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Abstract: This study presents a portable, low-cost, point-of-care (POC) system for the simultaneous
detection of blood glucose and hematocrit. The system consists of a disposable origami microfluidic
paper-based analytical device (µPAD) for plasma separation, filtration, and reaction functions and a
3D-printed cassette for hematocrit and blood glucose detection using a smartphone. The origami
µPAD is patterned using a cost-effective label printing technique instead of the conventional wax
printing method. The 3D-printed cassette incorporates an array of LED lights, which mitigates the
effects of intensity variations in the ambient light and hence improves the accuracy of the blood
glucose and hematocrit concentration measurements. The hematocrit concentration is determined
quantitatively by measuring the distance of plasma wicking along the upper layer of the origami
µPAD, which is pretreated with sodium chloride and Tween 20 to induce dehydration and aggregation
of the red blood cells. The filtered plasma also penetrates to the lower layer of the origami µPAD,
where it reacts with embedded colorimetric assay reagents to produce a yellowish-brown complex.
A color image of the reaction complex is captured using a smartphone inserted into the 3D-printed
cassette. The image is analyzed using self-written RGB software to quantify the blood glucose
concentration. The calibration results indicate that the proposed detection platform provides an
accurate assessment of the blood glucose level over the range of 45–630 mg/dL (R2 = 0.9958). The
practical feasibility of the proposed platform is demonstrated by measuring the blood glucose and
hematocrit concentrations in 13 human whole blood samples. Taking the measurements obtained from
commercial glucose and hematocrit meters as a benchmark, the proposed system has a differential
of no more than 6.4% for blood glucose detection and 9.1% for hematocrit detection. Overall, the
results confirm that the proposed µPAD is a promising solution for cost-effective and reliable POC
health monitoring.

Keywords: glucose; hematocrit; label printing; microfluidic; paper-based device; point-of-care;
smartphone

1. Introduction

Diabetes is a systemic metabolic disease closely associated with insulin secretion
in the body. When the body lacks insulin, it cannot deliver glucose from the blood to
the cells, causing blood glucose levels to rise from the normal fasting concentration of
70–100 mg/dL. High blood glucose levels have many adverse effects on human health,
including kidney damage, nerve damage, impaired vision, and skin conditions. Thus, the
American Diabetes Association suggests that glucose levels in diabetics should be strictly
controlled to less than 180 mg/dL [1]. Hematocrit is a measure of the proportion of red
blood cells in a given volume of whole blood and is often lower in people with anemia
and higher in people with cardiovascular disease. In addition, the hematocrit is generally
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lower in individuals with higher blood glucose levels and higher in those with lower blood
glucose levels. According to WHO data, diabetes and kidney disease caused by diabetes
killed an estimated 2 million people in 2019, making it one of the major causes of death.
Approximately 6% of people worldwide live with diabetes, and its prevalence is rapidly
rising in low- and middle-income nations [2]. Consequently, there is an urgent need for
low-cost yet effective and accurate methods for monitoring and managing blood glucose
and hematocrit levels [3,4], particularly in resource-limited settings. Such methods are
crucial for preventing the complications associated with diabetes and hyperglycemia [5–7].

Point-of-care testing (POCT) and on-site analysis have attracted significant interest
in recent years for applications in medical diagnostics, food safety, and environmental
monitoring [8–10]. Microfluidic paper-based analytical devices (µPADs), one of the most
common types of POCT devices, have many advantages, including affordability, simplicity,
good robustness, an equipment-free nature, and user-friendliness [11–13]. Furthermore,
paper is inexpensive, accessible, biodegradable, and easy to manufacture. Consequently,
paper-based µPADs are highly attractive for the fabrication of disposable and portable
detection devices, particularly those intended for use in resource-poor nations [14]. The
µPAD concept was proposed by Whitesides et al. [15] in 2007. Since then, µPADs have
been extensively developed and deployed in a wide variety of fields, including clinical
diagnostics [16,17], food safety [18,19], environmental monitoring [20], and COVID-19
detection [21]. As the power and capabilities of smartphones continue to increase, inter-
est in their potential use as portable and convenient POCT detectors has grown [22,23].
Modern smartphones have significant computational power, reasonable memory, and high-
resolution cameras capable of quantifying color and illumination intensities [24,25]. Thus,
the integration of µPADs with smartphones has emerged as a powerful new paradigm for
intelligent on-site analysis [26].

