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Abstract: Movement sonification has emerged as a promising approach for rehabilitation and motion
control. Despite significant advancements in sensor technologies, challenges remain in developing
cost-effective, user-friendly, and reliable systems for gait detection and sonification. This study
introduces a novel wearable personalised sonification and biofeedback device to enhance movement
awareness for individuals with irregular gait and posture. Through the integration of inertial
measurement units (IMUs), MATLAB, and sophisticated audio feedback mechanisms, the device
offers real-time, intuitive cues to facilitate gait correction and improve functional mobility. Utilising
a single wearable sensor attached to the L4 vertebrae, the system captures kinematic parameters
to generate auditory feedback through discrete and continuous tones corresponding to heel strike
events and sagittal plane rotations. A preliminary test that involved 20 participants under various
audio feedback conditions was conducted to assess the system’s accuracy, reliability, and user
synchronisation. The results indicate a promising improvement in movement awareness facilitated
by auditory cues. This suggests a potential for enhancing gait and balance, particularly beneficial
for individuals with compromised gait or those undergoing a rehabilitation process. This paper
details the development process, experimental setup, and initial findings, discussing the integration
challenges and future research directions. It also presents a novel approach to providing real-
time feedback to participants about their balance, potentially enabling them to make immediate
adjustments to their posture and movement. Future research should evaluate this method in varied
real-world settings and populations, including the elderly and individuals with Parkinson’s disease.

Keywords: sonification; gait analysis; real-time biofeedback; movement control

1. Introduction
1.1. Sonification in Gait and Posture

Movement sonification, the process of translating movement data into auditory feed-
back, has seen significant advancements with the development of various sensor tech-
nologies. These advancements have facilitated many researchers to explore using music
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and sonification as auditory feedback to improve motor control and functional mobility
in individuals with various conditions, including Parkinson’s disease (PD), gait disorders,
and the consequences of neurological impairments due to illness. For example, many
studies [1–5] have reported the capacity to use music as an external auditory cue that can
help PD and post-stroke patients improve their movement control. Kantan, et al. [3] used
inexpensive wireless and wearable inertial sensors to capture kinematic parameters. These
parameters were then fed into software built with open-source tools to create music as sonic
representation or audible sounds. Feedback to users provided via musical sonification
through simple audio manipulations (e.g., pitch, volume, tone, brightness, and rhythm) has
demonstrated promising results in enhancing motor learning and rehabilitation outcomes
in patients with PD and stroke [1–3].

Raglio, et al. [4] used two inertial measurement units (IMUs) attached to each ankle
of the participants to monitor heel–ground contacts during exercises. A custom MATLAB
software was developed to record the heel–ground contacts and to analyse IMU-derived
angles, display real-time cadence, and activate pre-recorded musical stimuli through
headphones. The music-based training, which involved sonification linked to movement,
was found to improve balance in patients with PD. The authors suggested that musical
stimuli enhanced the predictability and regularity of movement, assisting patients to control
and organise these movements.

Moreover, previous studies [1,2,4,6] have customised various musical elements into
real-time auditory feedback. These approaches introduced complexity that was unhelpful
for users or practitioners unfamiliar with the technologies used to create such feedback
for rehabilitation outcomes. Musical sonification consists of modifying the playback of
preselected music in real-time according to desired movement parameters [1,2,7–9]. The
approach assumes a one-size-fits-all musical preference and cognitive processing capabil-
ities. However, individual differences in musical taste and the mental load involved in
processing complex musical arrangements could affect engagement and the efficacy of the
intervention [10–13]. Simplifying the composition of the cues without compromising on
customisation capabilities could be an area of improvement.

Besides individual musical preferences, the complexity of musical sonification poses
challenges. For instance, users may need to understand the hidden relation between their
actions and the resulting musical output, which could be more cognitively demanding. This
complexity can be linked to understanding musical concepts such as rhythm, tonality, or
pitch height, where a higher position on the musical scale corresponds to a higher or brighter
pitch and vice versa [13,14]. Similarly, users must understand how their movements
translate into different musical outputs, especially in the form of sonification [7,11,15].

