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Abstract: Distributed drive electric vehicles improve steering response and enhance overall vehicle
stability by independently controlling each motor. This paper introduces a control framework
based on Adaptive Model Predictive Control (AMPC) for coordinating handling stability, consisting
of three layers: the dynamic supervision layer, online optimization layer, and low-level control
layer. The dynamic supervision layer considers the yaw rate and maneuverability limits when
establishing the β − β̇ phase plane stability boundary and designs variable weight factors based on
this stability boundary. The online optimization layer constructs the target weight-adaptive AMPC
strategy, which can adjust the control weights for maneuverability and lateral stability in real time
based on the variable weight factors provided by the dynamic supervision layer. The low-level
control layer precisely allocates the driver’s requested driving force and additional yaw moment
by using torque distribution error and tire utilization as the cost function. Finally, experiments
are conducted on a Simulink-CarSim co-simulation platform to assess the performance of AMPC.
Simulation results show that, compared to the traditional MPC strategy, this control strategy not only
enhances maneuverability under normal conditions but also improves lateral stability control under
extreme conditions.

Keywords: distributed drive electric vehicles; weight factors; AMPC; handing stability

1. Introduction

The Distributed Drive Electric Vehicle (DDEV) equipped with four hub motors has
attracted significant attention in the academic and automotive industries [1,2]. Compared
to traditional vehicles with centralized traction systems, each motor in a distributed ve-
hicle can independently control torque and facilitates optimal distribution, providing an
excellent research platform for improving vehicle maneuverability and lateral stability [3,4].
As a crucial component of vehicle active safety systems, the Direct Yaw Control (DYC)
system enhances steering characteristics by applying varying torques to the wheels for
generating the necessary additional yaw torque, which is widely utilized for improving
vehicle handling stability [5,6].

Currently, various control strategies have been proposed for the DYC of a DDEV,
such as proportional integral derivative (PID) controllers [6], linear quadratic regula-
tors (LQRs) [7,8], and sliding mode control (SMC) [9,10] and Model Predictive Control
(MPC) [11]. Each controller has its own specific advantages and disadvantages. Lorenzo
Wang [12] researched yaw angle control strategies using torque vectoring control methods
on dual rear-wheel electric vehicles. Hu [13] proposed a novel hierarchical DYC architec-
ture, and the simulation results indicated that this method significantly improves the yaw
rate and sideslip angle of the vehicle under low adhesion road conditions and double-lane
change scenarios. Yu [14] designed a control strategy to enhance vehicle maneuverability,
which involves a torque vectoring control strategy based on an optimized reference model
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for the yaw rate to improve handling sensitivity. Woo [15] proposed an active differential
control system to improve handling and acceleration performance. Ahmadian [16] pro-
posed a maneuverability control strategy based on estimated information, using a model
reference control method to design a controller that can robustly track the reference yaw
rate. ZHANG [17] analyzed the impact of an active yaw moment on vehicle steering char-
acteristics, and proposed a desired yaw motion value considering a transient response to
improve vehicle maneuverability. Although these methods can effectively enhance vehicle
maneuverability, they do not consider reliable safety constraints, and the vehicle is likely to
become unstable under extreme conditions.

To enhance vehicle stability, it is crucial to accurately determine the vehicle operating
state. The phase plane method is a widely used graphical stability assessment tool, which
primarily includes the β − β̇ phase plane method, the β − r phase plane method, and the
a f − ar phase plane method [18]. Compared to other types of phase planes, the equilibrium
points of the β− β̇ phase plane always lie on the horizontal axis, making it more suitable for
analyzing lateral vehicle dynamics and beneficial for delineating stable trajectory regions.
Konghui Guo [19] used a two-degree-of-freedom vehicle model and a nonlinear tire model
to analyze the vehicle state changes in the phase plane, graphically presenting stable and
unstable regions. B. Yang [20] designed a weighting factor to coordinate the coupling effects
between differential drive-assisted steering and vehicle motion in phase plane stability
analysis. However, stability regions are defined solely based on vehicle speed and tire–road
friction, omitting the impact of the front wheel steering angle, which limits the accuracy of
stability evaluations [21]. W. Chen [22] defined the stability region as an ellipse, but this
approach imposes a significant burden on polynomial fitting calibration, which limits its
application. Currently, most of the literature still uses the double-line method to establish
the stability boundaries of the β − β̇ phase plane [19]. However, this stability region still
encompasses unstable regions that exceed the vehicle lateral acceleration limits, failing
to accurately delineate stability boundaries [23]. Additionally, part of the stability region
defined by the twin-line method falls within the nonlinear range of the tires, where the
objectives of maneuverability and stability remain inconsistent [24]. Therefore, when
establishing the β − β̇ phase plane stability boundaries in this paper, it is necessary to
consider yaw rate and maneuverability constraints.

After determining the vehicle state using stability boundaries, maneuverability and
stability control can be implemented. Currently, numerous control strategies have been
applied to the maneuverability and lateral stability of DDEV. L. Zhang [25] proposed a
torque vectoring controller based on adaptive second-order sliding mode control to im-
prove vehicle maneuverability and stability. H. Alipou [26] introduced a lateral stability
control method for four-wheel-drive vehicles on slippery roads based on improved slid-
ing mode control, which is faster and more robust than classical sliding mode control.
Xuewu [27] presented a vehicle stability control strategy based on adaptive radial basis
function network sliding mode theory to enhance dynamic stability under handling limits.
Although sliding mode control and its variants have been widely applied and exhibit good
performance, they suffer from model errors and high-frequency chattering. S. Ding [28]
designed a second-order sliding mode control strategy for a DYC controller, successfully
addressing the chattering issue in traditional SMC and effectively enhancing the robustness
of the controller. However, while this method resolves the chattering problem, it cannot
handle system control and state constraints. In contrast, MPC is better equipped to handle
system input and state constraints. Ningyuan [29] proposed a fast MPC method for DDEV
torque distribution, which minimizes tire slip power loss and enhances vehicle stability.
Jalali [30] introduced an integrated speed estimation and MPC system that maintains a
small sideslip angle under various road conditions by tracking the adjusted reference
yaw rate.