Paper is naturally hydrophilic. Thus, to limit the fluid flow to a particular location
or direction, hydrophobic barriers are required. Several techniques are available for pro-
ducing these barriers, including photolithography [27–29], wax printing [30,31], plasma
treatment [32,33], and laser treatment [34,35]. Photolithography provides the ability to
pattern µPADs with extremely high resolution. However, the photolithography process
requires the use of sophisticated and expensive equipment. In addition, the photoresist ma-
terial used to define the required µPAD configuration is not only expensive but also reduces
the mechanical flexibility of the paper. Wax printing offers high speed, ease of use, and high
resolution. However, commercial wax printers are unsuitable for batch production due to
their high running costs and the low melting point of wax, which can result in distortion of
the printed patterns at high temperatures. While plasma treatment offers a straightforward
approach for generating hydrophobic patterns on paper without affecting the surface to-
pography or flexibility, it is poorly suited to mass production. Finally, laser treatment can
produce high-resolution µPADs, but folding and storing the paper chips can be challenging
since the laser process make the substrate brittle and thus susceptible to cracking during
folding. For applications such as glucose detection, the ability to mass-produce µPADs is
crucial because of the sheer scale of diabetes and related diseases worldwide. Thus, while
the aforementioned methods have undeniable benefits in performing small-scale detection
tasks, they are less suited to glucose detection for diabetes on a larger scale. Consequently,
more effective and scalable methods for the mass production of µPADs are still required.

Many methods can be applied for the µPAD detection of analytes, including colorime-
try [36–38], electrochemistry [39,40], mass spectrometry [41], chemiluminescence [42,43],
and fluorescence [44,45]. However, electrical detection methods require the use of power
supplies and delicate circuitry to measure the current or impedance. Chemiluminescence
or fluorescence approaches need an image sensor interfaced with an expensive fluorescence
instrument and are thus poorly suited for POCT applications. Mass spectrometry methods
also require a costly and bulky apparatus. Among these detection methods, colorimetric
methods offer several key advantages, including low cost, minimal equipment require-
ments, easy operation, simple signal output, and good versatility. Pregnancy and urine test
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strips are the most common colorimetric detection devices used on-site. However, these test
strips provide only a semi-qualitative or yes/no detection capability. Thus, there is still a
need for more sophisticated and quantitative detection devices for POCT applications that
require more sensitive and accurate measurement [24]. In the case of whole human blood
samples, the natural red background color of hemoglobin complicates the identification of
specific analytes using colorimetric methods. Thus, µPAD devices designed for diabetes
monitoring should ideally provide the ability to separate the plasma from the whole blood
sample to enhance the accuracy of the analytical results [46].

To address these requirements, this study proposes a portable, low-cost, point-of-
care (POC) system for the simultaneous detection of blood glucose and hematocrit in
whole human blood samples. The system comprises an origami µPAD fabricated using a
commercial label printing machine and a 3D-printed optical cassette to facilitate detection
using a commercial smartphone. The origami µPAD contains a single hematocrit test layer
and four plasma filtering layers to improve the color uniformity and intensity of the blood
plasma, thereby enhancing the detection accuracy. The hematocrit test layer is pretreated
with sodium chloride (NaCl) and Tween 20 solutions, which prompt the dehydration of the
red blood cells (RBCs) and suppress their flowability in the hematocrit test layer. Thus, the
plasma flows ahead of the RBCs and is effectively separated from the whole blood sample.
As the plasma flows along the hematocrit test layer, it also penetrates through the chip
to the lower layer, where it reacts with embedded colorimetric assay reagents to produce
a yellowish-brown complex. Once the reaction is complete, the paper chip is inserted
into the optical cassette and observed using the camera of a commercial smartphone. The
hematocrit content is quantitatively determined by measuring the plasma wicking distance
along the upper layer of the origami µPAD. Additionally, the glucose concentration is
derived by analyzing the RGB intensity of the reaction complex using self-written RGB
program installed on the phone as an app. The accuracy of the blood glucose measurements
is enhanced by illuminating the detection region of the paper chip with LED lights built
into the 3D-printed cassette to minimize the effects of ambient lighting variations.