The integration of non-musical auditory feedback in motor learning has been gaining
the attention of an increasing number of sports scientists, neurorehabilitation researchers,
research psychologists, and engineers due to its potential to enhance motor perception,
control, and learning [4,7,16]. The use of non-musical sounds in movement training and
rehabilitation requires further exploration and application of non-musical, natural sounds
to enhance motor behaviour [7,9,17]. Natural sound involves focusing on those auditory
cues inherently produced by the act of movement or walking. These can include the sound
of footsteps, the rhythm, and the intensity of the sound, which can provide feedback on
pace and heel–ground surface interaction. Such sounds offer real-time, intuitive feedback
to help individuals adjust their gait for improved balance and coordination. Furthermore,
Reh, et al. [14] and other researchers [18,19] have suggested that individuals can more
effectively identify and associate with sound patterns produced by their movements than
by others’ actions or artificial sound conditions.

The study by Linnhoff, et al. [20] explored the use of non-musical sound. Specifically,
they used sinusoidal continuous tones to convey information on knee movement during
gait, focusing on different phases of the walking cycle. Their approach involved mapping
the knee angle to both the frequency and gain or volume of a continuous sine tone, creating
auditory feedback that reflects the movement dynamics of the knee. Participants who
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participated in the gait analysis reported that the lower-pitched, sinusoidal continuous
tones were pleasant and informative in guiding them for gait correction and training.

Recently, Feltham, et al. [21] developed a sonification system that combined continuous
and discrete auditory tones to reflect changes in the person’s movements, specifically
focusing on rotational deviations within the sagittal plane. A MATLAB (R2022b) code
was developed to detect movement and integrate with a Max (version 8) software for
sonification. The continuous auditory feedback consisted of tones that varied in ‘brightness’
or pitch based on the person’s rotation relative to a pre-defined reference region. As the
person moved further from the reference point, tones brightened, signalling increased
displacement from this reference point. Conversely, the tones dulled with movement
around the reference region, providing an intuitive cue indicating reduced displacement.
They also incorporated a discrete bell tone, which served as an alert mechanism when
the individual moved outside the reference region. The continuous and discrete tones
provided clear, straightforward feedback without the complexity of musical structures and
motifs that may be distracting. Thus, future research and development efforts should focus
on creating adaptable, user-friendly systems that can be customised to individual needs,
thereby maximising therapeutic outcomes in gait and posture rehabilitation.

1.2. Sensor Technologies and Techniques for Motion Detection and Sonification

Numerous wearable devices are capable of detecting and tracking the dynamic motion
in human limbs [11,22,23]. However, we have narrowed our scope to review relevant
techniques and sensors that specifically address gait event detection and provide auditory
feedback through movement sonification (Table 1).

Table 1. Various sensor technologies and approaches used in movement detection and sonification in
previous studies.

Technique Sensors Motion Detection
and Sonification Advantages and/or Disadvantages

Analog system
[24]

Analog gyroscope
and accelerometers Oqus camera system

• High resolution with
oversampling, detailed
motion analysis

• Wired setup, limited mobility,
complex data processing

Ground reaction force
[16] AccuGait force-plate Qualisys Oqus-3 cameras

• High accuracy in ground-reaction
force measurement

• Complex setup, high cost, requires
dedicated laboratory space

IMUs
Feltham, et al. [21]

A single IMU (integrated
3-axis gyroscope, 3-axis
accelerometer, and
3-axis magnetometer)

MATLAB code

• IMU sensor communicates
wirelessly and provides real-time
audio feedback

• Simple setup, just used to detect
balance control

Linnhoff, et al. [20]

Four IMU sensors
(integrated triaxial
accelerometer, triaxial
gyroscope, magnetometer,
and microcontroller)

Python code

• Real-time acoustic feedback,
validated by Vicon Motion
capture, detailed knee
angle measurement

• Complex setup requiring rigid
boxes for attachments, potential
for data drift

Raglio, et al. [4]
Two IMU sensors
(integrated accelerometers
and gyroscopes)

MATLAB code

• Non-restricting, lightweight,
wireless devices that can be worn
on the body

• Pre-recorded musical stimulus,
false positive and false
negative feedback
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Table 1. Cont.

