi =
K1·N + K2·Eres

K1 + K2

K1 and K2 = weight constants, N = node degree, Eres = residual energy metrics.
The potential anchor nodes compete based on their fitness values, and if a poten-

tial anchor node has a higher fitness value than the current leader node, it replaces the
leader node.

Crow i randomly picks one Crow j from the group and follows it to where it has
hidden its food. Crow i changes its position once it determines the location of Crow j.
Equation (4) can be used to create a new position for Crow i. Equation (5) can be used to
update the memory of crows.

Xi,k+1 =
{

xi,k + ri × f li,k

(
mj,k − xi,k

)
aj

}
≥ APj,t (4)
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ri and aj denote random numbers with uniform, distribution (between 0 and 1), APj,t =
Ppobability awareness o f Crow j f or iteration k, f li,k = Flight length f or Crow i f or the kth iteration,
Mj,k = Memory o f Crow j f or the kth iteration.

mi,k+1 =

{
xi,k+1 f (xi,k+1) ≻ f (mi,k)

mi,k Otherwise

}
(5)

mi,k = crow′s position j after kth iteration, xi,k = initial position.
When a predefined stopping criterion is satisfied (for example, when a predetermined

number of iterations have been finished), the algorithm ends. Using the crow search
algorithm (CSA) to select the best anchor nodes, localization accuracy and reliability can be
improved. The algorithm can also adapt to changes in the environment by dynamically
selecting new anchor nodes based on the current mobile node locations. The maximum
number of iterations is accomplished to estimate the best position of the crows. This way,
the optimal solution is attained, i.e., the best anchor nodes are chosen. The algorithm for
CSA is given below (Algorithm 1).

Algorithm 1: Crow Search Algorithm

1. Initialize the positions of N crows (anchor nodes) randomly in the group.
2. Assess the crows′ positions.
3. Initialize each crow′s (anchor nodes) memory.
4. While K < K_max:

a. For
i = 1 to N (for all N crows in the group):
i. Choose a crow (anchor nodes) at random to follow (for instance, Crow j).
ii. Define an awareness probability.
iii. If a_j > AP_(j, t), then:

x_(i, k + 1) = x_(i, k) + r_i × fl_(i, k) × (m_(j, k) − x_(i, k))
Else:

x_(j, k + 1) = Taking random position in space.
b. Verify the feasibility of new positions.
c. Evaluate the new position of the crows.
d. Update the memory of the crows.
5. End while.

3.2. Weighted Centroid Localization

The recently created optimization algorithm called the CSA was motivated by the
clever foraging methods used by crows. Range-free localization does not employ ranging
to find and estimate the distance of unidentified nearby nodes and has been used in various
applications. Using the minimum hop count and average distance, each sensor node
determines how far it is from the beacon node. The distance to the beacon node is then
calculated by multiplying the minimum hops by the average hop distance. It has three
phases as outlined below. Using the coordinates of the known m anchor nodes chosen from
the crow search optimization, node localization in WSNs is used to estimate the coordinates
of N unknown nodes.

3.2.1. Calculating a Minimum Number of Hops from Each Node to Each Anchor

To determine the smallest hop count, each beacon node sends out a beacon message
that includes its position values and the hop count, which is initially set to zero. Following
receipt, close-by nodes will increase this value and broadcast again. As a result, if the
beacon message is received by the beacon node, it will log the sender′s coordinates and
raise the hop count. In fact, the receiver node will check the hop number and add one if it
receives a message from the same beacon node. When the new hop number is lower than
the one it has stored, it will compare the two, modify its value, and send the message again
with the new hop number. Otherwise, it will drop the message and not rebroadcast to its
neighbors. After this step, all beacon and normal nodes will have the least hop count to
every beacon node in the network.
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In the first stage, all the anchor nodes send their information to the nodes connected
in the network within l hop. The parameter ‘l’ is determined by the Equation (6).

hmi ≤ l ≤ hma (6)

hmi = minimum hop value, hma = maximum hop value.
Based upon the value of l, the power consumption is decided.

3.2.2. Average Distance Per Hop

Every anchor node calculates the average distance per hop using Equation (7).

Average distance per hop =
∑m

i=1i ̸=j

√(
xj − xi

)2
+
(
yj − yi

)2

∑m
i=1i ̸=j hji

(7)

m = total number of beacon nodes, hij = minimum hop count between beacon node i
and j, (xi, xj) and (yi, yj) are coordinates of i and j.

