A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement
Abstract
:1. Introduction
2. Hybrid Metadetector Design
3. Entangled State Measurement
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwiat, P.G.; Mattle, K.; Weinfurter, H.; Zeilinger, A.; Sergienko, A.V.; Shih, Y.H. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 1995, 75, 4337–4341. [Google Scholar] [CrossRef] [PubMed]
- Kwiat, P.G.; Waks, E.; White, A.G.; Appelbaum, I.; Eberhard, P.H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 1999, 60, R773–R776. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Ma, X.; Cui, L.; Ou, Z.Y.; Yu, D. All-fiber source of frequency-entangled photon pairs. Phys. Rev. A 2009, 79, 033817. [Google Scholar] [CrossRef]
- Agnew, M.; Salvail, J.Z.; Leach, J.; Boyd, R.W. Generation of orbital angular momentum Bell states and their verification via accessible nonlinear witnesses. Phys. Rev. Lett. 2013, 111, 030402. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Zhang, W.; Tang, J.; Liu, Y.; Xia, Z.L.; Liu, Y.S.; Lu, Y.Q. Photonic entanglement based on nonlinear metamaterials. Laser Photonics Rev. 2020, 14, 1900146. [Google Scholar] [CrossRef]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Krenn, M.; Malik, M.; Erhard, M.; Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes. Philos. Trans. R. Soc. A 2017, 375, 20150442. [Google Scholar] [PubMed]
- Steinlechner, F.; Ecker, S.; Fink, M.; Liu, B.; Bavaresco, J.; Huber, M.; Scheidl, T.; Ursin, R. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 2017, 8, 15971. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Da Lio, B.; Bacco, D.; Oxenløwe, L.K. High-dimensional quantum communication: Benefits, progress, and future challenges. Adv. Quantum Technol. 2019, 2, 1900038. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef]
- Ming, Y.; Intaravanne, Y.; Ahmed, H.; Kenney, M.; Lu, Y.Q.; Chen, X. Creating composite vortex beams with a single geometric metasurface. Adv. Mater. 2022, 34, 2109714. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Leach, J.; Slussarenko, S.; Piccirillo, B.; Marrucci, L.; Chen, L.; She, W.; Franke-Arnold, S.; Padgett, M.J.; Santamato, E. Spin-orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A 2010, 82, 022115. [Google Scholar] [CrossRef]
- Tian, H.; Chin, M.L.; Najmaei, S.; Guo, Q.; Xia, F.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560. [Google Scholar] [CrossRef]
- Krasnok, A.; Lepeshov, S.; Alú, A. Nanophotonics with 2D transition metal dichalcogenides. Opt. Express 2018, 26, 15972–15994. [Google Scholar] [CrossRef] [PubMed]
- Taffelli, A.; Dirè, S.; Quaranta, A.; Pancheri, L. MoS2 based photodetectors: A review. Sensors 2021, 21, 2758. [Google Scholar] [CrossRef]
- Ye, M.; Zhang, D.; Yap, Y.K. Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics 2017, 6, 43. [Google Scholar] [CrossRef]
- Vargas-Bernal, R. Electrical properties of two-dimensional materials used in gas sensors. Sensors 2019, 19, 1295. [Google Scholar] [CrossRef]
- Mak, K.F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226. [Google Scholar] [CrossRef]
- Hu, F.; Fei, Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2019, 8, 1901003. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, G.; Ma, W.; Li, P.; Krasnok, A.; Hillenbrand, R.; Alù, A.; Qiu, C.W. Interface nano-optics with van der Waals polaritons. Nature 2021, 597, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dong, S.; Cao, G.; Hu, G. Exciton polaritons in mixed-dimensional transition metal dichalcogenides heterostructures. Opt. Lett. 2020, 45, 4140–4143. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Zhang, W.; Tang, J.; Yang, X.; Liu, Y.S.; Lu, Y.Q. Nonlinear wavy metasurfaces with topological defects for manipulating orbital angular momentum states. ACS Photonics 2021, 8, 1896–1902. [Google Scholar] [CrossRef]
- Ming, Y.; Liu, Y.; Chen, W.; Yan, Y.; Zhang, H. Tailoring nonlinear metamaterials for the controlling of spatial quantum entanglement. Nanomaterials 2022, 12, 4001. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.G.; Li, Z.; Wang, Y.; Zhu, H. Optimal verification of the Bell state and Greenberger–Horne–Zeilinger states in untrusted quantum networks. NPJ Quantum Inf. 2021, 7, 164. [Google Scholar] [CrossRef]
- Berkhout, G.C.G.; Lavery, M.P.J.; Courtial, J.; Beijersbergen, M.W.; Padgett, M.J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 2010, 105, 153601. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Chremmos, I.; Chen, Y.; Zhu, J.; Zhang, Y.; Yu, S. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett. 2018, 120, 193904. [Google Scholar] [CrossRef] [PubMed]
- Mirhosseini, M.; Malik, M.; Shi, Z.; Boyd, R.W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 2013, 4, 2781. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Huang, K.; Liu, H.; Qin, F.; Mehmood, M.Q.; Xu, Z.; Hong, M.; Zhang, D.; Teng, J.; Dannera, A.; et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale 2016, 8, 2227–2233. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Li, T.; Zhu, S. On-chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev. 2018, 12, 1700331. [Google Scholar] [CrossRef]