Technique Sensors Motion Detection
and Sonification Advantages and/or Disadvantages

Reh, et al. [25] System of seven wireless
inertial sensors MATLAB code

• Acoustic real-time feedback,
detailed temporal gait
parameters measurements

• Complex setup, dependent on
software and hardware
integration, steep learning curve
for users

Teufl, et al. [26]
Seven IMU sensors
(integrated gyroscopes
and accelerometers)

Optical cameras

• Joint kinematics were validated by
OptiTrack Prime cameras

• Complex setup, no
sonification feedback

Many of the reviewed studies have used sampling rates between 100 Hz [20] and
1000 Hz [16], and those with high sampling rates faced challenges in real-time applications.
Previous studies [20,25,26] have utilised advanced IMU systems, which managed to capture
detailed biomechanical and kinematics data. For example, Linnhoff, et al. [20] developed a
Python code to sonify the collected sine continuous waveforms, Reh, et al. [25] developed a
MATLAB algorithm to detect gait events, and Teufl, et al. [26] used retroreflective markers
with optical cameras to capture accurate joint kinematics. Their approaches required
complex and costly setups that depended on sophisticated equipment and dedicated
laboratory space.

It is important to note that this is not an exhaustive list, and many other methods and
technologies not covered here may also contribute valuable insights and advancements in
this field. However, these studies reveal challenges for the practical application of move-
ment sonification technologies, including the need for simplified, cost-effective solutions
suitable for diverse environmental conditions and user groups.

1.3. Real-Time Biofeedback and Personalised Cueing

As described in the study by Raglio, et al. [4], sonification can be customised to suit each
patient’s individual needs and preferences. This includes adjusting the sound parameters
(e.g., pitch, volume, or rhythm), mapping, and feedback to best align with the rehabilitation
goals and the patient’s capabilities. The customisation was also agreed upon by Reh et al. [7]
and Reh, et al. [14], who stated that a deep connection exists between an individual’s motor
actions and the auditory feedback those actions can generate. Wall, et al. [15] also suggested
personalising sonification to an individual’s physiological condition rather than a one-size-
fits-all approach. For example, Raglio, et al. [4] used pre-recorded musical stimuli that
were subsequently produced in real-time in relation to the heel–ground contact position of a
patient. Tailoring the musical pattern to align more closely with individual patient preferences
increases the perceived value and effectiveness of sonification-based rehabilitation. However,
ensuring instantaneous and accurate feedback remains challenging, requiring sophisticated
software to interpret physical movements into meaningful auditory cues.

IMU-based real-time biofeedback systems, such as the “sofigait” prototype by Linnhoff,
et al. [20], synchronise acoustic feedback with the user’s knee-angle motion, thus providing
immediate cues for gait correction and enhancement. Despite promising results, their
system showed discrepancies in measurement accuracy compared to gold-standard opto-
electronic camera-based systems. Hence, moving forward requires researchers to improve
their sensor technology and algorithm development to minimise errors and optimise the
real-time processing of kinematic data.

Building on the foundational work of Rodger et al. [16,27] in balance and posture,
Feltham, et al. [21] developed an auditory feedback system through an IMU sensor that
was attached to the participant. The sensor was used to capture real-time movements.
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It triggered either a discrete bell tone to indicate significant deviations from the balance
threshold or modulated the pitch of a continuous tone for minor adjustments. By setting
thresholds that reflect individual balance capabilities and providing feedback tailored to
these parameters, the study leveraged the ability of participants to respond more effectively
to sounds generated by their movements. Integrating personalised auditory cueing and
real-time biofeedback has offered an intuitive means for participants to recognise and
correct their balance in real-time.

Despite the promising outcomes of using complex and continuous audio (bio-) feedback
to enhance the sense of control and awareness over one’s movements [8,28], several challenges
exist, including the need for more robust and reliable biofeedback solutions. In order to address
the limitations of previous technologies, e.g., system synchronisation and offer personalised
feedback cues based on their movements, this study aimed to develop a more accurate and
reliable algorithm for gait event detection using single wearable sensing technology.