Group cast: All the nodes connected to the anchor with the ‘l’ hops are joined
together in a group. The anchor node group casts the message in the format of AMSG
(Aid,Xloc,Yloc, Hopui).

Instead of broadcasting the location information to the entire network, it groups casts
to some set within a maximum of ‘l’ hop neighbors. It will reduce the control packet load.
In the proposed algorithm, localization error is minimized because not all anchors are
considered for localization. Each anchor node group casts its information to the group
already formed.

3.2.2.1. Location Information

The modified weighted metric is calculated by Equation (8). The computed location
for the unknown node (Xun, Yun) using the CSWCL is given as per Equations (9) and (10).

Wj =

(
∑k

j=1 huj

Khuj

) r
AHSi

(8)

AHSi = average hop size of nearest ‘i’ anchor nodes in the group.

Xun =
∑k

j=1 WjXj

∑k
i=1 Wj

(9)

Yun =
∑k

j=1 WjY

∑k
i=1 Wj

(10)

The complete flow chart of weighted centroid localization is outlined in Figure 3.



Sensors 2024, 24, 4791 11 of 20

Figure 3. Localization process.

4. Implementation Results

The proposed CS-WCL was compared to other localization methods, including the
DV-Hop and WCL methods. MATLAB was used for the simulation. The rationale behind
comparing CS-WCL with WCL and DV-Hop lies in the need for a thorough benchmarking
analysis. WCL and DV-Hop are widely recognized methods in the field, and comparing
our proposed method against these establishes a baseline for performance evaluation. The
simulation specifics are illustrated below.

Table 2 presents the network parameters taken for simulation. For scalability, the
network was designed with 30, 40, 50, 60, 70, 100, 200, and 300 nodes. Of the 300 nodes,
10% were designated the beacon nodes, and different communication radii were taken to
represent the transmission power of the node.
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Table 2. Simulation parameters.

Simulation Parameters Value

Network region 100 m × 100 m

Overall node count 30, 40, 50, 60, 70, 100, 200, 300

Total number of beacon nodes 3, 5, 7, 9, 11, 15, 19, 23

Communication radii of the node 20, 25, 30, 35, 40 and 45 m

Data packet size 512 bits

Topology Random

4.1. Performance Metrics of Algorithm

The metrics used for the evaluation of the proposed algorithm, CSWCL, against other
localization algorithms are outlined below:

Localization Error (LE) (%): Localization error specifies the deviation in the location
between the calculated position and the actual position of the unknown node in the
network. The way to compute the localization error of an unknown node ‘UN’ is given by
the Equation (11).

LE =

√
(EXun − AXun)

2 + (EYun − AYun)
2 (11)

EXun, EYun = calculated position of unknown node.
AXun, AYun = actual position of unknown node.
Average Localization Error (ALE) (%): ALE of the entire network is given by the ratio

of the sum of localization error of all the unknown nodes in the network to the total number
of unknown nodes in the network. ALE is calculated by Equation (12).

ALE =
k

∑
i=1

√
(EXun − AXun)

2 + (EYun − AYun)
2

K ∗ r
(12)

4.2. Result Analysis
4.2.1. Average Localization Error vs. Communication Radii

The ALE caused by changing the node′s communication radius is shown in Figure 4.
For the communication ranges of 20 m and 45 m, the ALE for CS-WCL noted was 32% and
15%, respectively. The reason for the reduced ALE in CS-WCL is that the relevant anchor
nodes were selected by crow search within the communication radius. Regarding DV-Hop
and weighted centroid for the same communication ranges of 20 m and 45 m, the ALE
computed was greater when compared to that for CS-WCL, although the LE decreased
with the nodes’ communication radii, as shown in Table 3. For the communication radii of
20 m and 25 m, the ALE drastically reduced in CS-WCL because the nodes were placed
randomly in the region. The main reason for the increased ALE in DV-Hop and WCL when
compared with the proposed CS-WCL is that in DV-Hop, only the DV is considered during
the localization process. In WCL, although the weighted centroid of all beacon nodes is
considered, it is not optimal because the beacon nodes are selected without any specific
metric. Overall, when the ALE was compared for all the algorithms with respect to the
increase in communication radii, the proposed CS-WCL performed better. Because more
neighbor nodes can participate in the localization process with a larger communication
range, position estimates will be more accurate. The same is shown in Figure 2.
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Figure 4. ALE (%) for various ranges of communication radii.