Although the aforementioned literature addresses control for maneuverability and
stability, most methods use fixed weights for control and rarely consider the coordination
between maneuverability and lateral stability. Typically, the yaw rate represents vehicle
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maneuverability, while the sideslip angle represents vehicle stability. Controlling the
sideslip angle when the vehicle is stable can suppress maneuverability, and controlling
the yaw rate when the vehicle is unstable can suppress stability. To address this issue,
B. Lenzo [31] proposed a normalized reference yaw rate that combines the yaw rate and
sideslip angle for use in Direct Yaw Control (DYC). F. Assadian [32] used the tracking errors
of the yaw rate and sideslip angle to calculate two indicators, and these indicators are
controlled by threshold values. When either indicator exceeds its threshold, the DYC (Direct
Yaw Control) controller will be activated. However, the simple Boolean activation of DYC
can cause motor torque fluctuations, thus affecting driving comfort and motor lifespan.
Therefore, to better coordinate vehicle maneuverability and lateral stability, this paper
emphasizes the need to establish more comprehensive stability boundaries. Additionally,
considering the smooth transition of vehicle torque during control target switching, a
smoother control target switching strategy must be developed.

To address the issues mentioned above, this paper proposes a coordinated manipula-
tion stability control framework based on AMPC, as shown in Figure 1. This framework is
mainly divided into three parts: Dynamic Supervision Layer, Online Optimization Layer,
and Low-level control Layer. The dynamic supervision layer establishes the β − β̇ phase
plane stability boundary under different conditions and designs variable weight factors
based on the stability boundary and vehicle operating status. The online optimization layer
constructs an adaptive AMPC strategy for target weights, adjusting the control weights
of maneuverability and lateral stability in real time based on the variable weight factors
provided by the dynamic supervision layer. The low-level control layer precisely allocates
the driver’s required driving force and additional yaw moment using torque distribution
error and tire utilization as cost functions. The main contributions of this paper are:

Measurement and Estimation

Front Wheel Steering Angle     Sideslip Angle     Yaw Rate     Vehicle Velocity     

Total Traction Torque      The tire-road friction  

M

Dynamic Control Supervisor

Driver

Dynamic Supervision Layer

Phase Plane Portrait 

Analysis

Stability Bounds

Varying Weight Factor

Online Optimization Layer

Reference Model

MPC Variable Weight

Quadratic Optimization
1

min    
2

T TJ x Hx f x= +

Low-Level Control Layer

Torque Distribution

Tire Utilization Rate

Objective function

( ) ( )T T

d dJ u Hu v Bu v Bu= + − −




dT


𝑇𝑓𝑙

𝑇𝑟𝑟

𝑇𝑟𝑙

𝑇𝑓𝑟

Vehicle

Figure 1. Overall framework diagram.

• This paper proposes a control framework based on AMPC for coordinating han-
dling stability, consisting of a dynamic supervision layer, online optimization layer,
and low-level control layer. This framework uses the AMPC strategy to coordinate
maneuverability and lateral stability, enhancing the vehicle handling stability.

• In establishing the β − β̇ phase plane stability boundary, the influence of vehicle speed,
front wheel steering angle, and road adhesion coefficient on the stability boundary
was considered, along with added constraints on the yaw rate and maneuverability to
redefine the stability boundary. Based on this, variable weight factors are dynamically
quantified in real time, facilitating the coordination of maneuverability and stability
control in the online optimization layer.

• A target weight-adaptive AMPC strategy was established, which can adjust the control
weights for maneuverability and lateral stability in real time based on the vehicle
state, thereby enhancing maneuverability under normal conditions and stability under
extreme conditions.
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The rest of this paper is organized as follows. Section 2 introduces the vehicle and tire
models. Section 3 elaborates on the design of the hierarchical control architecture. Section 4
presents the simulation results. Section 5 provides a summary of the entire paper.

2. Vehicle and Tire Model

The vehicle system is a high-degree-of-freedom and strong nonlinear system. There-
fore, in order to simplify the vehicle model, it is necessary to make the following assump-
tions: (1) the vehicle runs at a constant speed on a horizontal road; (2) the influence of the
vehicle vertical load is not considered; and (3) the two front wheel angles are equal and the
wheel tracks are equal between the front and rear axles.

2.1. Vehicle Dynamics Model

The vehicle dynamics model establishes a single-track model that includes lateral
motion and yaw motion, as shown in Figure 2 where vx represents the longitudinal velocity,
vy represents the lateral velocity, β represents the sideslip angle, γ represents the yaw rate,
δ f represents the front wheel angle, and x and y represent the longitudinal and lateral
directions, respectively.

Figure 2. Vehicle dynamics model.

The vehicle dynamics equations are expressed as follows:{
m(v̇y + vxγ) = Fy f + Fyr
Izγ̇ = l f Fy f − lrFyr + ∆Mz

(1)

Assuming that the sideslip angle at the vehicle center of mass is small, the following
expression is obtained:

β = arctan(νy/νx) ≈ νy/νx (2)

where m is the mass of the vehicle, Iz is the moment of inertia, l f and lr are the distances
from the front and rear axles to the vehicle’s center of mass, respectively, and Fy f and Fyr are
the lateral forces on the front and rear tires, respectively, which are approximately linearly
related to the tire slip angle:{

Fy f = C f α f = C f (δ f −
l f γ

vx
− β)

Fyr = Crαr = Cr(
lrγ
vx

− β)
(3)

where C f and Cr are the cornering stiffness of the front and rear tires, respectively, and α f
and αr are the sideslip angles of the front and rear tires, respectively.

