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Abstract: Efficient and reliable data routing is critical in Advanced Metering Infrastructure (AMI)
within Smart Grids, dictating the overall network performance and resilience. This paper introduces
Q-RPL, a novel Q-learning-based Routing Protocol designed to enhance routing decisions in AMI
deployments based on wireless mesh technologies. Q-RPL leverages the principles of Reinforcement
Learning (RL) to dynamically select optimal next-hop forwarding candidates, adapting to chang-
ing network conditions. The protocol operates on top of the standard IPv6 Routing Protocol for
Low-Power and Lossy Networks (RPL), integrating it with intelligent decision-making capabilities.
Through extensive simulations carried out in real map scenarios, Q-RPL demonstrates a significant
improvement in key performance metrics such as packet delivery ratio, end-to-end delay, and com-
pliant factor compared to the standard RPL implementation and other benchmark algorithms found
in the literature. The adaptability and robustness of Q-RPL mark a significant advancement in the
evolution of routing protocols for Smart Grid AMI, promising enhanced efficiency and reliability
for future intelligent energy systems. The findings of this study also underscore the potential of
Reinforcement Learning to improve networking protocols.

Keywords: machine learning; reinforcement learning; smart grids; routing protocol for low-power
and lossy networks (RPL)

1. Introduction

The transformation of traditional electrical grids into Smart Grids (SGs) represents a
major step forward in achieving efficient, reliable, and sustainable energy management. A
key component of SGs is the Advanced Metering Infrastructure (AMI), which bridges the
gap between electricity consumers and utilities. AMI is instrumental in automating meter
reading processes and, more importantly, facilitating two-way communication that enables
real-time data collection and analysis. This capability is crucial for enhancing demand
response, where consumption patterns are adjusted in response to grid conditions, thus
optimizing energy use and reducing costs. Consequently, the efficiency and reliability of
the communication network supporting AMI are vital, as any disruption could potentially
lead to disturbances or inefficiencies in energy distribution and management.

Utilization of wireless technologies has become popular in AMI deployments, offering
flexibility and scalability. A distinguishing characteristic of some of those wireless tech-
nologies is the capacity to form mesh networks. Two standards have been relevant in this
domain, IEEE 802.11s [1] and IEEE 802.15.4g [2]. In particular, the latter is the base standard
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for Wireless Smart Metering Utility Networks (Wi-SUN) [3] and was created to establish
common and consistent communication specifications for utilities deploying SGs [4].

In wireless mesh networks, nodes transmit their own data and also serve as routers,
forwarding data across the network. This brings forth the challenge of efficient and reliable
data routing, a critical factor for the operational success of mesh networks. The main
routing protocols utilized in AMI deployments reported in the literature are: the Geographic
Routing Protocol (GPSR) [5], the Collection Tree Protocol (CTP) [6], the Optimized Link
State Routing Protocol (OLSR) [7], the Routing Protocol for Low Power and Lossy Networks
(RPL) [8], the Hybrid Routing Protocol (HYDRO) [9], the Lightweight On-Demand Ad
hoc Distance-vector Routing Protocol–Next Generation (LOADng) [10], and the Hybrid
Wireless Mesh Protocol (HWMP) [11].

Among these protocols, RPL holds a distinct position due to its designed characteristic
to optimize data routing in low-power and lossy networks (LLNs), such as those found
in AMI deployments [12]. Its suitability for being used in this kind of network has been
covered in previous studies [13–15] which have compared RPL to other routing protocols.

Despite its advantages, RPL faces challenges in dynamic and diverse AMI environ-
ments. Previous works such as [16,17] have reflected the main limitations of RPL. One
significant challenge is optimizing the parent selection process, which is crucial for ensur-
ing efficient and reliable data transmission. The standard RPL mechanisms can lead to
suboptimal routing decisions, affecting overall network performance, especially in dynam-
ically changing environments typical of AMI deployments. Consequently, the problem
of how a node selects the best candidate node to send or forward a packet among all
possible alternatives remains an open research issue that continues to attract significant
attention from the research community. This work contributes to addressing this problem
by proposing Q-RPL, a novel approach to enhance RPL’s parent selection using Q-learning,
a Reinforcement Learning (RL) technique.

Our motivation for using RL is built upon acknowledging that Machine Learning (ML)
models have demonstrated effectiveness, as evidenced in previous studies [18,19], where
ML-integrated RPL outperforms traditional routing protocols in Smart Grid networks.
However, recent findings in [20] indicate that the performance of supervised ML models
declines when applied to an AMI scenario different from its training environment. This
limitation hinders model transferability between scenarios, and this is where Q-learning
becomes a promising solution. Since it does not require datasets for training, successful
implementation of Q-learning within RPL implies limitless applicability for this innovative
approach across various AMI deployments.

To assess the effectiveness of our proposed approach, we conducted simulations using
actual smart meter locations in the cities of Montreal and Barcelona, with traffic patterns
representative of Smart Grid applications. Our new RL-based routing mechanism provided
notable improvements in the packet delivery ratio (PDR), the end-to-end delay, and the
compliant factor compared to the standard RPL implementation as well as to three other
routing algorithms RPL+, ML-RPL, and Rl-RPL. The comparison was made across a range
of traffic loads and in different deployments.

Contribution and Organization

We highlight the following key contributions based on our findings in this paper:

• We propose a novel routing strategy based on a Reinforcement Learning technique,
Q-learning, to improve the routing decisions of RPL in AMI deployments.

• Our approach balances the use of RL and traditional routing metrics, while the parent
selection is guided by the Q-learning algorithm, traditional routing metrics like the
Expected Transmission Count (ETX) and Received Signal Strength Indicator (RSSI) are
used to enhance the Q-learning policy and the exploration-exploitation strategy.

• We have conducted simulations using smart meter locations from two real deploy-
ments of smart meters in the cities of Montreal and Barcelona to evaluate the perfor-
mance of our proposed routing strategy and compare it to other benchmark protocols.
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The results show a significant improvement in key performance metrics such as PDR,
average end-to-end delay, and compliant factor.

• Q-RPL bridges the gap between traditional routing methods and advanced Machine
Learning techniques, offering insights into how these two domains can be effectively
combined for improved network performance and reliability. Our approach, although
used here with RPL, could potentially be adapted to other routing protocols used in
the same context.

The rest of the paper is organized as follows. Section 2 discusses some related works.
Section 3 provides a background to RPL. The design of the proposed solution is presented
and described in detail in Section 4. The performance of the new routing strategy is evalu-
ated and compared to other routing protocols in Section 5. Section 6 provides a technical
and critical analysis of the new routing protocol along with some recommendations for its
deployment. Lastly, Section 7 addresses the conclusions and future work.

2. Related Work

RPL was initially defined in RFC 6550 [8] and further shaped by related RFCs such as
RFC 6551 [21], RFC 6552 [22], and RFC 6719 [23], which form the core of its functionality. To
this day, RPL continues to capture the attention of the scientific community, as evidenced
by the following recent studies. These studies reflect ongoing efforts to enhance and adapt
RPL’s capabilities to meet the evolving demands of current communication networks.

Some authors have attempted to improve RPL by exploiting RPL’s capability to work
with multiple instances. In the context of RPL, multiple instances refer to the capability of
the protocol to support more than one distinct routing topology within the same physical
network. This feature allows for different routing strategies or criteria to be applied
simultaneously for different types of traffic or network conditions. A recent study [24]
delved into deploying multiple RPL instances within Wireless Sensor Networks (WSNs).
This approach, however, relied on the unmodified standard RPL implementations. A
hop-count-based implementation was used for periodic and non-critical traffic, as well as
the ETX-based implementation for critical data traffic.

Similarly, the research presented in [25] leverages the multi-topology routing capability
of RPL to address Quality of Service (QoS) needs for various traffic types. This study
introduces a novel parent selection framework using a multi-attribute decision-making
method. It aims to overcome the limitations of RPL’s single metric approach, demonstrating
improved QoS through the multi-topology strategy. Nonetheless, the simulation time used
in this work raises questions about the ability to fully assess the long-term effectiveness
and adaptability of the proposed solution across diverse network conditions.

A further study [26] introduces QWL-RPL, a variant of RPL designed to perform
under heterogeneous traffic patterns. This protocol enhancement incorporates a queue
and workload-based mechanism for routing decisions. The queue condition is determined
by the queue length, i.e., the total number of packets waiting in the queue. In contrast,
the workload is assessed by counting the packets transmitted at the MAC layer over
set intervals. These metrics serve as indicators of network congestion and traffic load,
respectively. Consequently, a node selects its preferred parent based on these criteria,
favoring those with lower congestion and lighter traffic loads. Even though performance
improvements are observed when compared to the standard RPL implementations, the
omission of link quality metrics in the routing decision process could pose a significant
drawback. By focusing solely on queue length and workload, there is a potential to overlook
the link quality between nodes. This oversight could lead to scenarios where a node with
lower packet transmissions and less congestion is selected as a preferred parent, despite
having a poor link quality.

The authors of [27] tried to improve RPL performance by tackling the load balancing
problem. They proposed Weighted Random Forward RPL (WRF-RPL). This variant of
RPL combines the energy remaining in the nodes and their corresponding number of
parents. These two routing metrics are the base of a weighted random selection algorithm
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used to choose the best next-hop candidate. WRF-RPL demonstrates improvements in
network lifetime and PDR but ignores other important routing metrics related to link
quality such as the ETX and RSSI. This could lead to choosing suboptimal routing paths,
characterized by higher packet loss rates and reduced overall network reliability. In
addition, considering only the number of parents may not accurately reflect the actual
load on a node. For instance, nodes with fewer parents could be facing higher traffic
loads or processing demands, contrary to those with a larger number of parents that might
be underutilized. This approach risks creating an uneven distribution of network load,
potentially diminishing network efficiency and performance.