The measurement results obtained for the blood glucose and hematocrit concentrations
in 13 human whole blood samples are shown to be in good agreement with those obtained
using commercial meters. Thus, overall, the platform provides a competitive technology
for POCT and clinical applications, particularly in resource-poor areas.

2. Materials and Methods
2.1. Design of Origami µPAD

Figure 1 shows the configuration and dimensions of the origami µPAD, consisting
of a single hematocrit test layer and four folded layers for plasma separation, filtration,
and colorimetric reaction. The sample area of the hematocrit test layer is coated with a
NaCl/Tween 20 solution. When the whole blood sample is dripped onto the sample area,
some of the sample wicks along the hematocrit test layer, while the remainder penetrates
through the stacked layers towards the blood glucose test zone in the lowest layer of the
paper chip. As the sample flows along the hematocrit test layer, the RBCs dehydrate under
the effects of the NaCl/Tween 20 reagent. As a result, their movement is impeded, such
that only the plasma wicks along the test strip. Layers 2 and 3 of the origami µPAD, located
directly beneath the whole blood sample area when the chip is folded, are also pretreated
with NaCl and Tween 20 to filter out the RBCs. Meanwhile, layers 4 and 5 are coated with
colorimetric assay reagents, such that a yellowish-brown complex is formed when the
filtered plasma reaches the blood glucose test zone. Once the colorimetric reaction process
is complete, the µPAD is transferred to the optical cassette, and the hematocrit and glucose
concentrations are determined using self-written apps installed on the smartphone.
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Figure 2. Origami µPAD fabrication process: (a) design, (b) label printing, (c) baking, and (d) cutting. 

Figure 1. Schematic illustration of origami µPAD.

2.2. Fabrication of Origami µPAD

The origami µPADs were fabricated using a label printing technique, as shown in
Figure 2. The µPAD layout was designed using label printer editing software (BarTender
2021 UltraLite Edition, Seagull Scientific, Washington, DC, USA) (Figure 2a), with multiple
µPADs placed side by side on a single page to facilitate mass production. The µPADs were
printed using a commercial label printer (TTP-345, TSC Printronix Auto ID, New Taipei
City, Taiwan) that transferred a thermal transfer ribbon (EG-18, DNP, Tokyo, Japan) to the
surface of a piece of filter paper (Advantec No. 1, ADVANTEC, Kashiwa, Japan) (Figure 2b).
After printing, the filter paper was heated on a hotplate at 170 ◦C for 15 min to allow the
ribbon to permeate through the paper thickness, thereby creating hydrophobic boundaries
that replicated the µPAD design (Figure 2c). Finally, the filter paper was cut into individual
paper-based chips for experimental testing (Figure 2d).
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The baking temperature used in the present method was higher than the typical
wax-printing temperature since the toner particles in the transfer ribbon required a higher
temperature to melt and impregnate the cellulose microfibers of the paper, thereby avoiding
distortion of the printed patterns at high temperatures. Moreover, label printers are better
suited for batch production and have lower operating costs than wax printers. Thus, overall,
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the label printing technique offers a simple, efficient, and cost-effective method for the
mass production of origami µPADs with high precision and reproducibility.

2.3. Smartphone-Based Optical Cassette and Self-Written Apps

Smartphones provide a low-cost and effective technique for µPAD-based colorimetric
detection [47,48]. However, when using smartphones to determine the color intensity of
a reaction complex, variations in the ambient light conditions may affect the detection
performance. In the present study, this problem was addressed using the optical cassette
shown in Figure 3, consisting of a smartphone holder, an optical chamber, and a µPAD
holder. The cassette was fabricated using a 3D printer (Original, Snapmaker, Shenzhen,
China) and was fitted with six LED lights with a 5500 K color temperature to enable accurate
and precise color intensity detection.
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holder, optical chamber, µPAD holder, and LED lights.