Therefore, by combining Equations (1)–(3), the vehicle dynamics equations can be
further expressed as: β̇ = −C f +Cr

mvx
β − (

l f C f −lrCr

mv2
x

+ 1)γ +
C f

mvx
δ f

γ̇ = − l f C f −lrCr
Iz

β −
l2

f C f +l2
r Cr

Izvx
γ +

l f C f
Iz

δ f +
∆M

Iz

(4)
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According to Equation (4), the following state-space equation can be obtained:{
ẋ = Acx + Bcu + Nδ f
y(k) = Ccx

(5)

where the system state variable is x = [ β γ ]T , the control variable is u = ∆M, and the
control output is y = [ β γ ]T . The coefficient matrices Ac, Bc, N, and Cc are represented
as follows:

Ac =

 C f +Cr
mvx

l f C f −lrCr

mv2
x

− 1
l f C f −lrCr

Iz

l f
2C f +lr2Cr

Izvx

,Bc =

[
0
1
Iz

]
,N =

[ C f
mvx
l f C f

Iz

]
,Cc =

[
1 0
0 1

]
.

2.2. Tire Model

This paper adopts the Pacejka magic formula to calculate tire forces [33], and applies it
to the construction of stability boundaries in Section 3.1. The general forms are as follows:

Y(x) = y(x) + Sv
y = Do sin[Co arctan{Box − Eo(Box − arctan(Box))}]
x = X + Sh

(6)

where Y represents the output variables: Fx is the longitudinal tire force, Fy is the lateral tire
force, and Mz is the tire aligning torque. x represents the input variables: slip ratio or slip
angle, Do = µ(a1F2

zi + a2Fzi) is the peak lateral force, µ is the tire–road friction coefficient,
CFα = BoCoDo is the tire’s lateral stiffness, E is the curvature factor, Sv is the horizontal
offset, and Sh is the vertical offset.

3. Hierarchical Control System Design
3.1. Dynamic Supervision Layer
3.1.1. Phase Plane Portrait Analysis

This section analyzes the β − β̇ phase plane, proposes an improved phase plane
stability criterion, and establishes a stability boundary lookup table.

To plot the phase plane, it is necessary to establish the corresponding dynamic equa-
tions. By combining Equations (1) and (6), the following expression can be derived:{

β̇ =
Fy f cos δ f +Fyr

mvx
− γ

γ̇ =
aFy f cos δ f −bFyr

Iz

(7)

As shown in Figure 3a, the dual-line method is used to delineate the stable regions of
the β − β̇ phase plane, which is simple and effective but has its limitations. This method
only considers the stable regions that the sideslip angle can ultimately converge, leading to
overly broad coverage, which does not consider the limitations on the yaw rate. When the
yaw rate reaches tire–road friction coefficient limits, the lateral force on the tires approaches
saturation, making it prone to sideslip instability [34,35].

To address the aforementioned issue, it is necessary to incorporate a limitation on the

yaw rate. Substitute
{

γmin = −0.85
∣∣ µg

vx

∣∣
γmax = 0.85

∣∣ µg
vx

∣∣ into Equation (7) and the following expression

can be obtained: {
β̇min =

Fy f cos δ f +Fyr
mvx

− 0.85
∣∣ µg

vx

∣∣
β̇max =

Fy f cos δ f +Fyr
mvx

+ 0.85
∣∣ µg

vx

∣∣ (8)

Using Equation (8), the boundary line of the β − β̇ phase trajectory can be drawn when
the yaw rate reaches the amplitude, as shown by the blue curve in Figure 3b.

The stability region can be further subdivided into two areas using the traditional
phase plane method, as shown in Figure 3c. Area 1 represents the stability region where
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the sideslip angle is inside the saddle point, while area 2 represents the stability region
where the sideslip angle is outside the saddle point; both are viewed as traditional stability
regions. However, in fact, area 2 can only be considered a theoretical stability region and
is not suitable for practical use. In the β − β̇ phase plane diagram, the value of dβ̇/dβ
is significantly less than 0 in area 1, ensuring that the desired yaw rate response helps
maintain vehicle maneuverability. In contrast, the value of dβ̇/dβ is slightly above 0 in area
2, which can lead to a conflict between maneuverability and stability controls. Therefore,
area 2 is not suitable as a stability region [24].

Based on the analysis above, further optimization of the stability region in the phase
plane is conducted. As shown in Figure 3d, this limits the yaw rate to prevent tire skidding.
Simultaneously, the further restriction of the centroid sideslip angle aims to define a more
precise area to avoid conflicts between maneuverability and stability control.

(a) (b)

(c) (d)

Figure 3. Phase plane region partitioning (a) Double line method; (b) Yaw rate limit; (c) Maneu-
verability limit; (d) Yaw rate and maneuverability limit (µ = 0.85, vx = 70 km/h, δ = 0 deg).

From the analysis above, it is evident that the stable region is located between the
saddle points of the phase plane and the critical yaw rate. Therefore, the stable region can
be represented by the following constraints:{

βsaddle_l ≤ β ≤ βsaddle_r
ωmin ≤ ω ≤ ωmax

(9)

where βsaddle_l represents the horizontal coordinate of the left saddle point on the phase
plane, and βsaddle_r represents the horizontal coordinate of the right saddle point. The
amplitude of the yaw rate is explained and derived in Section 3.2.1. Therefore, the system’s
stability region can be established by determining the horizontal coordinates of the saddle
points under different conditions.

The stability of the phase plane primarily depends on factors such as tire–road friction
coefficient, vehicle speed, and front wheel steering angle. Therefore, by discretizing the
aforementioned factors within the feasible domain and iterating, the horizontal coordinate
position of the phase plane saddle points can be obtained, as shown in Figure 4.

To facilitate strategy implementation, a stability boundary lookup table based on
saddle points has been established for online use. This approach not only overcomes
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the two drawbacks of the previously mentioned dual-line method, but also significantly
reduces the burden of offline calibration of stability boundaries.