The author of [28] proposed the RMP-RPL algorithm with a view to improving RPL
reliability for critical applications. This paper proposes a new ranking calculation and
parent selection method for RPL. In RMP-RPL, each node forwards its data packet to
n number of ranked nodes based on three routing metrics: node mobility, alternative
parent connectivity, and ETX. Despite the good results shown in this work in terms of
PDR, sending packets to multiple nodes simultaneously can significantly increase the
overall network traffic, and lead to severe congestion, especially in networks with limited
bandwidth or a high number of nodes. This is a concern since the proposed method was
not tested for different traffic loads.

The use of fuzzy logic to improve RPL has been considered by some authors in
previous studies such as [29–31]. The authors of the most recent work [31] introduce a
modified version of RPL named FL-HELR-OF. They propose a cross-layer architecture and
a fuzzy logic system that integrates four input metrics: hop count, energy consumption,
latency, and RSSI. The best route to reach DODAG’s root is chosen based on the output of
the fuzzy system, while the new protocol outperforms the standard RPL implementations
for different network sizes that range from 10 to 100 nodes, the use of logic fuzzy encloses
complex configuration and tuning of membership functions and rule sets.

The problem of routing overhead in RPL is addressed in [32]. The authors propose an
adaptive routing algorithm, named Tabu-RPL, that dynamically adjusts data dissemination
paths based on network conditions and device capabilities. The core of the proposal is the
integration into RPL of the Tabu Search algorithm, which is a metaheuristic search method
used to solve mathematical optimization problems. Tabu-RPL achieves a 30% reduction in
network overhead according to the results presented in the paper. It is worth mentioning
that the design basically focuses on optimizing the parent selection considering metrics
such as ETX and residual energy, however, the paper does not clearly delineate how this
approach translates into reduced network overhead. Additionally, the design suggests that
the algorithm considers only dynamic adjustments during the search process phase since
there is no information about how the algorithm continues to look for better neighbors
after the stopping condition is reached. This aspect can potentially affect the adaptability
of the protocol in more changing environments.

A further study [33] addresses the issue of energy efficiency in RPL. The authors
propose a modification to the traditional trickle timer algorithm, introducing an enhanced
version named EE-trickle. The primary aim is to reduce energy consumption and improve
the PDR of the network. The standard trickle algorithm, which controls the timing and
dissemination of control messages in RPL can lead to high energy consumption due to
extended listening periods and frequent transmissions. The EE-trickle algorithm addresses
this by optimizing how listening and transmission intervals are managed, thereby reducing
unnecessary energy expenditure. The performance evaluations demonstrate that EE-trickle
significantly lowers energy usage per node and better PDR is achieved in the network
compared to when the standard approach is used, while the results are encouraging in
terms of power consumption and PDR, solely managing control messages in this manner
may overlook other critical factors such as link quality variability that can impact network
reliability and efficiency.

A recent trend in improving RPL has been to use Machine Learning to enhance routing
decisions. For example, in [34], RPL+ introduces a refined parent selection strategy to
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choose the best forwarding node when two or more candidates have the same ranking in
the RPL destination-oriented routing tree. Central to RPL+ is the utilization of a Random
Forest (RF) algorithm [35] for analyzing the significance of different routing metrics. These
metrics include the ETX, MAC layer losses, channel utilization, and throughput. Based
on the assessed importance of each metric, weights are assigned within a forwarding
score function, facilitating the identification of the most suitable forwarding node among
available candidates. The main limitation of this proposal is the static weight assignment,
which can restrict its flexibility and responsiveness to varying network load conditions.
That said, the simulation results show that RPL+ achieves a notable improvement in PDR,
outperforming standard RPL implementations across various network sizes.

The authors of [18] proposed ML-RPL. This research explores the potential of ML
to enhance wireless communication networks, specifically in the context of Smart Grids.
This proposal integrates CatBoost, a Gradient Boosted Decision Trees (GBDT) algorithm,
into RPL to optimize routing decisions. The final ML model was trained and optimized
on a dataset of routing metrics obtained from many simulation campaigns, considering a
real deployment of smart meters in the city of Montreal. Each smart meter uses the ML
model to predict the probability of successfully reaching a destination node, and then the
candidate node with the highest probability of effectively being reached is chosen as the
preferred next hop. ML-RPL significantly improved the PDR compared to a standard RPL
implementation and RPL+.

Another ML-based variant of RPL is presented in [19] based on the dataset obtained
in [18]. In this case, the authors used the Gaussian Naive Bayes algorithm and integrated it
into RPL, resulting in GNB-RPL. The main goal was to take advantage of the benefits of
this ML algorithm that the authors considered particularly relevant in SG wireless commu-
nication scenarios such as simplicity, scalability, and reduced training data requirements.

In [20], is exposed the main limitation of the previous two studies: both Catboost and
Naive Bayes are supervised ML methods, so their performance in making the best routing
decisions will depend on the dataset on which they are trained. Therefore, a model trained
and optimized for a particular scenario could underperform significantly in another type
of scenario, as is shown in [20].

A potential solution to avoid the need for frequent retraining or updates to adapt
the supervised ML models to changing network scenarios, which can be impractical in
dynamic AMI environments, is the application of Reinforcement Learning. RL has been
gaining attention in various routing contexts as shown in [36–38]. For the applicability of
this technique on RPL or any other routing protocol utilized in AMI networks, the following
works are of special interest.

The research presented in [39] introduces a Reinforcement-Learning-based routing
protocol for WSNs. The protocol aims to choose the best parent node in a tree topology by
using Q-learning. According to the simulation results shown in the article, the proposed
method outperforms two linear-weighted-sum-based parent selection algorithms, in terms
of packet delivery ratio, end-to-end delay, and energy consumption. However, some aspects
of the protocol design could benefit from further elaboration. For instance, a more detailed
explanation of the reward function’s construction, including how various performance
metrics are integrated, would enhance the clarity and robustness of the decision-making
process. Additionally, the protocol’s approach of utilizing periodic hello messages every
5 s may pose scalability challenges as network size increases. Exploring adaptive strategies
for the frequency of these messages, similar to the trickle timer algorithm used in RPL,
could potentially optimize network efficiency and scalability. Lastly, adding concerns to
the overall network efficiency is the protocol’s cycle detection mechanism, which requires
each node to send a join request message containing its list of child nodes to prospective
parent nodes.

In a direct attempt to incorporate RL into RPL, the authors of [40] introduce a new
RPL variant for Internet-of-Things (IoT) environments, where the parent selection relies
on the Q-learning algorithm. The article addresses critical challenges of RPL such as the
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negative impacts of instantaneous path selection and the need to consider the dynamic
conditions of nodes for parent selection. The approach demonstrates improvements in
delivery rates, latency, and energy consumption compared to existing methods as shown
through simulation tests. Nevertheless, there are some important considerations regarding
the design and implementation that raise concerns and merit closer scrutiny. For instance,
the authors assign equal weights to all the metrics in the reward function, which does not
accurately reflect their relative importance or interdependencies. In addition, we agree that
maintaining a stable parent after the algorithm converges, as the authors do, can enhance
the consistency and reliability of the routing path. However, this stability might also reduce
the protocol’s responsiveness to sudden changes in network conditions after convergence.

Another study where RL was used along with RPL is [41]. The study introduces
QFS-RPL, a novel RPL-based routing protocol enhanced by the Q-learning algorithm
and concepts from the Fisheye State Routing protocol. An important element in QFS-
RPL’s design is the modification of the traditional Q-function by incorporating additional
parameters that reflect the state of the network more comprehensively. According to the
results presented in the paper, QFS-RPL is particularly suited for scenarios where nodes
are mobile. Conversely, in networks with static nodes, QFS-RPL performs similarly to the
standard RPL.

Lastly, an adaptive control of transmission power for RPL, named ACTOR, is pre-
sented in [42]. This article introduces a dynamic approach to optimizing transmission
power to improve throughput in dense networks. ACTOR extends the standard RPL
by integrating a specific RL strategy, the Upper Confidence Bound (UCB), to efficiently
manage the exploration and exploitation trade-off. This method allows for passive explo-
ration of different transmission power levels, aiming to enhance network performance by
dynamically adjusting power settings based on real-time conditions. Although ACTOR
demonstrates positive results due to adjustments in transmit power, its main drawback
is using only the ETX metric for routing decisions, which is similar to the standard RPL
implementation.

In light of the comprehensive review of existing modifications and enhancements
to RPL, it becomes evident that while significant progress has been made, particularly
in employing ML-based techniques, there remain inherent limitations to these routing
solutions. Table 1 summarizes the main aspects of the studies discussed in this section.

Table 1. Comparative Analysis of RPL Enhancements.

Work Key Contribution Methodology Performance Metrics Limitations Main Results

[24]

Uses multiple RPL
instances to manage
diverse traffic types
in 6G/IoE health
systems.

Standard RPL with
hop count and ETX,
tested in Cooja.

Improvements in
packet delivery and
highlighting
significant latency
reductions.

Standard RPL
limitations may not
meet all QoS needs in
dynamic
environments.

Enhanced diverse
traffic management
and efficiency in
health applications.

[25]

Multi-topology RPL
enhances QoS by
novel parent selection
in diverse traffic.

Multi-attribute
decision-making for
IoT parent selection.

Assesses delay,
packet loss, PDR,
throughput, queue
loss ratio, routing
overhead, and energy.

Limited simulation
time may affect
long-term
adaptability in
diverse network
conditions

Improves QoS, shows
scalability in large
networks.

[26]

QWL-RPL targets
heterogeneous traffic
with dynamic queue
and workload-based
routing.

Utilizes queue length
and MAC
transmission rates for
parent selection to
minimize congestion.

Evaluates overhead,
PRR, delay, and jitter
under various loads.

