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Abstract: In strawberry cultivation, precise disease management is crucial for maximizing yields and
reducing unnecessary fungicide use. Traditional methods for measuring leaf wetness duration (LWD),
a critical factor in assessing the risk of fungal diseases such as botrytis fruit rot and anthracnose,
have been reliant on sensors with known limitations in accuracy and reliability and difficulties
with calibrating. To overcome these limitations, this study introduced an innovative algorithm for
leaf wetness detection systems employing high-resolution imaging and deep learning technologies,
including convolutional neural networks (CNNs). Implemented at the University of Florida’s
Plant Science Research and Education Unit (PSREU) in Citra, Florida, USA, and expanded to three
additional locations across Florida, USA, the system captured and analyzed images of a reference plate
to accurately determine the wetness and, consequently, the LWD. The comparison of system outputs
with manual observations across diverse environmental conditions demonstrated the enhanced
accuracy and reliability of the artificial intelligence-driven approach. By integrating this system into
the Strawberry Advisory System (SAS), this study provided an efficient solution to improve disease
risk assessment and fungicide application strategies, promising significant economic benefits and
sustainability advances in strawberry production.

Keywords: convolutional neural networks; disease management; fungal diseases; image processing;
precision agriculture

1. Introduction

Fungal diseases pose a persistent threat to strawberry crop yield, necessitating effective
disease management strategies for growers to maintain economic viability. Anthracnose
and botrytis fruit rot, exacerbated by specific environmental conditions, particularly leaf
wetness duration (LWD) and temperature, necessitate frequent fungicide applications [1].
Conventionally, growers rely on regular fungicide applications to mitigate disease pro-
liferation, resulting in increased production costs and potential environmental impacts.
However, the indiscriminate use of fungicides can lead to pathogen resistance.

Central to the proliferation of these fungal diseases is the presence of free water on
plant canopies, measured as leaf wetness duration (LWD), a crucial parameter for assessing
disease risk [2]. Accurate measurement of LWD enables growers to make informed deci-
sions regarding fungicide application timing, minimizing unnecessary fungicide use and
reducing selection pressure for resistance.

Recognizing these limitations, the Strawberry Advisory System (SAS, http://www.
agroclimate.org/sas, accessed on 1 March 2023) was developed to assist Florida’s straw-
berry growers in making informed decisions about fungicide applications. The SAS is a
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web-based decision support tool designed to provide guidance on the optimal timing for
fungicide applications to manage anthracnose and botrytis fruit rot outbreaks. Data col-
lected by the SAS are available on the AgroClimate website, providing weather monitoring
and disease incidence forecasting. The SAS traditionally relies on conductive flat-plate
leaf wetness sensors to estimate LWD. However, these sensors are rudimentary and pose
challenges, including calibration difficulties, maintenance requirements, and variability in
accuracy. While the SAS represents a significant advancement by integrating leaf wetness
data with other meteorological conditions, its reliance on conventional sensors underscores
the need for more precise and reliable wetness detection methodologies.

Several studies have explored the application of different techniques, such as em-
ploying capacitive proximity sensors and various mathematical models to address these
challenges, given that prolonged periods of leaf wetness are conducive to the germination
and penetration of pathogenic fungi into plant tissues [3,4]. Infrared cameras have also
been employed to detect water droplets based on temperature changes. Utilizing infrared
thermography, thermal imaging techniques detect the cooling effect of evaporation from
wet surfaces. This method is beneficial in large-scale monitoring, providing a non-invasive
way to detect leaf wetness across extensive agricultural fields [5]. Traditional methods for
measuring leaf wetness, such as mechanical and electronic sensors, have been pivotal in
monitoring this crucial parameter [6].

Recent studies have explored the feasibility of using imaging-based devices and lasers
for leaf wetness detection. Internet of Things (IoT) sensors and computer vision techniques
for environmental monitoring represent a significant leap forward in precision agriculture,
enabling more detailed and accurate analyses of crop conditions [7–9]. Laser reflection
was used to measure leaf wetness utilizing the fact that the presence of water changed the
reflected laser signal from the leaf surface, but the testing was conducted only under a
controlled environment [10]. Leaf wetness was also measured by illuminating a red laser on
a leaf surface as water presence on leaves reduces the red channel intensity, but this study
was also conducted only in a laboratory environment [11]. Another study demonstrated
measuring water molecules on a leaf surface using graphene oxide as a sensing film, but its
response time was slow (400 s) [12]. A geostationary satellite was also used to estimate leaf
wetness duration with machine learning algorithms [13].

Deep learning, a subset of AI focusing on neural networks with multiple layers,
has demonstrated remarkable success in image classification tasks, surpassing traditional
machine learning methods in both accuracy and efficiency [14,15]. Convolutional neu-
ral networks (CNNs), in particular, have been effectively applied in various agricultural
applications, including disease detection, plant species identification, and monitoring envi-
ronmental conditions [16–18]. The enhancement of such systems through the incorporation
of AI-based leaf wetness detection methods represents a crucial step toward more accurate
and reliable disease management strategies [19].