An affordable smartphone (HTC One M8, HTC Corp., New Taipei City, Taiwan)
was used for detection purposes. The smartphone emulator Android Studio (Dolphin
version) was used to develop two applications to detect the hematocrit and glucose con-
centrations in the whole blood sample, respectively. The apps were designed to perform
various operations, including image capture, image processing, distance measurement
(hematocrit concentration), RGB intensity reading and processing (glucose concentration),
quantitative computation, and test result output. The user interfaces of the two applica-
tions were designed to be simple and intuitive, and the algorithms used to process the
images were optimized for both precision and speed. In addition, the two apps provide
precise control of exposure time, light sensitivity, and white balance, as well as analytical
calibration capabilities.

2.4. Reagent Preparation and Glucose Colorimetric Assay

Animal blood (sheep) was obtained from Taiwan Prepared Media (TPM, Taichung
City, Taiwan). Potassium iodide (KI) was purchased from Cheng E Chemical Engineering
(Taipei, Taiwan). Sodium chloride (NaCl) was sourced from Shimakyu (Osaka, Japan).
Glucose anhydrous was purchased from Scharlau (Barcelona, Spain). Glucose oxidase
(GOx), horseradish peroxidase (HRP), and Tween 20 were acquired from Sigma-Aldrich
(Merck, Taipei, Taiwan). Phosphate-buffered saline (PBS) was used as the solvent. All the
enzyme and coenzyme solutions were freshly prepared and used without intermediate
storage. Moreover, all the detection experiments were performed at room temperature
(25 ◦C).

For the glucose colorimetric assay, a potassium iodide (KI) color indicator was used to
verify the linear range of the proposed platform. In accordance with ref. [49], the assay was
performed using a solution of 0.6 M KI, 1 mg of HRP mixed with 5 mL of PBS, and 4.3 mg of
GOx mixed with 10 mL of PBS. In the assay process, the interaction between the glucose in
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the blood sample and the GOx produced hydrogen peroxide (H2O2) and gluconic acid. The
H2O2 was then reduced to H2O by the catalytic reaction of HRP, and the color indicator (KI)
was oxidized, resulting in the formation of a complex with a yellowish-brown color [50].

2.5. Experimental Process

Figure 4 shows the main steps in the experimental detection procedure. Prior to the
detection experiments, reagents were coated on the reaction zones of the µPAD and allowed
to diffuse and dry at room temperature (25 ◦C) for 10 min (Figure 4a). Reaction zone 1
was coated with 5 µL of NaCl/Tween 20 solution to facilitate hematocrit detection, while
reaction zones 2 and 3 were coated with 1 µL of the same mixture to facilitate glucose
detection. In addition, 1 µL of 0.6 M KI and glucose reagent was applied to both reaction
zone 4 and reaction zone 5 to facilitate the glucose assay (Figure 4a). After the reagents
were dry, the µPAD was folded (Figure 4b), and 5 µL of blood sample was dripped onto
reaction zone 1 (Figure 4c). The µPAD was left to stand for 2 min to allow for plasma
separation and colorimetric reaction. The µPAD was then unfolded (Figure 4d) and inserted
into the optical cassette, where it was observed using the smartphone camera (Figure 4e).
Finally, the blood glucose concentration and hematocrit value were determined using the
self-written apps installed on the phone (Figure 4f).
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3. Results and Discussion
3.1. Characterization of Label-Printed µPAD