Omission of link
quality in routing
risks suboptimal
paths.

Reduces congestion
significantly and
improves PRR, delay,
and jitter, but may
overlook link quality.
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Table 1. Cont.

Work Key Contribution Methodology Performance Metrics Limitations Main Results

[27]

WRF-RPL integrates
energy and parent
counts for balanced
routing, enhancing
network life and
PDR.

Applies a weighted
random forward
method using energy
and parent count for
next-hop selection.

Evaluates network
life, PDR, control
overhead, and energy
under high traffic.

Lacks link quality
metrics, risking
suboptimal paths;
parent count may not
reflect actual load.

Increases network life
and PDR, risks
uneven load
distribution and
inefficiencies.

[28]

RMP-RPL uses node
mobility, connectivity,
and ETX for reliable
multi-parent
selection.

Dynamic multi-path
selection based on
mobility, connectivity,
and ETX.

Evaluates PDR,
end-to-end delay, and
overhead, showing
notable
improvements.

May increase
congestion due to
multiple
simultaneous
transmissions and is
untested across
variable traffic loads.

Enhances PDR and
reduces delays,
suitable for
mision-critical
applications with
scalability concerns.

[31]

FL-HELR-OF uses
fuzzy logic in a
cross-layer
architecture to
dynamically select
parents using hop
count, energy, latency,
and RSSI.

Fuzzy logic integrates
multiple metrics into
a cohesive routing
decision framework.

Assesses PDR,
latency, energy,
overhead, and hop
count, showing major
improvements.

Requires complex
setup and tuning,
with potential
scalability challenges.

Exceeds standard
RPL in performance,
improving reliability
and efficiency in
diverse IoT setups.

[34]

RPL+ uses Random
Forest to refine parent
selection by
analyzing and
weighting routing
metrics.

Employs Random
Forest for analyzing
ETX, MAC losses,
channel utilization,
and throughput to
optimize routing.

Evaluates PDR and
end-to-end delay,
noting improvements
in network
responsiveness.

Static weights in
decision-making may
limit adaptability to
network changes.

Shows significant
PDR improvements,
enhancing reliability
and efficiency
compared to standard
RPL.

[18]

ML-RPL uses
CatBoost GBDT to
enhance routing
decisions via
comprehensive
metrics.

Model trained on
smart meter data
deployments, and
predicts optimal
routes based on
probability.

Improvements in
PDR and end-to-end
delay demonstrate
enhanced network
efficiency.

Depends on training
data quality, affecting
adaptability in new
scenarios.

Outperforms
standard RPL and
RPL+, especially in
dynamic conditions.

[19]

GNB-RPL employs
Gaussian Naive
Bayes to optimize
routing in smart grids
for enhanced
scalability.

Applies Gaussian
Naive Bayes based on
smart meter data
from Montreal for
routing decisions.

Shows marked
improvements in
packet delivery and
reduced delays across
varied loads.

Performance
variability due to
Naive Bayes’
simplistic
assumptions about
feature
independence.

Enhances scalability
and reduces training
data needs, suitable
for dynamic, large
networks.

[20]

Analyzes supervised
ML methods in RPL,
focusing on
scenario-dependent
performance.

Assesses Catboost
and Naive Bayes in
varied scenarios for
routing effectiveness.

Uses AUC to evaluate
ML model
predictions for
routing success.

Effectiveness
decreases in scenarios
different to the
training environment;
requires frequent
retraining.

Recommends
exploring RL for
adaptable, scenario-
independent routing
in dynamic settings.

[39]

Employs Q-learning
in an RL-based
protocol to optimize
parent node selection
in WSNs.

Uses Q-learning to
dynamically choose
the best parent based
on network data and
performance metrics.

Shows improvements
in PDR, delay, and
energy consumption
over linear methods.

Needs more detail on
reward function and
concerns about
scalability with
periodic messages.

Surpasses traditional
linear weighted
methods, enhancing
responsiveness and
efficiency in dynamic
WSNs.
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Table 1. Cont.

Work Key Contribution Methodology Performance Metrics Limitations Main Results

[40]

Rl-RPL employs
Q-learning to
optimize IoT routing
by addressing
dynamic conditions
and instant negative
impacts of path
selection.

Utilizes Q-learning to
adapt to network
changes, improving
parent selection with
real-time data.

Measures success
delivery ratio, latency,
energy, throughput,
and data loss, noting
major improvements.

Uniform weight in
the reward function
could impact decision
accuracy; stability
may reduce
responsiveness after
convergence.

Enhances service
delivery, reduces
delays, and boosts
energy efficiency over
previous methods.

[32]

Tabu-RPL employs
Tabu Search to
dynamically optimize
routing in IoT,
reducing network
overhead.

Uses metaheuristic
search based on ETX
and residual energy
to adapt routing to
network conditions.

Evaluates network
overhead, energy,
PDR, and delay,
showing significant
reductions and
improvements.

Details on overhead
reduction and
adaptability in
diverse networks are
not fully explained.

Achieves a 30%
reduction in
overhead,
significantly
enhancing energy
efficiency and PDR.

[33]

EE-trickle modifies
the trickle timer to
boost energy
efficiency and PDR in
RPL.

Optimizes listening
and transmission
intervals to minimize
energy use while
maintaining
performance.

Achieves notable
reductions in energy
per node and
enhancements in PDR
through simulations
and testbeds.

May overlook
challenges in
dynamic
environments,
especially in link
quality management.

Demonstrated
enhanced energy
efficiency and better
PDR compared to the
standard trickle
method.

[41]

QFS-RPL combines
Q-learning and FSR
to optimize routing
for mobile nodes in
RPL.

Applies Q-learning
and FSR for dynamic
adjustments to
network changes and
mobile node
management.

Boosts PDR, latency,
throughput, and
control overhead,
while improving
energy efficiency in
mobile settings.

Performs similarly to
standard RPL in static
conditions and lacks
extensive testing in
dynamic
environments.

Improves mobile
performance by
effectively managing
mobility and load,
but does not exceed
standard RPL in static
conditions.

[42]

ACTOR employs a
UCB-based RL
strategy for dynamic
power management
in RPL, boosting
throughput in dense
networks.

Uses UCB to
dynamically adjust
transmission power,
optimizing power
levels for better
performance.

Significantly
improves end-to-end
delay, packet delivery,
and energy
consumption in dense
networks.

Depends mainly on
ETX for routing
decisions, which may
affect adaptability.

Enhances throughput
and energy efficiency,
stabilizes network
topology with fewer
parent switches.

3. RPL Parent Selection Background

This section aims to provide the necessary background on RPL, as our design builds
upon and enhances the RPL protocol. It lays the groundwork for understanding the
enhancements introduced by our RL-based approach.

RPL is a distance vector routing protocol that is adapted to a variety of Low-Power and
Lossy Networks (LLNs). The protocol constructs a destination-oriented directed acyclic
graph (DODAG) [8], which is a multi-hop routing tree rooted at single root node, that in
the context of AMI is usually named a data aggregation point (DAP) or simply collector.
Figure 1 shows the routing hierarchy within RPL.

The root node initiates the network by transmitting a control message, called a DODAG
Information Object (DIO), which includes rank information. Each node in the network,
upon receiving the DIO, computes its ranking and selects a parent to form a loop-free
topology. This makes RPL a highly scalable protocol that can accommodate the large and
growing number of nodes in an AMI communication network.

The selection of parent nodes within the DODAG is governed by an Objective Function
(OF). The OF is responsible for defining the criteria used to evaluate potential parent nodes,
thereby influencing the route optimization and network dynamics. Two standardized OFs
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commonly used in RPL are the Objective Function Zero (OF0) [22] and the Minimum Rank
with Hysteresis Objective Function (MRHOF) [23].

OF0 primarily uses hop count as its metric. It selects the parent node that offers the
shortest path to the root, simplifying the routing process but potentially overlooking other
critical metrics like link quality or reliability.

MRHOF is more sophisticated and can consider multiple metrics, primarily focusing
on link quality and node stability. It uses a cost function that typically includes the ETX
and a hysteresis component to prevent frequent changes in parent selection, which could
destabilize the network.

Other solutions to the parent selection problem include a variety of methods as was
shown in Section 2. The next section will provide a comprehensive explanation of our
approach to tackle this problem. It will outline how our method works and highlight the
distinctive elements that make it unique to other implementations.

DODAG root / DAP / 
Collector

RPL node

 

 

 

.

.

.

1st hop

3rd hop

2nd hop

Figure 1. Hierarchical routing with RPL.

4. Q-RPL: Q-Learning-Based Routing Protocol Design

Reinforcement Learning [43] stands out as a powerful paradigm particularly suited
for scenarios where an agent must make decisions based on interactions with a dynamic
environment. Distinguished by its ability to learn optimal actions through trial and error,
RL enables agents to adapt their strategies over time, aiming to maximize cumulative
rewards. This approach is fundamentally different from traditional supervised learning, as
it does not rely on a labeled dataset but instead learns from the consequences of actions
taken in a given state. Central to RL is the concept of a learning agent that observes the state
of the environment, takes actions, and receives feedback in the form of rewards or penalties
as shown in Figure 2. This feedback helps the agent understand the effectiveness of its
actions and guides it in refining its decision-making process. RL’s capacity to continually
adapt and learn from ongoing interactions makes it particularly applicable to complex
and changing environments, such as those found in network routing protocols. RL offers
in this context a promising avenue for developing advanced routing protocols that can
dynamically adjust to varying network conditions, thereby enhancing efficiency, reliability,
and overall performance.
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Environment
||

Network

Agent: node
at current state, 
evaluates set of 
actions  

Reward
+/-

Actions

State

Figure 2. The interaction between the agent and its environment in the context of networking.