Table 3. Average localization error.

ALE (%)

Communication
Radius (in Meters) DV-Hop WCL CS-WCL

20 47.5 38 32
25 38 24.6 28.5
30 35.26 24 20
35 32 22.4 19.6
40 31.5 21 17.85
45 31 19 15

4.2.2. Average Localization Error vs. Scalability

The performance of the proposed localization algorithm (CS-WCL) was analyzed
concerning the ALE versus scalability of the beacon selection in the network. When the
number of nodes increased, the LE also increased. The ratio of beacon nodes in the network
plays a vital role in minimizing the LE for unknown nodes. From Figure 5, it is obvious
that when the number of beacon nodes increased, the CS-WCL performed better in terms
of the LE. From Table 4, it can be seen that for a network setup with 23 randomly selected
beacon nodes, the ALE for the localization of unknown nodes was 8.57% and 5.04% for
DV-Hop and WCL, respectively. For CS-WCL, the ALE reduced to 2.59%. The CSA used
beacon nodes to guide the optimization process, where the efficiency of the beacon location
is critical in accurately localizing unknown nodes. If the beacon nodes are not correctly
located, the optimization process may converge to a sub-optimal solution, reducing the
algorithm’s accuracy and efficiency. To ensure the algorithm’s efficiency, it is necessary to
select and locate the beacon nodes correctly, covering the entire search space and allowing
efficient exploration of the optimization landscape.
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Figure 5. ALE (%) by varying the number of beacon nodes in the network.

Table 4. Average localization Error on the number of beacon nodes.

ALE (%)

No. of Beacon Nodes DV-Hop WCL CS-WCL

3 40.5 35 28.75
5 35.26 28.58 25
7 33.49 20.36 18.78
9 22 26.9 13
11 20 12.57 9
15 14.47 9.8 6.97
19 11.52 7.42 4.78
23 8.57 5.04 2.59

4.2.3. Total Data Packets

In the proposed CS-WCL, beacon nodes can communicate with nearby nodes if they
are under a specified threshold limit. The DV-Hop localization technique involves the partic-
ipation of all beacon nodes in the network, which reduces the need for pre-communication
control packets. However, with CS-WCL, only the beacon nodes that fall inside the commu-
nication radii are considered for localizing unknown nodes. This is evident in the work’s
performance, as depicted in Figure 6. Out of the 300 nodes in the network, around 7% of
them were chosen as beacon nodes. Around 100,000 packets were used in the process of
identifying an unknown node. In some instances, there was a slight rise in packet consump-
tion, but it was insignificant when compared to WCL. This was due to the need for extra
communication packets during the beacon selection process. CS-WCL enables the WSN to
identify the most effective subset of beacon nodes that can optimize network performance
while minimizing energy usage. CS-WCL achieves energy efficiency by optimizing the se-
lection of beacon nodes, which results in reduced energy usage even with a higher number
of packets being used. CS-WCL exhibited the lowest energy use, as depicted in Figure 7,
despite having the largest total number of data packets consumed, as depicted in Figure 6.



Sensors 2024, 24, 4791 15 of 20

Figure 6. Total number of data packets consumed.

Figure 7. Energy consumption of the nodes.

4.2.4. Energy Consumption of the Nodes

The average energy consumed by the nodes in various scenarios was computed and
compared, and the efficiency of the CS-WCL approach was demonstrated in terms of energy
consumption in every scenario, making it suitable for deployment. The suitability of the
CS-WCL approach for deployment was indicated by its efficient performance in every
scenario, and the importance of efficient energy consumption for the long-term success
of node localization in WSNs was also emphasized. The use of approaches like crow
search optimization for beacon selection optimized the energy consumption. The main idea
behind the CS-WCL is minimizing the energy needed for the localization of the unknown
sensor nodes in a network. The energy utilized for the localization process was measured
in mJ. Since the number of communication packets used for localization using the proposed
algorithm was fewer, the energy consumed also decreased. The energy needed for the
overhead of the localization process was less when our proposed algorithm was used than
when the DV-Hop and WCL algorithms were used. To the overall network, the average
energy consumption was 125 mJ, 105 mJ, 75 mJ, 45 mJ, 47.53 mJ, 50.48 mJ, 52.21 mJ, and
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55 mJ, respectively, for the 30-, 40-, 50-, 60-, and 70-node network setups as displayed in
Figure 7.