As described in Section 2.2, the hydrophobic barriers in the µPAD were patterned
using ribbon ink and a commercial label printer (TTP-345, TSC Printronix Auto ID, New
Taipei City, Taiwan). With a resolution of over 300 dots per inch (dpi), the printer ensured
excellent precision and repeatability of the produced µPADs by uniformly distributing the
ribbon ink on the surface of the filter paper. Figure 5a–d show the results obtained from
hydrophobicity tests performed using blue dye following various treatments of the filter
paper. Figure 5a,b show the surfaces of the filter paper before and after printing, respectively.
In the former case, when blue ink was dropped on the reaction zone of the filter paper,
it seeped beyond the boundaries of the reaction area owing to the lack of hydrophobic
barriers (Figure 5a). During the printing process, the filter paper passed through a fusion
unit inside the label printer, which partially melted the toner microparticles and bound
them to the surface. However, the short heating time was insufficient to impregnate the
hydrophobic ribbon ink through the thickness of the paper substrate. Thus, the blue dye
again seeped beyond the boundaries of the reaction region (Figure 5b). Figure 5a,b also
present SEM images (200× magnification) of the filter paper morphology before and after
printing, respectively. The non-printed paper had a porous fiber structure, as shown in
Figure 5a. It was thus naturally hydrophilic and allowed the dye to flow easily through the
paper structure under the effects of capillary action. During the printing process, ribbon ink
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was applied to the surface of the filter paper. However, no significant change in the paper
morphology occurred (Figure 5b). Hence, the blue dye was again able to seep beyond the
printed boundaries.
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and Tween 20.

Figure 5c shows the surface morphology of the label-printed filter paper following
heating at 170 ◦C for 15 min. In this case, the melted toner and wax penetrated deeply
into the three-dimensional porous fiber structure of the filter paper, thus forming robust
hydrophobic barriers that prevented capillary-induced diffusion of the blue ink out of the
reaction region. In other words, the label printing technique successfully overcame the
main limitation of wax-based patterning, namely, the difficulty of accurately controlling
the flow of melted wax into the porous capillaries of the paper to precisely define the
required hydrophobic barriers [30]. For the label printer used in the present study, the toner
consisted mainly of styrene-acrylate resin, which softens at temperatures in the range of
100–150 ◦C [51]. Consequently, when heated to 170 ◦C, the toner transforms into a viscous
fluid that progressively wicks into the paper within a narrowly defined area [52]. Due to
the high softening point of the resin (greater than 100 ◦C), the use of ribbon ink rather than
wax to create the hydrophobic boundaries has the further advantage that the resulting
devices are highly thermally stable.

Figure 5d shows the morphology of the filter paper after treatment with NaCl and
Tween 20. The reagent solution forms a crystalline substance attached to the paper fibers.
When the blood sample is dripped onto the reaction region of the µPAD, the water in the
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blood dissolves the crystals, which creates osmotic pressure and leads to the dehydration
of the RBCs under the effects of the NaCl. Meanwhile, the Tween 20 acts as a surfactant,
which reduces the surface tension between the liquid and solid components of the sample
and allows the plasma to penetrate the fiber structure of the filter paper fiber. Hence, a
separation of the RBCs and blood plasma occurs.

3.2. Optimization of Plasma Separation Effect

In the proposed µPAD, the hematocrit and glucose detection performance is fun-
damentally dependent on the efficiency of the plasma separation process. Therefore, a
preliminary investigation was conducted using animal (sheep) blood to determine the
optimal composition of the NaCl/Tween 20 reagent coated on the first three reaction layers
of the µPAD (Figure 4a). As shown in Figure 6, six reagent solutions with varying concen-
trations of NaCl and Tween 20 were prepared. For each mixture, 5 µL of reagent solution
was applied to reaction zone 1, while 1 µL was applied to reaction zone 2 and reaction
zone 3.
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Figure 6. (a–f) Photographs of origami µPADs prepared with different concentrations of NaCl and
Tween 20 following dropping of whole blood sample on reaction zone 1.