4.1. Q-Learning Algorithm

Q-learning is one of the most popular RL algorithms [44]. It is an off-policy learner
that seeks to find the best action to take given the current state. It is known for its simplicity
and effectiveness, especially in environments with a finite number of states and actions.
In Q-learning, a Q-function is used to measure the quality of a state–action pair, based on
the observed reward. The following equation shows how the Q-values are updated when
action a is taken by a node i in state s, yielding a reward r.

Q(si, ai)← (1− α)Q(si, ai) + α[r + γ max
aj

Q(sj, aj)] (1)

where Q(si, ai) is the value of the current state–action pair, α ∈ [0, 1] is a parameter called
learning rate, r is the reward received after taking action a, γ ∈ [0, 1] is another parameter
named discount factor, and maxaj Q(sj, aj) is the maximum reward expected from all the
possible actions at the next hop candidate j.

The learning rate determines how much new information affects the existing Q-value.
A higher learning rate allows the model to adjust more quickly to changes but can cause the
learning process to be unstable. Meanwhile, the discount factor balances the importance of
immediate and future rewards. A higher discount factor makes the agent more forward-
looking by emphasizing the potential future benefits of current actions.

Other key elements in the design of any RL solution based on the Q-learning algo-
rithm are the formulation of the state–action space, reward, and policy update. The next
subsections provide more details about these specific components in our design solution
for routing in AMI.

4.2. State–Action Space Design

The definition of state(s) and action(s) is crucial in Reinforcement Learning, particu-
larly when applied to routing in network environments. The state represents the current
configuration of the network, and the action signifies the possible decisions a node (an
RL agent) can make. We observed in Section 2 that existing studies such as [39,40] have
formulated states using routing metrics from neighboring nodes. Although this approach
is intuitive, it introduces significant challenges, particularly in the dimensionality of the
state space. If the routing metrics are continuous or exhibit high variability, discretizing the
state space becomes necessary to prevent an unmanageably large Q-table. The size of the
state space increases with each added metric. For instance, if each of m metrics can take
x values (either because they are inherently discrete or were discretized), the total state
space size would be xm. Subsequently, the state-action space size would be determined by
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multiplying the state space size by the number of potential actions available at each state.
This requires careful consideration, especially for resource-constrained devices.

In our protocol design, we conceptualize states differently. Here, states represent the
destination nodes that a node aims to reach, typically the DODAG root in RPL. So, for node
i, the state si ∈ S i = {si

1, si
2, ..., si

n}, where n represents the number of destination nodes
in the network. This approach is particularly efficient when nodes operate in non-storing
mode, where all traffic is directed towards the DODAG root, significantly simplifying the
state space. Actions in our model correspond to the choice of the next hop to reach the
destination. Thus, actions for a node i can be expressed as ai ∈ Ai = {ai

1, ai
2, ..., ai

k}, where
k is the number of possible next-hop candidates for this node. Therefore, the dimension of
our Q-table, which has a Q-value for each pair of state–action, is proportional to the size of
the neighbor table. This design not only addresses the dimensionality and discretization
issues but also aligns well with the operational modes of RPL. Table 2 shows a typical
Q-table for a node i, where the Q-value for each entry in the Q-table is calculated with the
Q-learning formula introduced in Equation (1).

Table 2. Q-table representation for node i.

State–Action Pair (s, a) Q-Value

(si
1, ai

1) Q(si
1, ai

1)
...

...

(si
1, ai

k) Q(si
1, ai

k)

(si
n, ai

1) Q(si
n, ai

1)
...

...

(si
n, ai

k) Q(si
n, ai

k)

4.3. Reward and Policy Design

The reward (r) is another important component in the Q-learning algorithm. Reward
refers to the feedback that the agent (in this case, a network node) receives after taking a
specific action. This feedback is crucial as it guides the learning process, shaping the node’s
understanding of which actions are beneficial and should be repeated in the future.

We consider that the reward function in the context of routing protocols must be de-
signed to reflect the effectiveness of routing decisions in the most direct way. Different from
previous studies, such as [39,40], that assigned weights to distinct indirect performance
metrics (number of hops, ETX, congestion status, etc.) to estimate the performance of taking
an action, our reward function is assigned based on the success and efficiency of packet
transmissions to the next hop. Thus, we take into account the number of transmission
attempts required to successfully deliver a packet. Consequently, the structure of the
reward is as follows:

• First attempt success. A reward of +2 is granted for a packet that successfully
reaches its next hop on the first attempt, not requiring re-transmissions. This sce-
nario represents the ideal case, where the routing decision leads to an efficient and
effective outcome.

• Success on the first re-transmission. After a failure on the first transmission attempt,
if the packet is successfully transmitted on the first re-transmission attempt, the reward
is set to +1. This represents a less optimal successful transmission.

• Success on the second re-transmission. A reward of 0 is given for a packet that
reaches the next hop on the second re-transmission. This situation indicates a less
efficient routing decision.

• Success on the third re-transmission. A reward of−1 is given for a packet that reaches
the next hop on the third re-transmission. This situation warrants a slight penalty.
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• Failure to transmit. If the packet fails to reach the next hop after all attempts, the
reward is −2. This condition represents an action failure and is penalized accordingly.

Differentiating between the varying levels of transmission efficiency ensures that the
learning process inherently favors routing decisions that lead to successful and efficient
packet deliveries. The negative reward for failed transmissions further reinforces the need
for reliable routing choices. Over time, this mechanism allows the Q-learning algorithm to
discern and prefer routing paths that not only succeed in delivering packets but do so with
optimal efficiency.

For instance, consider a dynamic scenario in which different levels of signal interfer-
ence or congestion can affect transmission success and where a node must choose between
two potential candidates for routing data packets to a destination. Option A is a node
that often experiences signal interference due to its location, while option B benefits from
a clear and unobstructed link. Initially, the node may randomly select between these
options, but will evaluate the number of re-transmissions required to successfully deliver
a packet. When sending packets via option A, three re-transmissions are typically neces-
sary, each resulting in a reward of −1. In contrast, choosing option B usually requires no
re-transmissions, yielding a reward of +2. Given the operation of the Q-learning algorithm,
this reward system will naturally favor option B in the long run.

Furthermore, in designing the reward system, we have considered the compatibility
of our reward design with the wireless communication standard in the physical and
MAC layers. The target of three re-transmissions aligns with the default number of re-
transmissions set by the IEEE 802.15.4 standard, as detailed in [45].

In summary, if we denote the number of re-transmission attempts to successfully
transmit a packet by m, the reward function can be expressed as Equation (2):

r =

{
2−m, for 0 ≤ m ≤ 3
−2, if the packet fails after all attempts.

(2)

With the reward structure defined, the next critical element in our Q-learning-based
routing protocol is the policy, which dictates how decisions are made based on the learned
Q-values. The policy, that we define as π(s), is a strategy that each node employs to decide
which action to take in a given state. It plays an important role in balancing the exploration
of new routing paths against the exploitation of the best-known action. A balance that is
crucial for the adaptability and effectiveness of any routing protocol.

We adopt the ϵ-greedy policy, a popular choice in RL tasks for its simplicity and
effectiveness. With probability ϵ, the policy allows the routing node to choose randomly
a next-hop candidate in the Q-table, encouraging the discovery of a potentially better
candidate. Conversely, with a probability of (1− ϵ), the node exploits its accumulated
knowledge by choosing the candidate with the highest Q-value for a given state s. The
ϵ-greedy policy for a node i at state si

1 can be represented as follows:

π(si
1) =

ai ∼ Uniform(Ai(si
1)) with probability ϵ,

arg max
ai∈Ai

Q(si
1, ai) with probability 1− ϵ. (3)

where the term ai ∼ Uniform(Ai(si
1)) indicates that the action ai is chosen randomly follow-

ing a uniform distribution over the set of all possible actions available at the current state.
A common practice in RL that we follow in our design is to dynamically adjust ϵ over

time. Starting with a higher ϵ and gradually decreasing it, allows for more exploration
early in training and more exploitation later on. Furthermore, to prevent the model from
becoming too exploitative, we establish a lower bound for ϵ, ensuring that the nodes will
always maintain some degree of exploration. This dynamic adjustment of ϵ is essential for
adapting to the changing network conditions and continuously refining routing decisions
as the learning algorithm accumulates more knowledge and experience. Algorithm 1
summarizes the operation of the ϵ-greedy policy.
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Algorithm 1 ϵ-Greedy Policy.

Require: Q(si, ai)
Initialize: ϵ, ϵmin, ϵdecay
while the learning process is ongoing do

Choose a random number x, x ∈ [0, 1]
if x < ϵ then

Choose a random action ai:
π(si) = ai ∼ Uniform(Ai(si))

else
Choose the best-known action ai:
π(si) = arg max

ai∈Ai
Q(si, ai)

end if
Decrease ϵ gradually: ϵ← max(ϵ× ϵdecay, ϵmin)

end while

4.4. Integration into RPL

The integration of Q-learning into the RPL protocol represents a significant advance-
ment in routing decision-making for AMI. The Q-learning algorithm in our enhanced RPL
framework specifically assists in the parent selection process. Each node employs the
learned Q-values to make informed decisions on which next hop to choose as its preferred
parent for routing packets toward the root according to the policy defined in Section 4.3.
This approach leverages the continuous learning capability of Q-learning to dynamically
adapt to changing network conditions, thereby optimizing the routing paths over time. We
keep the core of RPL functionalities like ranking calculation based on RFC 6550, trickle
timer algorithm, loop detection mechanism, and the use of signaling messages such as
DIO, Destination Advertisement Object (DAO), and DODAG Information Solicitation (DIS).
However, to facilitate the learning-based approach, we propose a modification in the DIO
messages. Each node, in addition to the standard RPL information, broadcasts its maximum
Q-value. This modification allows neighboring nodes to be aware of the routing efficacy (as
measured by the Q-values) of their potential parents and update the Q-learning equation
accordingly. The maximum Q-value is included in the DAG Metric Container in the option
field of the DIO messages, as shown in Figure 3.