2. Materials and Methods
2.1. Design Considerations and Development

The system was developed using a single IMU sensor held in place by a wearable
garment (see Figure 1). The garment was attached at the waist like a belt, with the sensor
placed in a small pocket, positioning the sensor at the user’s back (L4 vertebrae). The
IMU sensor adopted in this study was the WT901BLE from WitMotion (Shenzhen Co.,
Ltd., Shenzhen, China). It is a lightweight (50 g) IMU sensor equipped with a 3-axis XYZ
configuration for measuring Pitch, Roll, and Yaw tile angles. The sensor was configured to
transmit data at 100 Hz. It also includes features for acceleration, gyroscopic motion, and
magnetic field assessment.
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Figure 1. A wearable system features a single IMU sensor secured in a small pocket of a belt-like
garment positioned at the user’s back. MATLAB was used to process the incoming data from the IMU
and transmitted the extracted samples for queries on the read path to Max MSP, which then produced
auditory cues in the form of real-time feedback to users. For a more personalised experience, users
may opt for either a headset or a speaker depending on their preferences and circumstance.

2.2. Software and Processing Unit

The sensor was connected to a laptop via a USB-C cable to yield a stable and high data
transmission rate. MATLAB (R2022b) was used as a data ingestor to read and record the
sensor’s angular data. MATLAB also processed real-time data to detect participants’ heel
strikes. The features extracted from the raw data were then transmitted to Max MSP, an
audio processing software, to synthesise sonification signals by ©Cycling’74. MATLAB
and Max MSP (version 8) were connected locally via TCP/IP and the open sound control
communication (OSC) protocols (Figure 2). MATLAB conveyed processed sensor data to
Max MSP during program execution, to generate the corresponding discrete tone when
a heel strike was detected. Depending on the test condition, MATLAB also sent angle
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rotation information of the sagittal plane to Max MSP, to generate the continuous audio
signal (Figure 3).
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2.3. Personalised Cueing and Audio Feedback

Comprehensive information about the design and configuration of the auditory feed-
back system, including the interactions among the IMU sensor, MATLAB, and Max MSP,
has been published previously [21,29].

The IMU sensor that was positioned on the lower back (e.g., L4 vertebrae) was used to
measure rotation movements on the sagittal plane. MATLAB was employed to calculate
threshold values specific to each user, used for detecting heel strikes. The detection process
involves analysing the relationship between these rotational movements and the subsequent
increase or decrease in the centre frequency of noise generation (Figure 4). For this study,
discrete and continuous tones were generated within the Max MSP software environment.
The discrete tone, synthesised as a frequency modulation (FM) bass tone, was triggered
when MATLAB identified a heel strike, subsequently initiating the audio output.
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on the L4 vertebrae, and its subsequent increase or decrease in the centre frequency of the noise
generation. The rotation increase raised the pitch, and the decrease lowered the pitch of the white
noise or wind-like auditory feedback.

The continuous tone was generated by Max MSP. This was achieved when MATLAB
sent the rotation angle on the sagittal plane to proportionally adjust a bandpass filter’s
frequency, amplitude, and resonance over a white noise generator. This method of filtering
white noise created a wind-like sound based on the swing phase of the participants’ gait
cycle. The bass and wind-like sound were amplified through either speakers or head-
phones to provide real-time feedback to participants. The auditory feedback approach was
designed with flexibility in accommodating different user preferences and circumstances.

2.4. Sample Size

The sample size was determined based on theoretical guidelines and practical con-
straints. Guest, et al. [30] suggested data saturation occurs after 12–15 participants, while
Crouch, et al. [31] recommended 20 homogeneous participants for sufficient data saturation
and accounting for outliers. Given these guidelines, along with our limited timeframe,
limited funding available (which restricted our ability to support a larger participant pool),
and the workload and availability of the investigators involved in managing this study,
we determined that a sample size of 20 participants was appropriate and sufficient for the
objectives of this study.

2.5. Experimental Setup and Data Processing

The experiment in this study involved 20 participants and was conducted in the
Biomechanics Laboratory of RMIT University. This study was conducted according to
the guidelines in the Australian National Statement on ethical conduct in human research
and the Australian Code for the Responsible Conduct of Research. It had ethical approval
from the College Human Ethics Advisory Network committee. All participants signed an
informed consent form prior to participating in the experiments. The experiment involved
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participants performing a gait analysis with the wearable system positioned at their lower
back and walking comfortably on a treadmill (Figure 5).
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Recognising the importance of gait adaptation to walking pace, we ensured that each
participant spent a minute or two walking on the treadmill with a comfortable pace, to
ensure that participants reached a natural and stable gait. During this time, participants
could adjust to their movement and gait in order to establish a consistent walking rhythm.