Figure 4. Saddle point positions under different conditions. (a) The tire-road friction factor of 0.85;
(b) The tire-road friction factor of 0.6; (c) The tire-road friction factor of 0.4; (d) The tire-road friction
factor of 0.3.

3.1.2. Varying Weight Factor Design

Although the stability region of the β − β̇ phase plane has been precisely defined, it
cannot be directly processed by the online optimization layer. Therefore, an evaluation
metric has been established to describe the vehicle’s state, and its expression is as follows:{

Iβ = 1 − S(β)
min(|βsaddle_r−β|,|β−βsaddle_l |)

βsaddle_r−βsaddle_l

S(β) = 2 · sign[(βsaddle_r − β)(β − βsaddle_l)]
(10)

where Iβ is the assessment index of the sideslip angle, which is used to evaluate the shortest
distance between the current vehicle state and the boundary. When Iβ > 1, it exceeds the
saddle point and is in an unstable region; therefore, the entire vehicle is only in a stable
region when the stability state Iβ ≤ 1.

Considering that activating the stability control strategy after the vehicle becomes
unstable is too late, it is necessary to establish a critical stability zone within the stable range.
This zone facilitates a smooth transition from maneuverability control strategies to stability
control strategies, ensuring that the vehicle can be effectively controlled before it becomes
unstable. Therefore, the region within µ − 1 is designated as the critical stability area, used
for the transition between maneuverability and stability control algorithms. In the stable
region, maneuverability control is implemented; in the unstable region, stability control is
applied; and in the critical stability region, integrated control between maneuverability and
stability control is conducted based on the vehicle’s state. Simultaneously, to ensure smooth
changes in vehicle state during the transition of control modes, the control weight of the
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sideslip angle is gradually increased using a trigonometric function as the assessment index
of the sideslip angle increases. The specific expression is given below, and its variation
curve is illustrated in Figure 5:

ρβ =


0 Iβ ≤ µ

1
2
(
1 − cos

(
π
(

Iβ − µ
)
/(1 − µ)

))
µ < Iβ ≤ 1

1 Iβ > 1
(11)

ργ = 1 − ρβ (12)

where ρβ represents the stability control weight, ργ represents the maneuverability control
weight, and Iβ represents the vehicle’s stability state.

0 μ 1 1.5

0

0.2

0.4

0.6

0.8

1





I

Figure 5. Coordination control weight ρ variation curve for handing stability .

3.2. Online Optimization Layer

This section primarily establishes the AMPC strategy. The strategy adjusts the control
weights for the yaw rate and sideslip angle in the cost function in real time based on the
size of the variable weight factor in the dynamic control monitor. This adjustment aims
to enhance vehicle handling stability. As shown in Figure 6, the calculation flowchart is
detailed as follows:

Figure 6. Coordination control weight ρ variation curve for handing stability.

First, the dynamic model of the system is defined. Next, the forward Euler method is
used to discretize the continuous-time dynamic model. To constrain the control increments,
we improved the discretized model. Then, we established the prediction equation to
calculate the state variables at future time steps. Next, we designed the cost function and
used a quadratic programming (QP) solver to solve the optimization problem, generating
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the optimal control variables. Finally, the current control input is calculated and applied to
the controlled object.

3.2.1. Reference Model

Based on the steady-state response of the sideslip angle and yaw rate generated by
the driver’s demands, a vehicle reference model can be established. Typically, the vehicle’s
steady-state β̇ = γ̇ = 0 response is used as the reference model, and by substituting into
Equation (4), the ideal values can be obtained. γd = vx/L

1+Kvx2 δ f

βd =
lr/L+ml f vx

2/(L2Cr
2)

1+Kvx2 δ f
(13)

where K = m
L2 (

a
Cr

− b
C f
) is the stability factor, and L is the axle of the vehicle.

In reality, the yaw rate and the sideslip angle are constrained by the tire–road friction
conditions, and there are limit values: |γmax| = 0.85

∣∣∣ µg
vx

∣∣∣
|βmax| = µg

∣∣∣ b
vx2 +

ma
Kr L

∣∣∣ (14)

To reduce control difficulty and enhance ride comfort, set βd = 0. The ideal value is
revised to: {

γd = min
{
|γmax|,

∣∣∣ vx/L
1+Kvx2 δ f

∣∣∣} ∗ sgn(δ f )

βd = 0
(15)

3.2.2. Design of the AMPC Controller

In the model predictive control algorithm, the continuous system equations need
to be discretized. The forward Euler method is used to discretize the aforementioned
system state Equation (5) (assuming the front wheel angle is constant within the prediction
time domain): {

x(k + 1) = Akx(k) + Bku(k) + Nkδ f
y(k) = Ckx(k)

(16)

where Ak = I + AcT, Bk = BcT, Ck = Cc, and Nk = NT. T is a discrete step, T = 0.01.
Consider the following equation:

u(k) = u(k − 1) + ∆u(k) (17)

Considering that control quantity obtained directly through optimization may cause
sudden changes, to ensure smooth changes in vehicle state, it is necessary to avoid abrupt
changes in the additional yaw torque. Therefore, by transforming the system control
quantity into control increment and enhancing the constraint on increment, the variation in
additional yaw torque becomes more stable. The new state-space expression is as follows:

ξ(k) = [x(k), u(k − 1)]T (18)

ξ(k + 1) = Aξ(k) + B∆u(k) + Ntδ f (19)

y(k) = Cξ(k) (20)

where A, B, Nt, and C are defined as follows:

A =

[
Ak Bk

0m×n Im

]
, B =

[
Bk
Im

]
, Nt =

[
Nk

0m×1

]
, C =

[
Ck 01×m

]
.
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where n represents the dimension of state quantity, and m is the dimension of control
quantity. By iterating the model to predict the control process, the predicted state can be
expressed as:

ξ(k + 1|k) = Aξ(k) + B∆u(k|k) + Ntδ f
ξ(k + 2|k) = Aξ(k + 1|k) + B∆u(k + 1|k) + Ntδ f
= A2ξ(k) + AB∆u(k) + B∆u(k + 1|k) + (ANt + Nt)δ f
...
ξ(k + Np|k) = ANp ξ(k) + ANp−1B∆u(k|k) + ANp−2B∆u(k + 1|k)
+ · · ·+ ANp−Nc B∆u(k + Nc − 1|k) + (ANp−1Nt + · · ·+ Nt)δ f

(21)

The output of the system in the predictive horizon can be expressed as:

y(k + 1|k) = CAξ(k) + CB∆u(k|k) + CNtδ f
y(k + 2|k) = CA2ξ(k) + CAB∆u(k|k) + CB∆u(k + 1|k) + (CANt + CNt)δ f
y(k + 3|k) = CA3ξ(k) + CA2B∆u(k|k) + CAB∆u(k + 1|k) + CB∆u(k + 2|k)
+(CA2Nt + CANt + CNt)δ f
...
y(k + Np|k) = CANp ξ(k) + CANp−1B∆u(k|k) + CANp−2B∆u(k + 1|k)
+ · · ·+ CANp−Nc B∆u(k + Nc − 1|k) + (CANp−1Nt + · · ·+ CNt)δ f

(22)

where Np represents the prediction horizon and Nc represents the control horizon. The
prediction output of the system can be expressed as:

Y(k) = Φξ(k) + Θ∆U(k) + Ψδ f (23)

where Y represents the output matrix of the system, ∆U represents the system control
increment matrix, and Φ and Θ represent the coefficient matrix, and are, respectively,
expressed as follows:

Y(k) =


y(k + 1|k)
y(k + 2|k)

...
y(k + Np|k)

, ∆U(k) =


∆u(k|k)

U(k + 1|k)
...

U(k + Np − 1|k)

 (24)

Φ =



CA
CA2

...
CANc

...
CANp


, Θ =



CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CANc−1B̃ CANc−2B̃ · · · CB
CANc B̃ CANc−1B̃ · · · CAB

...
...

. . .
...

CANp−1B̃ CANp−2B̃ · · · CANp−NcB


, Ψ =



CNt
CANt + CNt

...
Nc−1

∑
i=0

CAi Nt

...
Np−1

∑
i=0

CAi Nt


(25)

To prevent the occurrence of local optima or difficult to solve situations, a relaxation
factor is introduced, and the objective function can be expressed as:

J(ξ(k), ∆Uk, ε) =
Np
∑

i=1

∥∥∥y(k + i|k)− yre f (k + i|k)
∥∥∥2

Q
+

Nc−1
∑

i=0
∥∆u(k + i|k)∥2

R + ρε2

= (Y(k)− Yre f (k))TQ(Y(k)− Yre f (k)) + ∆UT(k)R∆U(k) + ρε2

= (E + Θ∆U(k))TQ(E + Θ∆U(k)) + ∆UT(k)R∆U(k) + ρε2

= ∆UT(k)(ΘTQΘ + R)∆U(k) + 2ETQΘ∆U(k) + ρε2 + ETQE

(26)
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where Q1 =
[

qβ qγ
]T is the weight coefficient, the weight of which is determined

by the upper-level dynamic supervisory MPC based on the real-time state of the vehicle.

R1 = r∆M is the output weight. In the objective function, Q =

 Q1 · · · 0
...

. . .
...

0 · · · Q1

, R =

 R1 · · · 0
...

. . .
...

0 · · · R1

. yre f (k) =
[

βd γd
]T, Ydes(k) =

[
ydes(k) ydes(k) · · · ydes(k)

]T
1×Np

are desired values.
The size of the weight varies depending on the weight factor, as shown in the following

equation. {
qβ = 350,000 × ρβ

qγ = 200,000 × ργ
(27)

During the optimization process, it is necessary to consider constraints on the control
variables, control increments, and output variables:

1. Control increment constraints:

∆umin ≤ ∆u(k) ≤ ∆umax (28)

The above equation in the rolling time domain is as follows:
∆umin
∆umin

...
∆umin

 ≤


∆u(k)

∆u(k + 1)
...

∆u(k + 2)

 ≤


∆umax
∆umax

...
∆umax

 (29)

Expressed in compact form it is:

∆Umin ≤ ∆U(k) ≤ ∆U max (30)

2. Control variable constraints:

umin(k) ≤ u(k) ≤ umax(k) (31)

As the solve variables in the objective function are in the form of control increments,
therefore, the constraints must also be expressed in the form of control increments.

 ∆umin
...

∆umin

 ≤


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

⊗ INp


∆u(k)

∆u(k + 1)
...

∆u(k + Np − 1)

+


u(k − 1)
u(k − 1)

...
u(k − 1)

 ≤

 ∆umax
...

∆umax

 (32)

where ⊗ represents the Kronecker product symbol.
Expressed in compact form this gives:

Umin ≤ E∆U(k) + U(k − 1) ≤ U max (33)

Rearranging the above equation obtains:

Umin − U(k − 1) ≤ E∆U(k) ≤ Umax − U(k − 1) (34)

3. The output constraints are:
ymin ≤ y(k) ≤ y max (35)
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The above equation in the rolling time domain is:
ymin
ymin

...
ymin

 ≤


y(k)

y(k + 1)
...

y(k + Np − 1)

 ≤


ymax
ymax

...
ymax

 (36)

Expressed in a compact form this is:

ymin ≤ y(k) ≤ y max (37)

The output constraints can be represented as:

Ymin ≤ Φξ(k) + Θ∆U(k) + Ψδ f ≤ Y max (38)

Rearranging the above equation obtains:

Ymin − Φξ(k)− Ψδ f ≤ Θ∆U(k) ≤ Y max − Φξ(k)− Ψδ f (39)

In constructing the objective function, the optimization variables to be solved include
∆U and ε .Therefore, it is necessary to consider constraints on ε as well, in order to incorpo-
rate them into the inequality constraints of the quadratic programming solving process.
The expression is as follows:

J(ξ(k), ∆Uk) =
1
2

∆UT(k)H∆U(k) + f T∆U(k) + const (40)


−E 0
E 0
−E 0
E 0

[ ∆Umin
ε

]
≤


−(Umin − U(k − 1))

Umax − U(k − 1)
−(Ymin − Φξ(x)− Ψδ f )

Ymax − Φξ(x)− Ψδ f

 (41)

3.3. Low-Level Control Layer

The main aim of this section is to establish a control strategy for the low-level control
layer. This strategy aims to achieve optimal distribution of the longitudinal forces across
all four wheels, considering the constraints of motor and road adhesion, while fulfilling
additional yaw torque generated by the handing stability control, and the driver’s required
longitudinal force [36].