Figure 3. DIO message base format.

Figure 4 illustrates the Q-RPL architecture after integrating the Q-learning modules
into RPL. It shows the main modules of RPL alongside the Q-learning modules in the same
framework. RPL modules are responsible for handling DODAG formation, maintaining
network structure, and facilitating basic communication among nodes. In contrast, the
Q-learning modules are tasked with optimizing parent selection.
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Figure 4. Architecture of the Q-RPL algorithm.

Another important difference in our design with respect to previous studies is the role
of the classic routing metrics such as the ETX and RSSI, while the Q-learning algorithm
plays the primary role in the decision-making mechanism, the ETX and RSSI serve as a
policy enhancement and for guiding exploration, respectively.

In cases where two potential parents have identical Q-values, the ETX metric is used
as a tiebreaker. Since the ETX represents the number of transmissions expected to deliver a
packet over a link successfully, preference is given to the parent with a lower ETX, indicating
a more reliable link. The metric is calculated according to the following expression:

ETX =
1

D f · Dr
(4)

where D f is the measured probability that a packet is received by the neighbor and Dr is
the measured probability that the acknowledgment packet is successfully received [21].
The metric is assessed after the transmission of actual data and acknowledgment within
the re-transmission mechanism at the MAC layer. Thus, it is updated when a packet is
successfully acknowledged or when the maximum number of re-transmissions is exceeded.
The ETX is also smoothed by using an exponential weighted moving average (EWMA)
filter following best practices:

ETXnew = λ · ETXcurrent + (1− λ) · ETXprior (5)

where the value of λ is implementation dependent, and it has been set to 0.8 as in other
implementations [46].

Furthermore, we introduce an exploration trigger based on RSSI variations, a critical
metric in ensuring optimal routing decisions, as previously discussed in [18]. To this end,
each smart meter actively monitors the RSSI value of its neighboring nodes. If the average
of the RSSI of one of the neighbors drops below a threshold, the node is not considered
in the exploration phase. This way, the algorithm avoids wasting time exploring nodes
with poor link quality. In the case that the node with a declining link quality is the current
preferred parent, selected based on its high Q-value during the exploitation phase, the
algorithm triggers a reassessment of the parent choice, prompting exploration. We have
established a threshold of 10% below the smart meters’ receiver sensitivity as a reasonable
indicator of a poor link quality. This dynamic response to changing link qualities, facilitated
by the integration of RSSI monitoring, significantly boosts the algorithm’s capability to
adapt and maintain effective routing paths in varying network conditions.

Algorithm 2 presents a pseudocode that outlines each step of the enhanced parent
selection process for RPL. Starting with how the next-hop node is chosen based on the
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ϵ-greedy policy, followed by the reward calculation, the update of the Q-values, and finally,
the monitoring mechanism to detect nodes with decaying link quality.

Algorithm 2 Enhanced Parent Selection Algorithm for RPL.

Require: K, a set of n candidate parents of node i, where Pk is the current_pre f erred_parent. Q(si, ai).
Initialize: ϵ, ϵmin, ϵdecay, α, γ, threshold.
for each new routing decision do

Choose next-hop based on ϵ-greedy policy:
Choose a random number x, x ∈ [0, 1]
if x < ϵ then

Choose a random action ai:
π(si) = ai ∼ Uniform(Ai(si))
Pk ← π(si)

else
Choose the best-known action ai:
π(si) = arg max

ai∈Ai
Q(si, ai)

if tie in Q-values then
Identify all actions ai with max Q-value: E
Choose the action with the lowest ETX value:
π(si) = arg min

ai∈E
ETX(ai)

end if
Pk ← π(si)

end if
Transmit packet to chosen next-hop: Pk
Observe outcome and calculate reward:
if packet f ail then

r = −2
else

get→ re-transmission attempt (m)
r = 2−m

end if
Update Q-value for the state–action pair:
Q(si, ai)← (1− α)Q(si, ai) + α[r + γ maxaj Q(sj, aj)]
Update ϵ: ϵ← max(ϵ× ϵdecay, ϵmin)

end for
Monitor RSSI of nodes in K:
if RSSIk < threshold, k ∈ K then

if ϵ == ϵmin AND k == Pk then
trigger exploration by resetting ϵ to initial value

else
remove k from K

end if
end if

5. Performance Evaluation

We present the performance evaluation of our proposed Q-RPL in this section. We
compare its effectiveness against a standard RPL implementation (MRHOF) as well as
three other routing solutions previously discussed in the related work section: RPL+ [34],
ML-RPL [18], and Rl-RPL [40]. To ensure a comprehensive analysis, we utilize two distinct
scenarios based on actual deployments in the cities of Montreal and Barcelona. These
scenarios vary in the number of nodes and the network topology.

The next subsection outlines the specifics of our simulation settings, followed by
subsections presenting the results obtained from each scenario and another subsection with
a general discussion of the results.
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5.1. Simulation Settings

The simulations are carried out using the discrete network simulator OMNeT++ [47].
OMNeT++ is one of the most widely used and powerful simulation tools for network
modeling [48]. The simulator works under an Eclipse-based IDE, and it can run basically
on all platforms where a C++ compiler is available (Linux, Mac OS/X, Windows). It is free
for academia and open source, which allows the reuse and modification of its modules. In
addition, several simulation frameworks have been created to extend the functionality of
the simulator to specific areas. One of those frameworks is INET, which we have used along
with OMNeT++ since it includes all the protocol layers that we need to create our simulation
environment. In comparison to other network simulator alternatives like ns-3 [49], RPL
implementations available in OMNeT++ are more mature and updated than those available
in ns-3 [50–52]. Lastly, while in [53], there is a mention of an implementation of IEEE
802.15.4g/Wi-SUN for the ns-3 simulator, to the best of our knowledge, this implementation
is not available. All the previous reasons make OMNeT++ a suitable simulator to ensure
an accurate and comprehensive evaluation of our proposed solution.

The first scenario in which our proposal is tested consists of a deployment of 200 smart
meters and one collector in the city of Montreal, while the second scenario in the city of
Barcelona has 355 smart meters and also one collector. This larger scenario allows us to
test the scalability and efficiency of Q-RPL in a more demanding environment, where the
increased number of smart meters and potential network congestion present additional
challenges. The scenarios are depicted in Figure 5a,b. The channel characteristics, physical-
MAC layer, and learning parameters are shown in Table 3.

The traffic load is varied in each scenario according to Table 4. The applications that
we have considered are typical in Smart Grids: Meter Reading (MR), Alarm Events (AEs),
and Power Quality (PQ). MR refers to the usage information that smart meters collect and
must report periodically to utilities. AEs is the second application taken into consideration.
Alarms can happen at any time and are sent randomly during the simulation time by a
percentage of smart meters. AEs can include events such as measurement failure, system
restart, system memory full, configuration errors, etc. The other application considered is
PQ. Examples of PQ events include leading/lagging power measurements, imbalance in
energy flow, voltage fluctuations, harmonics, and voltage sags and swells. For traffic load
1, MR is transmitted for each smart meter every hour, while AEs and PQ are transmitted
by 25% of the smart meters in the scenario. In contrast, traffic load 2, while still including
the same applications, shows a variation in the sending frequency for MR, which is now
every 30 min. Moreover, the percentage of meters involved in transmitting alarm events
and power quality data is increased to 50% under traffic load 2, as opposed to 25% in traffic
load 1.

(a) Montreal scenario. (b) Barcelona scenario.
Figure 5. Urban scenarios.



Sensors 2024, 24, 4818 17 of 29

Table 3. Simulation Settings.

Network simulator OMNeT++ v6.0.1 & INET Framework v4.4.1

Simulation runs 10/per scenario/per traffic load

Simulation time 5 h

Smart meters 200 (Montreal), 355 (Barcelona)

Collectors 1 (Montreal), 1 (Barcelona)

Channel characteristics
Path loss, αp = 3.6
Shadowing, Lognormal, σ = 7.4

PHY Layer

Standard, 802.15.4g
Frequency band, 2.4 GHz
Transmission rate, 115 Kbps
Transmission power, 14 dBm
Reception sensitivity, −100 dBm
Energy detection, −90 dBm
Min interference power, −120 dBm

MAC Layer

Standard, 802.15.4g
Operation mode, Mesh
ACK, Enable
Max re-transmission, 3
Backoff procedure, Exponential
Min backoff exponent, 3
Max backoff exponent, 8

Learning Layer
Learning rate, α = 0.3
Discount factor, γ = 0.6
ϵ = 1, ϵmin = 0.05, ϵdecay = 0.95

Packet size & sending interval Application dependent, according to Table 4.

Table 4. SG applications transmitted over each scenario.

Traffic
Load Applications Sending Period Payload

(Bytes)
Percentage
of Meters

Meter reading
(MR)

Every 1 h 400 100%

1 Alarm events
(AE)

Every 1 h 278 25%

Power Quality
(PQ)

Every 1 h 278 25%

Meter reading
(MR)

Every 30 min 400 100%

2 Alarm events
(AEs)

Every 1 h 278 50%

Power Quality
(PQ)

Every 1 h 278 50%

5.2. Montreal Scenario

Figure 6a shows the PDR per application measured at the collector for traffic load 1 in
the Montreal deployment. Recall that the PDR expresses the ratio of packets successfully
delivered to the destination to those generated by the source. Specifically, in the MR applica-
tion, Q-RPL exceeds the performance of MRHOF, RPL+, Rl-RPL, and ML-RPL by 12%, 8%,
8%, and 5%, respectively. In alarm events, Q-RPL matches ML-RPL’s performance while
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surpassing RPL+ by 6%, Rl-RPL by 7%, and MRHOF by 10%. The most significant disparity
is observed in the PQ application, where Q-RPL achieves a 99% PDR, outperforming the
next closest protocol, ML-RPL, by 5%, and surpassing Rl-RPL, RPL+, and MRHOF by 8%,
9%, and 16% respectively.
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Figure 6. Performance metrics in the Montreal scenario under traffic load 1.