Once participants had familiarised themselves with the treadmill environment, the
actual data collection began. Participants were asked walked at two different speeds,
i.e., 2 km/h and 3.9 km/h, with three audio configurations. Sonification feedback was
provided through speakers located on either side of the treadmill. In the first configuration,
participants walked without any audio being generated. This test was conducted to
establish and record a baseline. During the no-audio test conducted, threshold values were
calculated in the MATLAB program; it was found that this value was unique for each
participant.

The second configuration gave participants discrete audio tones generated when a
heel strike was detected. The detection process involved sampling the rotation angles on
the sagittal plane to identify turning points in the time series data such that

x = (a[n − 1]− a[n − 2])× (a[n − 2]− a[n − 3]),

where a[n] represents the n-th sample of the rotation angle on the sagittal plane, and x is an
indicator that will return a negative value when a turning point is located at a[n − 2] and
vice versa. The following expression was further used to determine the trend across the n
− 1-th and n − 2-th samples, such that

y = (a[n − 1]− a[n − 2]).

Here, y returns negative values for a decreasing trend and vice versa. Combining x and
y allows one to identify a positive local peak from a negative one in time-series data without
performing differentiations. A positive value of xy indicated a positive peak at a[n − 2] and
vice versa. A threshold was established to reject local peaks with magnitudes too close to
their adjacent peaks, which ensures that only significant peaks are considered, enhancing
the accuracy of heel strike detection. The threshold was derived from the no-audio test.

The third configuration provided participants with continuous audio feedback. Pro-
cessed sensor data were streamed to Max MSP to vary the bandpass filter parameters. As
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mentioned above, the combination of the signal generator and the bandpass filter created a
continuous wind-like sound based on participants’ movements.

Each audio condition was tested three times for 15 s each at both speeds, resulting in
18 data sets for each participant.

2.6. Data Analysis

After the walking experiment, participants were asked to provide subjective feedback
on their experience during the movement activities and how the sonification feedback
influenced their movement. The t-test or the Wilcoxon signed-rank test was employed for
statistical analysis, based on whether the data followed a normal distribution. A p-value
of less than 0.05 was deemed statistically significant within a 95% confidence interval. A
thematic analysis was performed on the qualitative data, where the interview transcripts
were examined to determine meaningful themes and patterns.

3. Results

The results presented in this section were collected from 20 participants (12 male and
8 female, mean age = 35.5 ± 10.2) in the experiment. All participants self-reported as
healthy and did not undergo any major lower limb surgeries in the three months prior to
taking part in the experiment.

3.1. Evaluation of the System

The system provided audio cues to guide participants to have a more symmetrical
swing while the centre of gravity (CoG) oscillated between the legs. When a participant
leaned to one side for any reason, they would not receive audio cues for both heel strikes.
However, when a participant demonstrated a more symmetrical swing of the CoG, oscillat-
ing evenly between their legs and contacting the ground, they would receive audio cues
for both heel strikes (Figure 6).
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Figure 6. Visual representation of a heel strike event. The figure highlights the symmetrical swing of
the CoG oscillating between legs contacting the ground (blue circular symbols), which triggers the
generation of audio cues.

We evaluated the effectiveness of the proposed auditory feedback system in assisting
participants in achieving a more symmetrical swing of their CoG while walking. The
system provided audio cues at the maximum and minimum points of the swing waveform,
aligning closely with the participant’s heel strikes. If participants leaned to one side due to
dominant leg usage or health issues, they may have missed some audio cues, prompting
them to adjust their posture for balanced walking.
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The improvement in participants’ walking posture was assessed by analysing the
changes in the leg swing waveform over time (Figure 7) (for a detailed representation of
individual participant data, please refer to Table A1 in Appendix A). At the beginning of
this study, participants often received fewer audio cues due to an uneven CoG, showing a
bias towards the left or right leg. As participants adjusted their posture in response to the
feedback, the frequency of received cues increased, indicating a more balanced CoG.
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Figure 7. Graphical representation of a participant’s balance improvement over time. The graph
initially shows significant off-balance movements, as indicated by the waveform where the participant
leans to one side. Towards the end, the graph demonstrates the participant’s improved adjustment of
their CoG, with less swing to either side, indicating the effectiveness of regular audio cues.