1. Minimum torque distribution error objective function
The distribution of longitudinal forces for all four wheels must first satisfy the addi-
tional yaw torque determined by the stability control system and the longitudinal
force demands of the driver. Torque distribution is optimized to minimize the torque
distribution error, with the following expression for the objective function:

min J1 = min
[

φ(vd − Bu)T(vd − Bu)
]

(42)

where vd =
[

Td ∆Mz
]T represents the demand matrix, B =

(
1 1 1 1

− B f
2R

B f
2R − Br

2R
Br
2R

)
represents the control efficiency matrix, and u =

(
Tf l Tf r Trl Trr

)
represents

the control input matrix. φ =
[

φTd φ∆M
]T is the control demand weighting ma-

trix, used to balance the proportion between the driver’s longitudinal force demands
and the additional yaw torque demands, φTd = 5 and φ∆M = 30. B f and Br represent
the front and rear wheel tracks, and R represents the rolling radius of the wheel.

2. Objective function based on the tire utilization rate
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For vehicle motion control, the tire–road friction is also an important factor. To
obtain good adhesion potentials, the tire force of each tire should stay away from
the boundary of corresponding friction ellipse. Therefore, it is necessary to perform
torque optimization distribution using the minimum tire utilization rate as the cost
function. The expression for the objective function is as follows:

min J2 = min uT Hu (43)

where H = diag
(

1
µ2F2

z f l R
2 , 1

µ2F2
z f r R2 , 1

µ2F2
zrl R

2 , 1
µ2F2

zrr R2

)
represents the Hessian matrix.

Therefore, to achieve optimal torque distribution, the following objective function
expression is established:

min J = min
[
uT Hu + φ(vd − Bu)T(vd − Bu)

]
(44)

The first term in the cost function aims to minimize the tire utilization rate, reducing the
driving force of individual motors; the second term is used to meet the control requirements
for total driving force and additional yaw torque. This approach enhances the vehicle
maneuverability.

In addition to the optimization objectives, two constraints should be set in the torque
distribution: the tire adhesion limit and the physical limit of the motor. These constraints
are designed to meet the safety requirements of tire adhesion and motor driving capacity,
respectively.

The tire adhesion limits are based on tire adhesion ellipse theory for vehicle stability;
the formula is as follows: √

F2
xij + F2

yij ≤ µFzij (45)

By assuming Fxi ≈ Txij/R , and combining it with the above formula, we can obtain
the following expression:

−
√
(µFzij)

2 − F2
yijR ≤ Txij ≤

√
(µFzij)

2 − F2
yijR (46)

where R represents the rolling radius of the wheel.
According to the external characteristic curve of the motor, the maximum output

torque of the motor varies at different speeds. Therefore, the longitudinal force distributed
to each tire should also meet the limit of the motor’s maximum output torque:

Tmin ≤ Txij ≤ Tmax (47)

where Tmin represents the minimum output torque of the motor, and Tmax represents the
maximum output torque of the motor.

Therefore, by defining the torque optimization distribution control objective func-
tion and incorporating the inequality constraints of motor output torque limits and road
adhesion conditions, the following objective function expression can be obtained: min J = min

[
uT Hu + φ(vd − Bu)T(vd − Bu)

]
s.t. min(Tmin,−

√
(µFzij)

2 − F2
yijR) ≤ Txij ≤ max(Tmax,

√
(µFzij)

2 − F2
yijR)

(48)

4. Results

This paper validates the effectiveness of the control algorithm through the CarSim-
Simulink joint simulation platform, selecting the C-Class vehicle model from CarSim as the
simulation model. The vehicle parameters are as shown in Table 1.
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Table 1. Statistics in simulation experiments.

Parameter Value Parameter Value

Vehicle mass (kg) 1412 Yaw Moment of inertia
(kg·m2) 1436.7

Wheelbase (m) 2.91 Wheel track (m) 1.675 (front) 1.675 (rear)
Distance from rear axle to

center of mass (m) 1.015 Distance from rear axle to
center of mass (m) 1.895

Centroid height (m) 0.54 Rolling radius (m) 0.325
Front axle cornering

stiffness (N/rad) −134,900 Rear axle cornering
stiffness (N/rad) −79,617

4.1. Double Lane Change
4.1.1. Low Adhesion Double Lane Change

To validate the effectiveness of the adaptive weight adjustment scheme, this section
employs a double lane change (DLC) scenario for simulation testing, with the road surface
set to low adherence (µ = 0.3) and the vehicle speed maintained at a constant vx = 80 km/h .
For comparative purposes, simulations are conducted under three sets of control parameter
settings based on the MPC controller, as shown in Table 2.

Table 2. Control algorithm settings.

Algorithm Simulation Weight Coefficient

AMPC Adaptive Weight Adjustment (Section 3.2)
MPC Fixed Weight Q1 = diag[20, 20]× 104

No Controller -

AMPC uses adaptive weight settings; MPC uses fixed weight settings, balancing both
handing and stability objectives; the third group does not implement any control.