The distribution of the end-to-end delay of the packets that reach the destination is
depicted in Figure 6b using a box plot representation. In this comparison, MRHOF exhibits
the highest median delay across all traffic applications. Rl-RPL has the second-worst
performance for MR application, but closely matches the median delay values of the other
protocols for the AE and PQ applications. RPL+, ML-RPL, and Q-RPL have median delay
values within 50 ms of each other across all the applications, however, the box plot reveals
that RPL+ and Q-RPL have narrower Interquartile Ranges (IQRs) compared to ML-RPL.
This characteristic indicates a more consistent and predictable delay performance of RPL+
and Q-RPL.

To complement the end-to-end delay analysis, we present the compliant factor (CF) in
Figure 6c. The CF is the ratio of packets that not only successfully reach their destination
but also do so within a predefined delay criteria specific to each application, according to
Table 5. The metric is expressed in percentages and is particularly important in networks
like Smart Grids, where different applications may have varying and stringent requirements
for packet delivery times. The CF has been used in previous works such as [54,55] for
comparing different Smart Grid communication technologies. In summary, the CF can be
formulated as follows:

CF =

(
Total number of packets meeting the delay criteria

Total number of successful packets received

)
× 100% (6)
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In the case of MR traffic, all the routing protocols under analysis achieve a CF close to
100%. However, Q-RPL displays a clear advantage in AE traffic, improving the CF by 9%,
7%, 7%, and 5% compared to MRHOF, ML-RPL, Rl-RPL, and RPL+, respectively. For PQ
traffic, Q-RPL maintains the highest CF at 95%.

Table 5. Targeted network transit time for each application.

Application Network Transit Time

MR 2000 ms

AEs 500 ms

PQ 750 ms

In order to assess the robustness of our novel routing protocol when network load
increases, we decreased the sending interval of the MR application by 50% and doubled the
percentage of the smart meters sending alarm reports and power quality events. Figure 7a
shows the PDR achieved by each routing protocol under the new traffic load conditions.
Based on the results, Q-RPL demonstrates superior performance across all three applica-
tions compared to MRHOF, RPL+, ML-RPL, and Rl-RPL. Notably, for the AE traffic, where
Q-RPL previously matched ML-RPL’s performance, it now surpasses it by 5%, further
demonstrating its effectiveness in handling increased network traffic.

Figure 7b presents the end-to-end delay under the new traffic conditions. Unlike the
other routing protocols, which exhibited increased median delay values under higher traffic
load, Q-RPL maintained a performance similar to lower traffic conditions, with the median
delay hovering around 400 ms across all three traffic applications. In addition, the other
protocols showed greater variability in packet delay times, contrasting it with the stability
and consistency in the packet delay of Q-RPL.
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Figure 7. Performance metrics in the Montreal scenario under traffic load 2.
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Lastly, Figure 7c depicts the CF resulting from the increase in the traffic load. Similar
to the outcomes observed with traffic load 1, all protocols perform well in terms of CF for
MR traffic. However, a notable decrease in CF is observed for the AE and PQ applications
compared to the first traffic load scenario. MRHOF and Rl-RPL experienced the most
significant reduction. MRHOF dropped its CF by 7% and 10% for AE and PQ traffic, while
Rl-RPL dropped its CF by 8% for both traffic applications. RPL+ and ML-RPL also saw
declines in CF, though to a smaller degree, a 4% and 6% drop for RPL+ and a 2% and 4% CF
decrease for ML-RPL in AE and PQ traffic, respectively. Notably, despite a 5% CF reduction
in AE traffic, Q-RPL maintained the highest CF among all protocols for AE traffic. In terms
of PQ traffic, Q-RPL achieved a CF of 93%, only a slight 2% decrease from traffic load 1,
but a still significantly higher CF than MRHOF, RPL+, Rl-RPL, and ML-RPL by margins of
13%, 10%, 8%, and 5%, respectively.

5.3. Barcelona Scenario

We extended our testing to an AMI deployment in Barcelona, Spain, to further validate
the efficacy of our routing protocol in diverse real-world scenarios. Distinct from the
Montreal scenario, the Barcelona deployment, as noted in Section 5.1, consists of 355 smart
meters. Moreover, the distribution of the smart meters is more centered around the collector.
Figure 8a displays the PDR in the Barcelona scenario for traffic load 1. Q-RPL is observed
to outperform the other routing variants across the three applications considered. Most
notably, Q-RPL achieves a 10% higher PDR than MRHOF in the MR application, and an 8%
greater PDR compared to RPL+ and Rl-RPL in the PQ application. Additionally, Q-RPL
surpasses ML-RPL, its nearest competitor in terms of performance, by margins of 5%, 4%,
and 5% for MR, AE, and PQ traffic, respectively.
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Figure 8. Performance metrics in the Barcelona scenario under traffic load 1.
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The packet delay for this experiment is shown in Figure 8b. The figure clearly illus-
trates the superior performance of Q-RPL over the other routing protocols across all traffic
applications in terms of median delay and consistency. Particularly notable is its perfor-
mance in the MR traffic scenario, where it maintains a median delay of 286 ms, significantly
lower than MRHOF, Rl-RPL, RPL+, and ML-RPL. This trend is consistent across AE and
PQ traffic, where Q-RPL again demonstrates the lowest median delays (177 ms and 192 ms,
respectively) and minimal variability. Rl-RPL, RPL+, and ML-RPL show improvements
in median delay and consistency over MRHOF but still do not match the efficiency and
reliability exhibited by Q-RPL.

In terms of CF, which is depicted in Figure 8c, we can see the same pattern as in the
Montreal scenario. For MR traffic, all the routing protocols are close in performance, but for
AE traffic the difference in favor of Q-RPL is more notable. In this case, Q-RPL’s CF stands
at 94%, outperforming Rl-RPL, ML-RPL, RPL+, and MRHOF by margins of 7%, 9%, 10%,
and 12%, respectively. For PQ traffic, both Q-RPL and ML-RPL lead the performance with
a CF of 96%, indicating their superior ability over MRHOF, RPL+, and Rl-RPL in meeting
stringent time constraints in packet delivery.

Following our approach in the Montreal scenario, we further assessed the robustness
of our routing protocols in the Barcelona deployment under increased traffic conditions.
As illustrated in Figure 9a, the PDR in the Barcelona scenario with traffic load 2 again
underscores the efficacy of Q-RPL. Q-RPL consistently outperforms the other routing
variants across all application categories. For MR traffic, Q-RPL’s advantage over MRHOF
peaks at a significant 10%, as for traffic load 1, while it holds a steady lead of 4% to 5% over
ML-RPL throughout all the applications categories. Compared to RPL+, Q-RPL achieves a
consistent performance edge of 6–7%, and compared to Rl-RPL, it shows an advantage of
6%, 4%, and 7% in the MR, AE, and PQ applications, respectively.
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Figure 9. Performance metrics in the Barcelona scenario under traffic load 2.
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The end-to-end delay in the Barcelona scenario with traffic load 2 is shown in Figure 9b.
It can be noticed from the figure that Q-RPL maintains a lower median delay, evident in
its performance across the MR, AE, and PQ applications with median values of 246 ms,
199 ms, and 196 ms, respectively. In contrast, MRHOF shows a substantially higher median
delay, particularly in the AE application, where it peaks at 2039 ms. RPL+, ML-RPL, and
Rl-RPL record intermediate median delay values, positioned between Q-RPL and MRHOF
across all traffic applications. These findings not only highlight the efficiency of Q-RPL but
also reinforce its reliability under more challenging traffic conditions.

The enhanced performance in terms of end-to-end delay of our routing proposal is
reflected in the CF metric, as depicted in Figure 9c. Q-RPL exhibits a CF of 100%, 94%, and
98% for MR, AE, and PQ traffic, respectively. A remarkable difference with respect to the
other protocols is observed for AE traffic, where Q-RPL achieves up to a 17% improvement
compared to ML-RPL, which is the next best performer.

5.4. General Discussion

In general, the simulation results from both the Montreal and Barcelona scenarios
highlight Q-RPL’s superior performance in terms of PDR, network latency, and compliant
factor compared to established protocols like MRHOF, RPL+, ML-RPL, and Rl-RPL.

The core strength of Q-RPL lies in its dynamic adaptability, achieved by integrat-
ing Q-learning into its decision-making process. This approach markedly differs from
MRHOF’s reliance solely on the ETX metric and RPL+’s and ML-RPL’s dependence on
preset rules and a trained ML model, respectively. When compared to Rl-RPL, another
Q-learning-based protocol, Q-RPL demonstrates a more advanced and effective learning
approach. Specifically, Rl-RPL’s approach of setting the learning rate in the Q-learning
formula to one and the discount factor to zero led to overfitting to recent experiences and
favored immediate rewards over long-term strategic routing. This approach made Rl-RPL
behave more like a multimetric routing protocol rather than leveraging the full potential of
Reinforcement Learning, which may explain its performance similarities to RPL+.

In contrast, Q-RPL distinguishes itself by continually learning from the network
performance and adapting its parent selection in real-time with each packet transmission.
This flexibility is crucial for managing the varied traffic patterns typical in AMIs.