Initially, the waveform showed a significant bias, correlating with the missed audio
cues. By the end of this study, the waveform average shifted towards the centre, demonstrat-
ing that participants had achieved a more balanced CoG and were consistently receiving
cues for both heel strikes. To quantify this improvement, we compared the mean of the
swing waveform for the baseline (silent walk) with the auditory cues (Figure 8). For the
mean angle of rotation on the sagittal plane of individual participant data, please refer to
Table A2 in Appendix A.
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This change highlights the system’s effectiveness in enhancing participants’ awareness
of their walking posture through sonification. Participants could adjust their CoG without
explicit instructions about the audio cues’ meaning, showcasing the feedback mechanism’s
intuitive nature.

3.2. User Feedback on the Awareness of Movement Due to Sonification

The research presented in this section aimed to determine whether the proposed
sonification feedback system made participants more aware of their movements and to
identify where in the body this awareness occurred. The mean, standard deviation, and
distribution for each Likert-scale question related to the bass and wind-like audio cues are
shown in Figure 9. This visual comparison highlights the overall similarity in response
patterns between the two questions.
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Figure 9. The distributions of responses of the two Likert-scale (on a scale from 1 (very unaware) to
5 (very aware)) survey questions about bass and wind-like audio cues.

The responses to the Likert-scale questions did not follow a normal distribution,
so a Wilcoxon signed-rank test was used to compare the responses and assess whether
there were significant differences in the participants’ answers. The Wilcoxon signed-rank
test showed no statistically significant difference between the bass and wind-like cues
(Z = −3.36, p = 0.37).

Some common themes from the participants’ responses are the following:

• Awareness of movements: Many participants (70%) reported increased awareness of
their movements, particularly at the beginning of their footstep cycle, which is often
linked to the heel strike and midfoot stance phases of their gait. About 50% of the
participants felt that the sonifications influenced their footstep timing and gait, making
them more conscious of their heel strikes and overall walking patterns.

• Initial confusion and adaptation: Some participants (60%) initially found the sound
confusing due to its lack of a fixed rhythm, which affected their engagement with the
system. However, 40% of the participants found themselves subconsciously adjusting
their steps to align with the audio cues.

• Personal sound preferences: Several participants (45%) indicated that personal sound
preferences might have influenced their experiences when processing the audio cues
and affected their engagement.

4. Discussion

The wearable sensor presented in this study, which uses IMU features with accelerom-
eters and gyroscopes, is seamlessly attached to the body and provides continuous gait
monitoring. This sensor is non-intrusive and can offer real-time feedback for users, who
synchronise their movements to a rhythmic auditory cue, as recommended [3,5]. The
biofeedback signal in our study is a sonified signal, where white noise is distorted based
on the readings from the sensor. The signal is then amplified through either speakers or
headphones to provide real-time feedback to participants. This auditory feedback helps
participants adjust their movements based on the detected rotational movements on the
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sagittal plane, as measured by the sensor on their lower back. Our proposed method
addressed the challenges faced with expensive and sophisticated equipment (Table 1) by
using a single low-cost sensor to achieve reasonable gait event detection, aiming to balance
affordability, ease of use, and data collection and sonification reliability. Our approach
aimed to provide a more accessible solution for gait analysis and movement sonification,
paving the way for broader applications in clinical and everyday usage settings.

4.1. System Integration

Integrating sensor data with an audio feedback system in gait analysis and rehabilitation
presents several technical and user-experience challenges that must be addressed to ensure
effectiveness and reliability. Initially, we planned to use Bluetooth on the IMU to transmit
data wirelessly. However, we encountered connectivity issues, with the signal frequently
interrupted. This inconsistency in data transmission presented a risk of losing kinematic
data, which could negatively impact the effectiveness of the audio feedback. To resolve these
dropping-off issues, we switched to a cable connection, which provided a stable and reliable
data transmission pathway, ensuring no data were lost during the experiments.

4.2. Algorithmic Approach for Sonification

Developing algorithms for heel strike detection and sagittal plane rotation is a critical
component of our audio feedback system for gait analysis. These algorithms have been
evaluated based on detection accuracy, responsiveness, computational efficiency, and
adaptiveness to rapid movement changes. The algorithms were designed to process real-
time data inputs and provide immediate auditory feedback. They demonstrated high
accuracy in detecting heel strikes and capturing sagittal plane rotation during the pilot
test and subsequent experiments with 20 participants. This real-time capability and the
accurate identification of heel strikes, in particular, ensure that the feedback is synchronised
with the user’s step cycle and can enhance the user’s awareness of their gait.