- Feng, F.; Si, G.; Min, C.; Yuan, X.; Somekh, M. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl. 2020, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Wang, X.; Li, C.; He, C.; Wang, Y.; Pan, A.; Maier, S.A. Orbital-angular-momentum-controlled hybrid nanowire circuit. Nano Lett. 2021, 21, 6220–6227. [Google Scholar] [CrossRef] [PubMed]
- Chervy, T.; Azzini, S.; Lorchat, E.; Wang, S.; Gorodetski, Y.; Hutchison, J.A.; Berciaud, S.; Ebbesen, T.W.; Genet, C. Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons. ACS Photonics 2018, 5, 1281–1287. [Google Scholar] [CrossRef]
- Sun, L.; Wang, C.Y.; Krasnok, A.; Choi, J.; Shi, J.; Gomez-Diaz, J.S.; Zepeda, A.; Gwo, S.; Shih, C.K.; Alù, A.; et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photonics 2019, 13, 180–184. [Google Scholar] [CrossRef]
- Hu, G.; Hong, X.; Wang, K.; Wu, J.; Xu, H.X.; Zhao, W.; Liu, W.; Zhang, S.; Garcia-Vidal, F.; Wang, B.; et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photonics 2019, 13, 467–472. [Google Scholar] [CrossRef]
- Lin, J.; Mueller, J.P.B.; Wang, Q.; Yuan, G.; Antoniou, N.; Yuan, X.C.; Capasso, F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013, 340, 331–334. [Google Scholar] [CrossRef]
- Ming, Y.; Chen, P.; Ji, W.; Wei, B.Y.; Lee, C.H.; Lin, T.H.; Hu, W.; Lu, Y.Q. Tailoring the photon spin via light–matter interaction in liquid-crystal-based twisting structures. NPJ Quantum Mater. 2021, 7, 164. [Google Scholar] [CrossRef]
- Alpeggiani, F.; Gong, S.H.; Kuipers, L. Dispersion and decay rate of exciton-polaritons and radiative modes in transition metal dichalcogenide monolayers. Phys. Rev. B 2018, 97, 205436. [Google Scholar]
- Khurgin, J.B. Two-dimensional exciton–polariton—Light guiding by transition metal dichalcogenide monolayers. Optica 2015, 2, 740–742. [Google Scholar] [CrossRef]
- Ming, Y.; Tan, A.H.; Wu, Z.J.; Chen, Z.X.; Xu, F.; Lu, Y.Q. Tailoring entanglement through domain engineering in a lithium niobate waveguide. Sci. Rep. 2014, 4, 4812. [Google Scholar] [CrossRef]
- Shi, B.S.; Wang, F.Y.; Zhai, C.; Guo, G.C. An ultra-bright two-photon source with a type-I bulk periodically poled potassium titanyl phosphate. Opt. Commun. 2008, 281, 3390–3394. [Google Scholar] [CrossRef]
- Kong, L.J.; Li, Y.; Liu, R.; Qi, W.R.; Wang, Q.; Wang, Z.X.; Huang, S.Y.; Si, Y.; Tu, C.; Hu, W.; et al. Complete measurement and multiplexing of orbital angular momentum Bell states. Phys. Rev. A 2019, 100, 023822. [Google Scholar] [CrossRef]
- Bassim, N.; Scott, K.; Giannuzzi, L.A. Recent advances in focused ion beam technology and applications. MRS Bull. 2014, 39, 317–325. [Google Scholar] [CrossRef]
- Yan, X.; Wei, H. Strong plasmon–exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe2. Nanoscale 2020, 12, 9708–9716. [Google Scholar] [CrossRef]
- Dibos, A.M.; Zhou, Y.; Jauregui, L.A.; Scuri, G.; Wild, D.S.; High, A.A.; Taniguchi, T.; Watanabe, K.; Lukin, M.D.; Kim, P.; et al. Electrically tunable exciton–plasmon coupling in a WSe2 monolayer embedded in a plasmonic crystal cavity. Nano Lett. 2019, 19, 3543–3547. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wu, J.; Li, X.; Zhou, Y.; Yu, Z.; Guo, Y.; Wu, J.; Lin, Y.; Li, Z.; Wu, X.; et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 2017, 139, 9019–9025. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Tan, S.J.R.; Xu, H.; Wu, B.; Liu, B.; Fu, D.; Fu, W.; Geng, D.; Liu, Y.; et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 2017, 139, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Ko, T.J.; Wang, M.; Yoo, C.; Okogbue, E.; Islam, M.A.; Li, H.; Shawkat, M.S.; Han, S.S.; Oh, K.H.; Jung, Y. Large-area 2D TMD layers for mechanically reconfigurable electronic devices. J. Phys. D Appl. Phys. 2020, 53, 313002. [Google Scholar] [CrossRef]
- Ming, Y.; Wu, Z.J.; Wu, H.; Xu, F.; Lu, Y.Q. Surface plasmon interferometer based on wedge metal waveguide and its sensing applications. IEEE Photonics J. 2012, 4, 291–299. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D Appl. Phys. 2012, 45, 113001. [Google Scholar] [CrossRef]
- Ocelic, N.; Hillenbrand, R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nat. Mater. 2004, 3, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Wu, Z.J.; Tan, A.H.; Hu, X.K.; Xu, F.; Lu, Y.Q. Quantum entanglement based on surface phonon polaritons in condensed matter systems. AIP Adv. 2013, 3, 042122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, Y. A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement. Sensors 2024, 24, 4817. https://doi.org/10.3390/s24154817
Ming Y. A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement. Sensors. 2024; 24(15):4817. https://doi.org/10.3390/s24154817
Chicago/Turabian StyleMing, Yang. 2024. "A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement" Sensors 24, no. 15: 4817. https://doi.org/10.3390/s24154817
APA StyleMing, Y. (2024). A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement. Sensors, 24(15), 4817. https://doi.org/10.3390/s24154817