In addition to validating the proposed crow search weighted centroid localization
against WCL and DV-HOP through MATLAB simulation, we also performed a comparative
analysis of the proposed algorithm, namely the crow search weighted centroid algorithm,
against other meta-heuristic localization algorithms for WSN. These are tabulated in Table 5.

Table 5. Comparison of meta-heuristic localization approaches.

Title Methods Network Size No. of Nodes Beacon Nodes Summary ALE

“Node Localization
Algorithm Based on

Modified Archimedes
Optimization Algorithm

in Wireless Sensor
Networks” [35]

The Modified
Archimedes

Optimization
Algorithm (MAOA)

100 × 100 m2 80–200 20%

In wireless sensor networks,
optimization reduced

distance measurement errors
and made use of restrictions

to identify the best
node positions.

38% to 25%

“PSO-Based Target
Localization and

Tracking in Wireless
Sensor Networks” [36]

RSM- PSO
(Region

segmentation
method)

100 × 100 m2 100 -

To increase positioning and
tracking speed while

maintaining target
localization and tracking

accuracy, the RSM approach
decreased PSO

algorithm particles.

21%

“Node Localization in
Wireless Sensor
Networks Using

Butterfly Optimization
Algorithm” [37]

Butterfly
Optimization

Algorithm, Firefly
Algorithm, PSO

100 × 100 m2 25–150 10–35

A comparison of all three
showed that BOA, both in

terms of accuracy and
computation time, performed
significantly better than other

algorithms utilized in
this study.

20% to 76%

“Optimized Approach
for Localization of Sensor

Nodes in 2D Wireless
Sensor Networks Using

Modified Learning
Enthusiasm-Based
Teaching–Learning-
Based Optimization

Algorithm” [9]

Modified learning
enthusiasm-based
teaching–learning-
based optimization

(mLebTLBO)
algorithm

15 × 15 m2 20 3

Applied to a 2D localization
issue that had movable target

nodes and an exclusive
anchor node.

21%

Crow Search Weighted
Centroid Localization
Algorithm (Proposed)

Crow search
optimization 100 × 100 m2 300 3–23

CSO was used to choose the
beacon, and the weighted

centroid was then utilized to
identify the unknown nodes.

15%

4.2.5. Discussion

The proposed CS-WCL was simulated using MATLAB and validated against DV-
HOP and WCL algorithm towards node localization against different metrics, namely the
localization error, beacon nodes, total data packets consumed, and energy consumed. This
was carried out for network size of 100 × 100 m2 with nodes ranging from 30 nodes to a
maximum of 300 nodes.

The proposed CS-WCL improvised over other natural inspired algorithms employed
for localization where the best three anchor nodes are selected. In addition, the selected
anchor nodes participated in the localization process using the weighted centroid method
to estimate the location of the unknown nodes. This algorithm aims to provide a more
accurate localization solution for unknown nodes in WSNs by considering the trade-off
between searchability and the change of awareness probability.

From simulation results, CS-WCL achieved a reduced localization error against com-
munication radii as compared to DV-HOP and WCL which ranged from 32% to 15% for
communication radii from 20 m to 45 m for a 30–300 node count. The reason is due to more
neighbor nodes participating in the localization process with a larger communication range,
resulting in more accurate position estimates. This is not the case with DV-HOP as the
distance vector was only considered, and in WCL, the weighted centroid considered for all
beacon nodes was not optimal as beacon nodes were selected without any specific metric.
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In terms of average localization error vs. scalability of beacon node selection in a
network, CS-WCL outperformed DV-Hop and WCL. From the simulation, as shown in
Table 4, it was proved that for a network setup of 23 randomly selected beacon nodes, the
ALE for CS-WCL was 2.59% as compared to DV-HOP and WCL, which were 8.57% and
5.04%. This is due to fact that the beacon nodes guide the optimization process where
the efficiency of the beacon location is critical in accurately localizing unknown nodes,
resulting in efficient algorithm performance.

In terms of total data packets consumed for CS-WCL against DV-HOP and WCL, it
was found that for a network size of 300 nodes, 100,000 packets were used in identifying
the unknown nodes, which was slightly more than DV-HOP and WCL in some instances.
For 300 nodes, as per the analysis, only 7% were chosen as beacon nodes. This was due to
the need for extra communication packets during the beacon selection process. CS-WCL
enables the WSN to identify the most effective subset of beacon nodes that can optimize
network performance while minimizing energy usage. CS-WCL exhibited the lowest
energy use, as depicted in Figure 7, despite having the largest total amount of data packets
consumed, as depicted in Figure 6.