For a reagent consisting solely of 4% NaCl (diluted in DI water), only limited plasma
separation occurred, and reaction layers 4 and 5 of the paper chip remained dry (Figure 6a).
When 0.25% and 0.5% Tween 20 were added to the reagent, the plasma reached reaction
layers 4 and 5 but still contained RBCs, as shown in Figure 6b,c, respectively. The NaCl
concentration was thus increased to 10%. However, a small number of RBCs still reached
reaction layer 5 (Figure 6d). Consequently, the Tween 20 content was increased to 0.25%.
In this case, the plasma reached reaction layer 5, with no visible trace of RBCs (Figure 6e).
However, when the Tween 20 content was further increased to 0.5%, the plasma failed
to penetrate layer 5 due to the interaction with the high NaCl concentration (Figure 6f).
Thus, 10% NaCl + 0.25% Tween 20 was chosen as the optimal reagent composition for the
subsequent experiments.

3.3. Hematocrit Calibration Curve

The hematocrit detection performance of the origami µPAD was evaluated using
seven control samples with known hematocrit values. Briefly, the hematocrit concentration
of the original sheep blood sample was determined by centrifugation. Control samples
with hematocrit concentrations spanning the clinically relevant range of human hematocrit
(25–55%) were prepared at 5% intervals by removing hematocrit from the original sample
as required. For each control sample, 5 µL of sheep blood was dripped onto the reaction
zone on the upper layer of the µPAD, and the wicking distance was measured. The
measurement results are presented in Figure 7a,b. As shown in Figure 7a, the wicking
distance decreased as the hematocrit concentration increased. According to the calibration
curve in Figure 7b, based on five independent measurements for each sample (each data



Sensors 2024, 24, 4792 9 of 14

point is a mean ± standard deviation of n = 5 assays), the wicking distance (Y) varied
linearly with the hematocrit concentration (X) over the considered range of 25–55% as
Y = −0.089675X + 8.009509, with a correlation coefficient of R2 = 0.9741. The correlation
coefficient is close to the ideal value of 1, indicating that the calibration equation has
good linearity and reliability. Thus, it was implemented in the smartphone application to
determine the hematocrit of blood samples with unknown hematocrit concentrations.
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3.4. Blood Glucose Calibration Curve

The glucose determination performance of the µPAD system was investigated by dilut-
ing sheep plasma samples with PBS to obtain control samples with glucose concentrations
ranging from 45 to 630 mg/dL, covering the full clinical range associated with normal and
diabetic glucose levels. For each sample, the R, G, and B intensity values were indepen-
dently measured at least five times to ensure the reliability of the results. An analysis of the
measured R, G, and B values indicated that the intensity ratio of G/(R + G + B) provided
the best fit with the glucose concentration of the control samples. As shown in Figure 8,
the optimal calibration equation was determined to be Y = −0.000167 X + 0.377428, with a
near-ideal correlation coefficient of R2 = 0.9958. The µPAD system has a detection sensitivity
of 0.000167 (a.u.)/(mg/dL), indicating an ideal inverse proportional relationship. Thus, the
formula was implemented in the second app on the smartphone to facilitate the glucose
determination of unseen blood samples. The limit of detection for glucose detection was
calculated to be around 4 mg/dL using the mean (blank) + 3SD (standard deviation) [53],
which is comparable to previously reported colorimetric methods (1.8–19.8 mg/dL) [21,54].
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3.5. Practical Application of µPAD System to Hematocrit and Glucose Determination in Human
Whole Blood Samples

The practical applicability of the proposed origami µPAD system was investigated by
measuring the hematocrit and glucose levels in whole blood samples collected from 13 adult
volunteer donors through fingertip blood collection. Figure 9a shows a typical result
obtained for the glucose concentration in one of the samples. It can be seen that the detection
result (131.1 mg/dL) is in good agreement with that obtained using a commercial glucose
meter (133 mg/dL, ACCU-CHEK Guide, Roche, Basel, Switzerland). Figure 9b shows the
detection result for the hematocrit concentration in one of the whole blood samples. The
determination result (39.6%) is consistent with that obtained using a commercial hematocrit
meter (43%, MD6, FORA, Taipei, Taiwan).