4.3. Evaluation of the System and User Engagement

Two synthesis strategies were developed to provide participants with immediate
auditory feedback based on real-time positing of the heel striking the ground. It was
reported that the type of sound and its presentation significantly influence its effectiveness.
The initial confusion reported by participants in the current study emphasises the need for
carefully designed auditory cues that match the natural rhythm of walking.

Reflecting on the participants’ feedback, it appears that the awareness and usefulness
of the auditory feedback varied among individuals. Some participants found the auditory
cues helpful in increasing their awareness of their movements, particularly at the begin-
ning of their footstep cycle. However, others found the sound confusing or distracting,
particularly when it did not align with their pace or rhythm of walking. Such observations
indicated that personal expectations and preferences can influence the user’s engagement
with the system and its perceived effectiveness.

Our findings contribute to the understanding that sonified signals, in the form of non-
musical sounds, can influence movement in a healthy population. The analysis showed that
participants who received sonified feedback exhibited better gait stability and coordination,
i.e., achieving a more symmetrical swing of their CoG than those without any auditory
cue. This aligns with Effenberg, et al. [7], who demonstrated that movement sonification
supports motor control by providing additional real-time auditory feedback that integrates
with proprioceptive feedback.

Overall, the feedback highlights both the potential and the limitations of using sonifi-
cation for movement awareness. While the irregular rhythm posed an initial challenge, the
sound ultimately increased participants’ awareness of their movements. These findings
suggested that with adjustments to the rhythmic consistency of the auditory feedback,
sonification can offer a valuable tool for enhancing movement awareness and improving
gait patterns, which concurs with previous studies [14,17,19,20].
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4.4. Limitations and Future Works

In the experiments, the algorithms occasionally failed to capture the kinematic events
accurately, especially with sudden accelerations or decelerations. This limitation was
particularly relevant when participants suddenly changed their walking speeds. The
inability to consistently track rapid movements can lead to delays or inaccuracies in the
auditory feedback generation, potentially confusing the users.

While the auditory feedback system showed potential in increasing movement aware-
ness for some participants, the personal sound preferences associated with processing audio
cues presented challenges that need to be addressed to enhance the system’s intuitiveness
and usefulness.

Our study presents a step forward in the development of an accurate and reliable
algorithm for gait event detection using single wearable sensing technology. However, we
acknowledge that the present solution may pose challenges when adapting to populations
with neurological conditions. These individuals may have auditory problems or difficulties
integrating sensory–motor responses in addition to cognitive disorders. As such, future
research should consider these potential challenges.

A future direction for this research is to explore the application of this method in
diverse and complex real-world environments, including outdoor settings and varied
terrains, to further validate its robustness and application in everyday use. Additionally,
expanding the study to include a wider population, such as elderly individuals and people
living with PD, will allow for investigating its potential for enhancing motor function
control and rehabilitation in broader contexts.

In addition to the audio feedback, integrating a vibratory stimulus, such as haptic
feedback, could potentially aid those with auditory difficulties and enhance the overall
effectiveness of the device for gait rehabilitation. This opportunity warrants exploration in
future studies.

Despite efforts to optimise the algorithms, the presence of signal noise from the IMU
sensors occasionally impacted the accuracy of the detections. The sensor placement and
individual variations in walking style were also found to introduce noise into the data,
indicating that there is still room for improvement to enhance the algorithm’s robustness.
Further research and development should focus on refining the algorithms to better ac-
commodate variability in gait patterns and improve robustness against noise and rapid
movement changes.

Future work should also aim to develop a smaller, more portable device with lower
processing requirements, such as utilising a low-cost single-board computer, like Raspberry
Pi, or packaging it into a mobile phone application. This approach could enhance the
practicality and accessibility of the system, making it easier for users to incorporate it into
their daily routines without needing a laptop or other bulky equipment.