Finally, the energy consumption of nodes towards localization was analyzed for CS-
WCL against DV-HOP and WCL. From the analysis, it was found that the average energy
consumption was 125 mJ, 105 mJ, 75 mJ, 45 mJ, 47.53 mJ, 50.48 mJ, 52.21 mJ, and 55 mJ,
respectively, for the 30-, 40-, 50-, 60-, and 70-node network setups as displayed in Figure 7.
It was found from the analysis that the energy needed for the overhead of the localization
process was less as compared to DV-HOP and WCL. Since the number of communication
packets used for localization using the proposed algorithm was less, the energy consumed
also decreased.

In addition to the simulation analysis of CS-WCL against DV-HOP and WCL, the
proposed CS-WCL has been benchmarked against other localization methods cited in the
literature as shown in Table 5. From the benchmark analysis shown in Table 5, CS-WCL
achieved a minimal localization error of 15%, which was the least for a network size of
100 × 100 m2, compared to other meta-heuristic localizations for the same network size.

In addition, for 300 nodes with a large network size, our proposed algorithm, i.e.,
CS-WCL, achieved an LE of 15%; in contrast, using other algorithms, the LE achieved
was higher for smaller network sizes with lower numbers of nodes. Lastly, our algorithm
achieved a low number of beacons (2.59%) for a network size of 100 × 100 m2 and 300 nodes;
for other meta-heuristics with the same network size and fewer nodes, the number of bea-
cons used was more. A comparison of meta-heuristic localization approaches is shown in
Table 5. This clearly shows the improvement our CS-WCL achieved over other localization
approaches, which has been benchmarked.

5. Conclusions and Future Work

Sensor node localization in WSNs is a challenging task, and localization with optimal
beacons is an efficient approach that enhances localization accuracy. There has been quite a
significant amount of work performed in terms of localization using biological inspired
algorithm, which does pose challenges pertaining to higher localization errors and a greater
number of beacon nodes for small- to large-scale networks.

Accordingly, the crow search weighted centroid localization algorithm was employed,
which consisted of two phases. The first phase involved optimizing anchor node selection
using the crow search algorithm, and the second phase was identifying the unknown nodes’
locations using weighted centroid localization. The proposed CS-WCL was evaluated
against the DV-HOP and WCL in terms of localization error, total data packets consumed,
and energy consumption. From the results obtained, CS-WCL achieved reduced localization
error against WCL and DV-Hop. In addition to localization error, the CS-WCL achieved a
lower number of beacon nodes and reduced energy consumption for varying nodes from
30 to 300 with a network size of 100 × 100 m2. This was compared against other methods,
namely DV-Hop and WCL. Lastly, the total number of data packets consumed in CS-WCL
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was slightly more for different network nodes against DV-HOP and WCL, which was
marginally negligible. This was due to the need for extra communication packets during
the beacon selection process. CS-WCL enables the WSN to identify the most effective subset
of beacon nodes that can optimize network performance while minimizing energy usage.

Overall, the CS-WCL outperformed WCL and DV-Hop as shown in graphs and tables.
In addition, the CS-WCL was compared against other localization approaches men-

tioned in the literature in terms of localization error and the number of beacon nodes for
the number of network nodes with different network sizes. The analysis clearly highlights
that CS-WCL has far better improvement than other approaches mentioned in the literature
for a greater number of nodes with large network sizes, resulting in precise localization.

In future, a WSN testbed would be created to pick the anchor node while simultane-
ously localizing mobile and stationary nodes alike. Also, the CS-WCL localization would
be integrated with data aggregation and fault detection.

In addition, the CS-WCL would be incorporated in 3D wireless sensor networks for
more precise localization. For the traditional two-dimensional localization system to be
able to function in a three-dimensional environment, it would be necessary to update it. It
is feasible that the utilization of sensor nodes that are dispersed across all three dimensions
will lead to the development of more precise methods of localization. It is feasible that the
usefulness and application of CS-WCL will be increased because of this expansion over a
greater variety of scenarios that occur in the real world. This expansion will cover a better
range of situations.
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