The low adhesion double lane change simulation results are shown in Figure 7. Figure 7a
represents the yaw rate variation curve. Without any control strategy implemented, the
yaw rate diverges, leading to vehicle instability. Both AMPC and MPC track the yaw rate
relatively well. However, AMPC shows significant deviations from the reference value
between 1.2 and 1.8 s, 3.2 and 4.3 s, and 4.8 and 5.6 s. This is because AMPC uses adaptive
weight adjustment, and during these periods, the vehicle state tends toward instability,
which leads to the control objective of adaptive weights shifting from the yaw rate to
the sideslip angle, as shown in Figure 7c,d. MPC maintains a stable deviation from the
maximum reference value throughout the process because it sets both the stability and
maneuverability weights to high values. As a result, it needs to consider both the yaw rate
and the sideslip angle during tracking, which prevents accurate tracking of the desired
yaw rate.

Figure 7b represents the sideslip angle curve. Without any control strategy imple-
mented, the sideslip angle diverges, leading to vehicle instability. As shown in Table 3,
the maximum centroid lateral angle (absolute value) of AMPC is 0.8668 deg, while that
of MPC is 1.712 deg, demonstrating the superior control performance of AMPC. This
is primarily because AMPC can adjust the tracking weight coefficients based on vehicle
stability indicators, as shown in Figure 7c,d. Between 2.45 and 2.9 s, the vehicle enters a
coordination zone where the weight coefficients are slightly increased and decreased, which
does not significantly affect the vehicle’s maneuverability. However, during the intervals
of 1.2–1.8 s, 3.2–4.3 s, and 4.8–5.6 s, the stability indices exceed 1, entering an unstable
zone. At these times, the stability weight rapidly increases and the maneuverability weight
significantly decreases, thereby constraining the centroid lateral angle within a smaller
range, as illustrated in Figure 7d. MPC also constrains the sideslip angle effectively, but not
as well as AMPC. This is primarily because MPC sets both the stability and maneuverability
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weights relatively high, and under conditions of vehicle instability, constraining the yaw
rate suppresses the control over the sideslip angle.

Figure 7. The simulation results of low adhesion double lane. (a) Yaw rate; (b) Sideslip angle;
(c) Vehicle stability indicators; (d) Adaptive weight adjustment; (e) Additional yaw moment; (f) β − β̇

phase plane.

Table 3. Low adhesion double lane change simulation test.

Indicators Controller Max Avg RMSE

Yaw rate error (deg/s) AMPC 2.9564 0.2435 0.4823
MPC 4.27 0.3832 0.7644

Sideslip angle error (deg) AMPC 0.8668 0.1545 0.2896
MPC 1.712 0.3472 0.6484

Figure 7c represents the vehicle stability index. Between 2.45 and 2.9 s, the stability
index ranges from 0.3 to 1, indicating the vehicle is in a critical state. However, between
1.2 and 1.8 s, 3.2 and 4.3 s, and 4.8 and 5.6 s, the stability index exceeds 1, indicating the
vehicle is in an unstable state.

Figure 7d represents the weight adaptation curve, which adjusts the control weights
of the sideslip angle and yaw rate in real time based on the vehicle stability index (shown
in Figure 7c.

Figure 7e represents the additional yaw torque. AMPC reaches a peak yaw torque of
1819.4 N·m, while MPC’s peak is 2005.7 N·m. This indicates that implementing a weight
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adaptation strategy effectively reduces the demand for additional yaw torque during
vehicle state tracking.

Figure 7f is the β − β̇ phase plane. Without any control strategy implemented, it
diverges progressively from the equilibrium point. Both AMPC and MPC converge to the
equilibrium point. In comparison to MPC, the sideslip angle state in AMPC is constrained
to a smaller range, indicating its higher stability.

4.1.2. Medium Adhesion Double Lane Change

To verify the effectiveness of the adaptive weight adjustment scheme under the
medium adhesion condition, the road surface was set to low adhesion (µ = 0.6), with the
vehicle speed maintained at a constant vx = 80 km/h. The controller parameters are set as
shown in Table 2 above.

The medium adhesion double lane change simulation results are shown in Figure 8.
Figure 8a,b show the tracking curves of the yaw rate and the sideslip angle. As seen from
Table 4, AMPC performs better than MPC in tracking the target values. This is because
AMPC employs an adaptive weight adjustment strategy, as shown in Figure 8c. When the
vehicle state tends to be stable, the primary tracking target is the yaw rate. However, during
3.7–3.9 s, as the vehicle state transitions to instability, the control target shifts from the yaw
rate to the sideslip angle. Figure 8e illustrates the additional yaw moments generated by
AMPC and MPC, with AMPC peaking at 521 N·m and MPC peaking at 637 N·m. This
indicates that the adaptive weight adjustment scheme can effectively reduce the demand
for additional yaw moments during vehicle state tracking.

Figure 8. The simulation results of medium adhesion double lane. (a) Yaw rate; (b) Sideslip angle;
(c) Vehicle stability indicators; (d) Adaptive weight adjustment; (e) Additional yaw moment; (f) β − β̇

phase plane.
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Table 4. Low adhesion double lane change simulation test.

Indicators Controller Max Avg RMSE

Yaw rate error (deg/s) AMPC 2.81 0.27 0.49
MPC 3.28 0.38 0.68

Sideslip angle error (deg) AMPC 0.58 0.05 0.11
MPC 0.71 0.06 0.18

4.2. Fishhook Condition
4.2.1. Low Adhesion Fishhook Condition

To verify the stability under extreme conditions, this section conducts simulation
experiments using the fishhook condition. The road surface is set to low adhesion (µ = 0.3),
and the vehicle speed is set to constant speed vx = 100 km/h. For comparative purposes,
simulations are conducted based on the MPC controller with three sets of control parameter
settings, as shown in Table 2 above.

As shown in Figure 9, this is the steering wheel angle input for the fishhook condition.

Figure 9. Steering wheel angle.