Table 1 compares the blood glucose and hematocrit measurements obtained by the
µPAD and smartphone system with those obtained by the two commercial meters for
each of the 13 whole blood samples. Taking the results of the two commercial meters
as a benchmark, the relative error is calculated by comparing the measured value of the
µPAD to the results of the two commercial meters. The deviation between the two sets of
results is less than 6.4% (ranging from 1.4 to 6.4%) for the glucose measurements and 9.1%
(ranging from 1.9 to 9.1%) for the hematocrit measurements. Thus, the basic feasibility of
the proposed platform for practical applications is confirmed. Notably, the µPAD system
not only rivals the performance of the two commercial meters but also does so at a far
lower cost. In particular, each µPAD costs just USD 0.01 (lab-fabricated; labor not included),
while the optical cassette with built-in LED lights costs less than USD 10. In contrast, the
commercial glucose and hematocrit meters used in this study have approximate costs of
USD 100 and USD 80, respectively. Commercial glucose and hematocrit test strips cost
around USD 0.5 and USD 2, respectively.
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Table 1. Comparison of glucose and hematocrit measurements obtained using developed origami
µPAD and commercial meters for 13 real-world human whole blood samples.

Blood Glucose (mg/dL) Hematocrit (%)

Samples µPAD Glucose Meter Relative Error (%) µPAD Hematocrit Meter Relative Error (%)

1 83.9 88 4.7 38.7 41 5.9
2 114.2 122 6.4 40.1 43 7.2
3 141.8 147 3.6 38.3 40 4.4
4 96.2 101 4.8 46.5 48 3.2
5 131.1 133 1.4 36.2 39 7.7
6 158.5 164 3.5 30.4 31 1.9
7 82.6 86 4.1 48.6 53 9.1
8 94.5 98 3.7 42.9 46 7.2
9 86.8 91 4.8 39.6 43 8.6

10 96.6 102 5.5 43.1 45 4.4
11 133.3 141 5.7 52.2 55 5.3
12 75.8 79 4.2 47.1 51 8.3
13 107.4 113 5.2 49.8 54 8.4

4. Conclusions

This study has presented an integrated platform for performing the simultaneous
quantitative detection of glucose and hematocrit in human whole blood samples. The
platform comprises an origami µPAD, a 3D-printed smartphone-based cassette, and a
smartphone. The reaction zones of the µPAD are pretreated with a solution of 10% NaCl
and 0.25% Tween 20 to optimize the plasma separation and filtration effect. In addition,
the detection zone of the µPAD is coated with a solution of 0.6 M KI, 1 mg of HRP mixed
with 5 mL of PBS, and 4.3 mg of GOx mixed with 10 mL of PBS to facilitate a colorimetric
reaction. In the detection process, 5 µL of human whole blood is dropped on the reaction
zone of the upper layer of the µPAD and is subsequently filtered under the effect of the
NaCl/Tween 20 reagent. Part of the separated plasma wicks along the upper layer of
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the paper chip, while the remainder penetrates through the thickness of the chip to the
reaction zone, where it undergoes a colorimetric reaction and produces a complex with
a yellowish-brown color. Following the reaction process, the µPAD is transferred to the
optical cassette and observed by the camera of a commercial smartphone (HTC One M8,
HTC Corp., New Taipei City, Taiwan). The hematocrit and glucose concentrations are then
derived using self-written applications installed on the phone and designed to determine
the wicking distance of the plasma along the upper layer of the chip (hematocrit detection)
and the G/(R + G + B) intensity ratio of the reaction complex (glucose concentration).

The origami µPADs are printed using a commercial label printer. This not only results
in more precise hydrophobic barriers than those created using a conventional wax-printing
method but also enables mass production at a significantly lower cost. In addition, the
optical cassette is equipped with LED lights, which mitigate the effects of variations in the
ambient light and therefore increase the accuracy of the colorimetric detection results. The
experimental results show that the hematocrit and glucose concentration measurements
obtained for 13 real-world human whole blood samples deviate by no more than 9.1%
and 6.4%, respectively, from the measurements obtained using commercial hematocrit
and glucose meters. Overall, the results indicate that the proposed platform provides a
viable, low-cost solution for POC hematocrit and glucose determination in whole blood
samples. It thus offers a promising solution for POC glucose monitoring and management,
particularly in resource-poor settings.
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