Figure 10a displays the evolution of the average PDR in the Montreal and Barcelona
scenarios for Q-RPL under traffic load 1. This figure provides a clear illustration of the
adaptive learning capability of the Q-RPL algorithm. During the initial stages, which
are characterized by an exploratory approach, the PDR starts at a modest level. As the
algorithm accumulates experience and refines its decision-making, improvements in PDR
are observed. After simulating 2 h of network operation, a significant uptick in PDR
performance is noted, with values plateauing at an optimal level. This sustained high
performance highlights the efficiency of the Q-RPL’s learning mechanisms as they converge
towards more effective routing choices over time.
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Figure 10. Average performance metrics progression in Montreal and Barcelona scenarios.



Sensors 2024, 24, 4818 23 of 29

Examining the average end-to-end delay as time progresses reveals an inverse cor-
relation with the previously discussed PDR enhancement. Initially, the delay is notably
higher in both scenarios, Figure 10b. In the Montreal scenario, the average delay in the
first 30 min is 1100 ms, and exhibits a steep decline, stabilizing at around the 3 h mark of
simulation time. Similarly, Barcelona shows an initial average delay in the first 30 min of
906 ms, which then decreases, leveling off at 285 ms after 3 h. This downward trend in
delay underscores Q-RPL’s ability to reduce latency as the system progressively adapts to
the network’s conditions.

An important consideration in our approach was how to use some routing metrics
to assist the Q-learning algorithm, specifically the RSSI and the ETX. We have illustrated
the influence of these metrics on the PDR over time in Figure 11a,b. These figures clearly
demonstrate how the inclusion of the RSSI metric speeds up the learning process. This
speed-up was expected due to the metric’s role in constraining exploration to nodes with
superior link quality. The difference observed between the protocol solely reliant on the
Q-learning algorithm and the variant incorporating the RSSI metric is more pronounced
in the Barcelona scenario, where the denser network of smart meters presents a wider
array of routing choices. Thus, the narrowing of exploration space by the RSSI metric has
more impact.

Figure 11a,b also depict the beneficial impact of integrating the ETX metric, used as
a tiebreaker as described in Algorithm 2. The inclusion of ETX improves the algorithm’s
performance in both scenarios. After 3 h of network operation, the data show a consistent
performance improvement of 2–3% in the final version of Q-RPL compared to the version
employing only Q-learning and RSSI. This enhancement underscores the value of ETX in
refining decision-making, leading to more effective and reliable parent selection.
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Figure 11. PDR progression in Montreal and Barcelona scenarios for different Q-RPL variants.

6. Technical/Critical Analysis and Recommendations for Deployment

In this section, we provide a comprehensive analysis of our research study, highlighting
both its technical aspects and critical insights gained through the development process. We
also offer recommendations for the deployment and usage of the Q-RPL protocol drawing
from the challenges encountered during our study.

6.1. Technical Analysis

Our study aimed to improve the performance of the RPL routing protocol by integrat-
ing the Q-learning algorithm into it. Throughout the development phase, we encountered
several technical challenges, the most notable being the construction and size management
of the Q-table. Initially, we considered including metrics directly in the Q-table, which
posed significant scalability issues. We opted for a simplified approach to overcome this
challenge, maintaining the Q-table size proportional to the number of neighbors of the
sending/forwarding node and integrating metric values into reward computations. This
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decision facilitated more manageable Q-tables while preserving essential information for
decision-making within the protocol.

Additionally, we focused on fine-tuning the learning parameters. Special attention
was given to the learning rate and the discount factor to balance the speed of convergence
against the stability of the learning process. The learning rate was calibrated to control
how quickly new information affected the Q-values, while the discount factor was adjusted
to weigh the importance of future rewards. These parameters were optimized based on
empirical results gathered from extensive simulations. This approach ensured that the
learning process was neither too fast nor too slow, which could hinder timely convergence
and adaptability in routing decisions. The selected settings demonstrated robust perfor-
mance across various network conditions, significantly enhancing routing efficiency, as
detailed in the results section.

6.2. Critical Analysis

A critical assessment of our approach reveals both strengths and limitations. For
example, as previously mentioned, the simplification of the Q-table construction mitigated
scalability concerns while maintaining the essential functionality of the Q-learning algo-
rithm within the RPL protocol. However, this approach comes at the cost of rebuilding
the Q-table whenever nodes are deployed in new scenarios or locations, thus requiring a
repeat of the learning process. Consequently, this method sacrifices the potential benefits
of transfer learning, where pre-trained Q-tables could serve as a starting point for further
training in varied environments.

Another important consideration in Q-RPL is the balance between exploration and
exploitation. Maintaining a degree of exploration is essential for discovering potentially
better routing paths. However, excessive exploration might lead to instability and ineffi-
ciency, particularly in critical applications where consistent and reliable performance is
paramount. For such applications or critical devices within the AMI network, it may be
necessary to differentiate the exploration and exploitation policies. Integrating a QoS-aware
strategy into Q-RPL could prevent critical data losses due to exploratory decisions, aligning
network performance with operational priorities.

6.3. Recommendation for Deployment

Transitioning from simulation to real-world deployment of the Q-RPL protocol re-
quires careful consideration to ensure it adapts effectively to actual network environments.
The following is a structured approach for deploying this protocol:

• Initial testbed trials: Begin with small-scale experiments on actual hardware to
understand how the protocol performs outside of simulation. This step is crucial for
identifying any unforeseen issues that were not apparent during the simulation study.

• Adaptation to hardware constraints: This step may be necessary to ensure that the
algorithm can operate efficiently without overwhelming device capabilities, maintain-
ing optimal performance even within resource constraints. This step is important if
initial evaluations indicate that the current learning algorithm exceeds the device’s
operational limits.

• Incremental deployment: Gradually increases the scale of deployment while contin-
uously monitoring system performance. This step allows for adjusting strategies in
response to real-world challenges and complexities as they arise.

• Performance monitoring and optimization: Continuously collect and analyze perfor-
mance data to optimize the protocol settings and adjustments.

7. Conclusions

The integration of Q-learning into the RPL protocol, named Q-RPL, represents a signif-
icant advancement in the adaptability and intelligence of routing decisions for Advanced
Metering Infrastructure networks. By retaining the core functionalities of RPL and augment-
ing them with a learning-based approach for parent selection, we ensure both the reliability
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of traditional methods and the advantages of adaptive learning. The modifications in DIO
messages for Q-value dissemination and the incorporation of ETX and RSSI metrics as
auxiliary decision-making tools further refine the routing process.

The simulation results from both the Montreal and Barcelona scenarios consistently
show the superior performance of Q-RPL compared to MRHOF, RPL+, ML-RPL, and
Rl-RPL in diverse and dynamic AMI environments. In terms of packet delivery ratio,
Q-RPL outperforms several benchmark routing protocols across various traffic applications.
In the Montreal scenario under traffic load 1, Q-RPL demonstrates, for instance, a 12%
improvement in the MR application compared to MRHOF, while for alarm events, it
surpasses RPL+ by 6%, Rl-RPL by 7%, and MRHOF by 10%. A similar trend is observed
using the Barcelona scenario, where Q-RPL achieves a 10% higher PDR than MRHOF
in the MR application and an 8% greater PDR compared to RPL+ and Rl-RPL in the PQ
application.

The end-to-end delay analysis reveals Q-RPL’s efficiency in maintaining low and
consistent delay values across traffic applications, especially under an increased network
load. In the Montreal scenario under traffic load 1, Q-RPL achieves a lower delay compared
to the other routing variants of the order of 50–200 ms on average for MR traffic, and the
difference in favor of Q-RPL becomes larger for AE and PQ traffic. This trend continues
with traffic load 2, where Q-RPL maintains stable and low median delay values while other
protocols such as MRHOF, RPL+, ML-RPL, and Rl-RPL experience increased variability.
The Barcelona scenario exhibits similar results, with Q-RPL consistently showing lower
median delay values and higher consistency compared to the MRHOF, RPL+, ML-RPL,
and Rl-RPL protocols across all traffic applications for both traffic loads, demonstrating its
adaptability to varying traffic conditions.

The compliant factor metric further highlights Q-RPL’s excellent performance in the
area of service quality. Q-RPL, in the scenario of Montreal under traffic load 1, consistently
achieves high CF values across all applications, outperforming other benchmark protocols
such as MRHOF, RPL+, ML-RPL, and Rl-RPL, demonstrating its ability to meet specific
application transit time requirements. Even under increased traffic load, Q-RPL maintains
the highest CF for the AE and PQ applications, showing its robustness and adaptability. The
results observed in the Barcelona scenario are consistent with those in Montreal, indicating
that the Q-RPL’s CF remains consistently above 94% across all traffic applications and
under traffic loads 1 and 2.

The adaptive learning capability of Q-RPL is shown in the evolution of average PDR
and end-to-end delay over time. The algorithm starts with modest performance during
the exploratory phase but steadily improves, reaching optimal PDR levels and minimizing
delays. This dynamic adaptability is a key strength of Q-RPL, contributing to its high
performance in changing network conditions.