The simulation results for the low adhesion fishhook condition are shown in Figure 10.
Figure 10a represents the yaw rate variation curve. Without any control strategy imple-
mented, the yaw rate diverges, leading to vehicle instability. Both AMPC and MPC track
the yaw rate relatively well. Between 4 and 7.8 s, AMPC shows a significant deviation
from the reference value due to decreased vehicle stability. This occurs because the vehicle
becomes unstable during this period; consequently, the control objective of the weight-
adaptive method gradually transitions from the yaw rate to the sideslip angle, as shown
in Figure 10c,d. MPC shows a significant deviation from the reference value due to the
gradual increase in the sideslip angle, which places the vehicle in a critical state of instability
and prevents it from effectively tracking the yaw rate.

Figure 10b represents the sideslip angle curve. Without any control strategy imple-
mented, the sideslip angle diverges, leading to vehicle instability. As shown in Table 5,
the maximum sideslip angle (absolute value) of AMPC is 0.97 deg, while that of MPC is
1.74 deg, demonstrating the superior control performance of AMPC. This is because, during
4.5–7.5 s, the main control objective of AMPC is the sideslip angle, whereas MPC always
has two control objectives when facing instability, and controlling the yaw rate suppresses
the sideslip angle.

Figure 10c represents the vehicle stability index. Between 4 and 4.5 s and 7.5 and
7.8 s, the stability index ranges from 0.3 to 1, indicating the vehicle is in a critical state.
However, between 1.2 and 1.8 s, the stability index exceeds 1, indicating the vehicle is in an
unstable state.

Figure 10d represents the weight adaptation curve, which adjusts the control weights
of the sideslip angle and yaw rate in real time based on the vehicle stability index (shown
in Figure 10c.
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Figure 10e represents the additional yaw torque. AMPC reaches a peak yaw torque
of 1548 N·m, while MPC’s peak is 1698 N·m. Moreover, within 4.2–7.8 s, the additional
yaw torque generated by AMPC is significantly less than that produced by MPC. This
indicates that implementing a weight adaptation strategy effectively reduces the demand
for additional yaw torque during vehicle state tracking.

Figure 10f is the β − β̇ phase plane. Without any control strategy implemented, it
diverges progressively from the equilibrium point. Both AMPC and MPC converge to the
equilibrium point. In comparison to MPC, the sideslip angle state in AMPC is constrained
to a smaller range. This indicates that, under the specified operating conditions, using
an MPC adaptive weighting method ensures a quick restoration of the vehicle from an
unstable state to a stable state.

Figure 10. Simulation results for the low adhesion fishhook maneuver. (a) Yaw rate; (b) Sideslip
angle; (c) Vehicle stability indicators; (d) Adaptive weight adjustment; (e) Additional yaw moment;
(f) β − β̇ phase plane.

Table 5. Low adhesion double lane change simulation test.

Indicators Controller Max Avg RMSE

Yaw rate error (deg/s) AMPC 1.76 0.22 0.4
MPC 1.76 0.24 0.41

Sideslip angle error (deg) AMPC 0.97 0.25 0.42
MPC 1.74 0.48 0.85
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4.2.2. High Adhesion Fishhook Condition

To verify the handling stability under high adhesion conditions, a simulation experi-
ment was conducted based on the high adhesion fishhook condition. The road surface was
set to a high adhesion coefficient (µ = 0.85), and the vehicle speed was set to a constant
vx = 100 km/h. The controller parameters are set as shown in Table 2 above, and the
steering wheel angle settings are shown in Figure 11.

Figure 11. The simulation results of medium adhesion double lane. (a) Yaw rate; (b) Sideslip angle;
(c) Vehicle stability indicators; (d) Adaptive weight adjustment; (e) Additional yaw moment; (f) β − β̇

phase plane.

The simulation results for the high adhesion fishhook condition are shown in Figure 11.
Figure 11a,b show the tracking curves of the yaw rate and the sideslip angle. As seen from
Table 6, AMPC performs better than MPC in tracking the target values. This is because
AMPC employs an adaptive weight adjustment strategy, as shown in Figure 11c. Under
high adhesion conditions, the vehicle state is stable, and only the target yaw rate is tracked.
In contrast, MPC tracks both the target yaw rate and sideslip angle simultaneously, which
can suppress maneuverability. Figure 11e illustrates the additional yaw moments generated
by AMPC and MPC, with AMPC peaking at 729 N and MPC peaking at 857 N. This
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indicates that the adaptive weight adjustment scheme can effectively reduce the demand
for additional yaw moments during vehicle state tracking.

Table 6. Low adhesion double lane change simulation test.

Indicators Controller Max Avg RMSE

Yaw rate error (deg/s) AMPC 1.38 0.15 0.3
MPC 1.85 0.17 0.36

Sideslip angle error (deg) AMPC 0.19 0.04 0.06
MPC 0.20 0.06 0.09

5. Conclusions

This paper proposes a control strategy based on AMPC to coordinate maneuverability
and lateral stability, enhancing vehicle handling stability under various conditions. In
establishing the β − β̇ phase plane stability boundary, we introduced the yaw rate and
maneuverability limits to redefine the stability region. Based on this stability boundary,
we dynamically quantified the variable weight factors in real time, thereby constructing
the target weight adaptive AMPC strategy. This strategy can adjust the control weights
for maneuverability and lateral stability in real time based on the vehicle state, thereby
improving the overall handling stability. Simulation results show that, compared to the
traditional MPC strategy, under low adhesion double lane change and low adhesion fish-
hook conditions, the proposed AMPC strategy significantly enhances lateral stability while
maintaining maneuverability , and effectively reduces the additional yaw moment. Under
the medium adhesion double lane change and high adhesion fishhook conditions, this
strategy not only improves maneuverability but also significantly reduces the additional
yaw moment requirements.

However, this control strategy has not yet considered longitudinal stability control.
Future work will focus on the study of longitudinal stability control, validation on actual
vehicles, and improving the robustness of the strategy against parameter uncertainties and
external disturbances.
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