5. Conclusions

This research introduces an innovative approach to enhancing movement awareness
through a wearable personalised sonification and biofeedback device. The wearable sensor,
which uses IMU features, is seamlessly attached to the body, providing real-time feedback
by synchronising users’ movements with a rhythmic auditory cue. The current study
addresses key challenges identified in existing movement sonification and gait analysis
technologies, such as high complexity, extensive setup requirements, integration challenges,
and significant costs. By using a single low-cost sensor for gait event detection, our pro-
posed method simplifies the setup. It reduces the overall cost, making the technology more
accessible and practical for wider applications, including movement awareness and reha-
bilitation. The primary advantage of the cue is its potential to provide immediate, intuitive
feedback without requiring complex equipment and with a relatively short learning phase.

However, to maximise its effectiveness, the rhythmic consistency of the auditory feed-
back needs improvement to align more closely with natural gait patterns. Nonetheless, the
system offers a significant advancement in rehabilitating individuals with irregular gait
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and posture by providing real-time auditory feedback based on kinematic data. The initial
findings demonstrate the device’s potential to improve functional mobility, indicating a
promising future research and development avenue. To fully realise its potential, future
research should focus on applying this method in diverse and complex real-world environ-
ments. This includes a wider population, such as elderly individuals and those living with
PD, and indoor and outdoor settings, to assess its robustness and application for daily use.
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Appendix A

Table A1. Participants’ data demonstrating the percentage of uneven swing of their centre of gravity
while walking under different auditory cue conditions.

Participant ID No Audio Discrete Continuous

1 30.93% 28.80% 33.60%

2 45.00% 45.60% 48.00%

3 39.93% 40.40% 47.67%

4 27.13% 17.33% 2.87%

5 49.33% 46.20% 51.60%

6 25.07% 35.40% 29.00%

7 21.80% 17.40% 18.87%

8 22.67% 16.53% 10.33%

9 22.00% 37.33% 32.40%

10 35.40% 37.60% 30.07%

11 13.40% 11.73% 18.27%

12 8.47% 13.93% 17.40%

13 46.00% 44.80% 49.00%

14 39.13% 38.13% 47.27%

15 35.60% 34.53% 38.73%

16 62.07% 48.47% 49.33%

17 37.27% 41.27% 34.73%

18 45.33% 46.67% 41.40%

19 41.20% 47.13% 40.27%

20 32.53% 31.47% 40.80%
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Table A2. The comparison of mean values of angle of rotation from the sagittal plane for the
20 participants walking in different auditory conditions.

Participant ID

Walking Speed

2 km/h 3.9 km/h

No Audio (◦) Discrete (◦) Continuous (◦) No Audio (◦) Discrete (◦) Continuous (◦)

1 0.71572 0.79182 0.80502 1.35652 1.1808 1.17453

2 2.16181 2.09157 2.34176 1.54489 1.65214 1.51026

3 3.34663 3.38363 3.4305 2.99839 3.26405 3.02818

4 −0.86546 −0.8696 −0.89281 −0.67104 −0.73644 −0.79188

5 −0.81115 −0.67619 −0.72091 −0.3834 −0.54749 −0.62744

6 −2.51562 −2.54313 −2.41103 −2.38821 −2.50841 −2.49048

7 −1.16815 −1.12697 −1.05428 −1.21995 −1.17348 −1.11223

8 −1.5885 −1.52865 −1.43568 −1.53717 −1.61223 −1.55882

9 −0.29455 −0.1816 −0.44196 −0.83046 −0.83082 −0.76341

10 −2.13539 −2.18334 −2.17401 −2.80198 −2.88276 −2.86627

11 −0.54938 −0.59242 −0.54363 −0.87196 −1.00595 −0.91564

12 −2.39685 −2.55208 −2.61632 −3.3719 −3.34896 −3.22874

13 −1.23542 −1.33203 −1.21123 −1.58142 −1.48197 −1.60164

14 −2.01704 −1.92003 −1.82618 −2.41333 −1.9952 −2.1423

15 −1.2268 −1.14859 −1.3043 −1.4874 −1.54337 −1.61742

16 −0.99331 −0.9177 −0.85362 −1.16707 −1.19621 −1.26316

17 0.08646 0.09898 0.03862 −0.08541 −0.03387 0.07757

18 −4.63385 −4.81796 −4.87633 −4.68477 −4.83437 −4.81773

19 −3.58613 −3.514 −3.54151 −3.77229 −3.95034 −3.83729

20 −4.12038 −4.28964 −4.20403 −4.39558 −4.42439 −4.22397
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