In summary, the results obtained in this research strongly validate the promise of
integrating Reinforcement Learning into communication routing protocols, leading to
enhanced performance in AMI networks. Future work will focus on refining Q-RPL
with Quality of Service (QoS) considerations and exploring other Reinforcement Learning
models for further comparison. Specifically, we plan to investigate the potential of Deep
Q-Networks (DQN) to manage high dimensional state spaces effectively and improve
decision-making processes in dynamically changing network environments.
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AMI Advanced Metering Infrastructure
AUC Area Under the Curve
CF Compliant Factor
CTP Collection Tree Protocol
DAO Destination Advertisement Object
DAP Data Aggregation Points
DIO DAG information Object
DIS DODAG Information Solicitation
DODAG Destination-Oriented Directed Acyclic Graph
ETX Expected Transmission Count
EWMA Exponential Weighted Moving Average
GBDT Gradient Boosted Decision Tree
GPSR Geographic Routing Protocol
HWMP Hybrid Wireless Mesh Protocol
HYDRO Hybrid Routing Protocol
IoT Internet of Things
LLN Low-Power and Lossy Network

LOADng
Lightweight On-Demand Ad hoc Distance-vector Routing
Protocol–Next-Generation

MAC MAC Access Control
ML Machine Learning
MR Meter Reading
MRHOF Minimum Rank with Hysteresis Objective Function
OLSR Optimized Link State Routing Protocol
PDR Packet Delivery Ratio
PQ Power Quality
PRR Packet Reception Ratio
QoS Quality of Service
RF Random Forest
RL Reinforcement Learning
RPL Routing Protocol for Low-Power and Lossy Networks
RSSI Received Signal Strength Indicator
SGs Smart Grids
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Wi-SUNs Wireless Smart Utility Networks
WRF-RPL Weighted Random Forward RPL
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29. Gaddour, O.; Koubǎa, A.; Baccour, N.; Abid, M. OF-FL: QoS-aware fuzzy logic objective function for the RPL routing protocol.
In Proceedings of the 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks, WiOpt 2014, Hammamet, Tunisia, 12–16 May 2014; pp. 365–372. [CrossRef]

30. Harshavardhana, T.G.; Vineeth, B.S.; Anand, S.V.; Hegde, M. Power control and cross-layer design of RPL objective function
for low power and lossy networks. In Proceedings of the 2018 10th International Conference on Communication Systems and
Networks, COMSNETS 2018, Bengaluru, India, 3–7 January 2018; pp. 214–219. [CrossRef]

31. Darabkh, K.A.; Al-Akhras, M.; Ala’F, K.; Jafar, I.F.; Jubair, F. An innovative RPL objective function for broad range of IoT domains
utilizing fuzzy logic and multiple metrics. Expert Syst. Appl. 2022, 205, 117593. [CrossRef]

32. Prajapati, V.K.; Sharma, T.; Awasthi, L.K. Data Dissemination Framework for Optimizing Overhead in IoT-Enabled Systems
Using Tabu-RPL. SN Comput. Sci. 2024, 5, 343. [CrossRef]

33. Shetty, S.P.; Shetty, M.; Kishore, V.; Shetty, P. Trickle timer modification for RPL in Internet of things. Soft Comput. 2024, 28,
2621–2635. [CrossRef]

34. Duenas Santos, C.L.; Astudillo León, J.P.; Mezher, A.M.; Cardenas Barrera, J.; Meng, J.; Castillo Guerra, E. RPL+: An Improved
Parent Selection Strategy for RPL in Wireless Smart Grid Networks. In Proceedings of the 19th ACM International Symposium
on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, Montreal, QC, Canada, 24–28 October 2022;
pp. 75–82.

35. Raschka, S.; Mirjalili, V. Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow;
Packt Publishing Ltd.: Birmingham, UK, 2017.

36. Sun, Y.; Peng, M.; Zhou, Y.; Huang, Y.; Mao, S. Application of machine learning in wireless networks: Key techniques and open
issues. IEEE Commun. Surv. Tutorials 2019, 21, 3072–3108. [CrossRef]

37. Ridwan, M.A.; Radzi, N.A.M.; Abdullah, F.; Jalil, Y. Applications of machine learning in networking: A survey of current issues
and future challenges. IEEE Access 2021, 9, 52523–52556. [CrossRef]

38. Tang, F.; Mao, B.; Kawamoto, Y.; Kato, N. Survey on machine learning for intelligent end-to-end communication toward 6G: From
network access, routing to traffic control and streaming adaption. IEEE Commun. Surv. Tutorials 2021, 23, 1578–1598. [CrossRef]

39. Kim, B.S.; Suh, B.; Seo, I.J.; Lee, H.B.; Gong, J.S.; Kim, K.I. An Enhanced Tree Routing Based on Reinforcement Learning in
Wireless Sensor Networks. Sensors 2023, 23, 223. [CrossRef] [PubMed]

40. Zahedy, N.; Barekatain, B.; Quintana, A.A. RI-RPL: A new high-quality RPL-based routing protocol using Q-learning algorithm.
J. Supercomput. 2023, 80, 7691–7749. [CrossRef]

41. Alilou, M.; Babazadeh Sangar, A.; Majidzadeh, K.; Masdari, M. QFS-RPL: Mobility and energy aware multi path routing protocol
for the internet of mobile things data transfer infrastructures. Telecommun. Syst. 2024, 85, 289–312. [CrossRef]

42. Rabet, I.; Fotouhi, H.; Alves, M.; Vahabi, M.; Björkman, M. ACTOR: Adaptive Control of Transmission Power in RPL. Sensors
2024, 24, 2330. [CrossRef] [PubMed]

43. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998; p. 22447.
44. Raschka, S.; Liu, Y.H.; Mirjalili, V.; Dzhulgakov, D. Machine Learning with PyTorch and Scikit-Learn: Develop Machine Learning and

Deep Learning Models with Python; Packt Publishing Ltd.: Birmingham, UK, 2022.
45. IEEE Std 802.15.4-2020 (Revision of IEEE Std 802.15.4-2015); IEEE Standard for Low-Rate Wireless Networks. IEEE: Piscataway, NJ,

USA, 2020; pp. 1–800. [CrossRef]
46. Kim, H.S.; Cho, H.; Kim, H.; Bahk, S. DT-RPL: Diverse bidirectional traffic delivery through RPL routing protocol in low power

and lossy networks. Comput. Netw. 2017, 126, 150–161. [CrossRef]
47. OMNeT++ Discrete Event Simulator. Available online: https://omnetpp.org/ (accessed on 10 July 2024).
48. Adday, G.H.; Subramaniam, S.K.; Zukarnain, Z.A.; Samian, N. Investigating and Analyzing Simulation Tools of Wireless Sensor

Networks: A Comprehensive Survey. IEEE Access 2024, 12, 22938–22977. [CrossRef]
49. The ns-3 Network Simulator Project. ns-3 Network Simulator. Available online: https://www.nsnam.org/ (accessed on 29 April

2024).
50. Bartolozzi, L.; Pecorella, T.; Fantacci, R. ns-3 RPL module: IPv6 routing protocol for low power and lossy networks. In

Proceedings of the 5th International ICST Conference on Simulation Tools and Techniques, Desenzano del Garda, Italy, 19–23
March 2012; pp. 359–366.

51. Chen, Y.b.; Hou, K.M.; Chanet, J.P.; El Gholami, K. A RPL based Adaptive and Scalable Data-collection Protocol module for
NS-3 simulation platform. In Proceedings of the NICST 2103 New Information Communication Science and Technology for
Sustainable Development: France-China International Workshop, Clermont-Ferrand, France, 18–20 September 2013; p. 8.

52. El Ghomali, K.; Elkamoun, N.; Hou, K.M.; Chen, Y.; Chanet, J.P.; Li, J.J. A new WPAN Model for NS-3 simulator. In Proceedings
of the NICST’2103 New Information Communication Science and Technology for Sustainable Development: France-China
International Workshop, Clermont-Ferrand, France, 18–20 September 2013; p. 8.

53. Nagai, Y.; Guo, J.; Orlik, P.; Sumi, T.; Rolfe, B.A.; Mineno, H. Sub-1 ghz frequency band wireless coexistence for the internet of
things. IEEE Access 2021, 9, 119648–119665. [CrossRef]

http://dx.doi.org/10.1109/WIOPT.2014.6850321
http://dx.doi.org/10.1109/COMSNETS.2018.8328200
http://dx.doi.org/10.1016/j.eswa.2022.117593
http://dx.doi.org/10.1007/s42979-024-02694-8
http://dx.doi.org/10.1007/s00500-023-09564-0
http://dx.doi.org/10.1109/COMST.2019.2924243
http://dx.doi.org/10.1109/ACCESS.2021.3069210
http://dx.doi.org/10.1109/COMST.2021.3073009
http://dx.doi.org/10.3390/s23010223
http://www.ncbi.nlm.nih.gov/pubmed/36616821
http://dx.doi.org/10.1007/s11227-023-05724-z
http://dx.doi.org/10.1007/s11235-023-01075-5
http://dx.doi.org/10.3390/s24072330
http://www.ncbi.nlm.nih.gov/pubmed/38610541
http://dx.doi.org/10.1109/IEEESTD.2020.9144691
http://dx.doi.org/10.1016/j.comnet.2017.07.001
https://omnetpp.org/
http://dx.doi.org/10.1109/ACCESS.2024.3362889
https://www.nsnam.org/
http://dx.doi.org/10.1109/ACCESS.2021.3107144


Sensors 2024, 24, 4818 29 of 29

54. Leon, J.P.A.; Rico-Novella, F.J.; De La Cruz Llopis, L.J. Predictive Traffic Control and Differentiation on Smart Grid Neighborhood
Area Networks. IEEE Access 2020, 8, 216805–216821. [CrossRef]

55. León, J.P.A.; Santos, C.L.D.; Mezher, A.M.; Barrera, J.C.; Meng, J.; Guerra, E.C. Exploring the potential, limitations, and future
directions of wireless technologies in smart grid networks: A comparative analysis. Comput. Netw. 2023, 235, 109956. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.3041690
http://dx.doi.org/10.1016/j.comnet.2023.109956

	Introduction
	Related Work
	RPL Parent Selection Background 
	Q-RPL: Q-Learning-Based Routing Protocol Design 
	Q-Learning Algorithm
	State–Action Space Design
	Reward and Policy Design
	Integration into RPL

	Performance Evaluation
	Simulation Settings
	Montreal Scenario
	Barcelona Scenario
	General Discussion

	Technical/Critical Analysis and Recommendations for Deployment
	Technical Analysis
	Critical Analysis
	Recommendation for Deployment

	Conclusions
	References