Initial implementations of a leaf wetness detection system at the University of Florida’s
Plant Science Research and Education Unit (PSREU) in Citra, Florida, USA, have shown
promising results, prompting the expansion of the project. The project was implemented
earlier in 2021 and since has been expanded to three other locations across Florida: Florida
AG Research, Dover; the University of Florida’s Gulf Coast Research and Education Center
(GCREC), Wimauma; and Fancy Farms, Plant City.

The objective of this study was to improve the in-field imaging-based leaf wetness
detection systems (named Imaging System hereafter) and evaluate their performance by
exploring the use of convolutional neural networks (CNNs). The camera quality of the
system in Plant City was upgraded to test for improvement in model performance. The
algorithm developed then divided the regularly acquired images into different categories
based on the time of the day of the image taken and the respective image quality. Since
different lighting conditions and weather conditions created different images, different
models were trained to classify different sets of data. For example, images with water
droplets due to rain on the camera lens were classified into a class different from images
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with dim lighting conditions due to cloudy weather. Through field trials conducted at
four separate locations during the strawberry growing season, the performance of the
developed system was assessed against manual observations and SAS data.

2. Materials and Methods

A wetness detection system previously developed and placed at the Plant Science
Research and Education Unit (PSREU) of the University of Florida (UF) in Citra, FL, USA,
used a relatively lower resolution camera (Wyze Web camera v2, Wyze Labs, Seattle, WA,
USA). The same system was also set up at two other locations: the Gulf Coast Research
and Education Center (GCREC) of the University of Florida, Wimauma, Florida, USA, and
Florida AG Research, Dover, FL, USA. The systems at these locations collected data from
May 2023 to April 2024. All these systems were placed adjacent to the strawberry fields
no farther than 10 m from the fields. In October 2023, a new system with a new camera
(details below) was developed and installed at a commercial strawberry field (Fancy Farms)
in Plant City, FL, USA, the data obtained from which were used in this study.

Figure 1a shows the system setup at PSREU in Citra, and Figure 1b,c show similar
systems placed at Dover and GCREC, respectively. Figure 2a,b show the new system placed
at Fancy Farms, Plant City.
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2.1. System Design and Setup

The new system setup used the following components:

a. A High-Resolution Camera: To improve the resolution of the images to facilitate the
detection of droplets of smaller sizes, a switch to a high-definition camera was made.
A Raspberry Pi Camera Module 3 (Raspberry Pi Foundation, Cambridge, UK) was
used in the new system that took images at a resolution of 4608 × 2592 pixels, whereas
the previous camera (Wyze Web camera v2, Wyze Labs, Seattle, WA, USA) only took
images of resolution 1920 × 720 pixels. This huge improvement in the resolution
enabled a better observation of smaller water droplets on the reference plate.

b. Reference Plate: A flat white non-reflective reference plate was used. The reference
plate is made of an acrylic sheet (Duraplex Clear Acrylic Sheet, Duraplex, Brick,
NJ, USA) and is painted with a non-reflective flat white paint (Flat White General
Purpose Spray Paint, Rust-Oleum, Vernon Hills, IL, USA). The plate was made
sure to be flat without bumps so as not to be confused by the model with a water
droplet. The previous plate size was 20.3 cm × 25.4 cm, but the size was reduced
to 12.7 cm × 19 cm to bring the panel dimensions closer to the commercial wetness
sensor dimensions.

c. LED Lighting: To accommodate the night-time image capturing, two white LED lights
were used for night-time illumination. These lights were controlled by the computing
unit so that they were turned on only during the image capturing instances to save
power and avoid attracting insects. The LEDs were placed such that the light fell on
the plate at approximately a 10-degree angle to extenuate the droplet shadows for
better detection.

d. Computing Unit: A single-board computer (Raspberry Pi 3, Raspberry Pi Foundation,
Cambridge, UK) was used as the processing unit for the system. It took care of
periodically acquiring the images using the camera, turning the LEDs on during the
image capturing process, saving the files, cropping the images, uploading the images
to Google Drive through a connected wireless modem (Verizon Jetpack MiFi 8800L,
Verizon Communications Inc., New York City, NY, USA), and running the wetness
detection algorithm through the obtained images.

e. Solar Panel Setup: Two solar panels (Renogy 100 Watt 12 Vol Monocrystalline Solar
Panel, Renogy, Thailand) of 100 W power each with a battery (Deep Cycle AGM
Battery 12 Volt 100Ah, Renogy, Thailand) of 100 Ah were used with a charge controller
(Wanderer Li 30A PWM Charge Controller, Renogy, Thailand) to provide the power
to the system.

2.2. Data Collection and Model Training

As shown in Figure 3, the camera took an image of the reference plate every 15 min.
Each image was taken at the full resolution of the camera: 4608 × 2592 pixels. The original
images were stored separately, and the cropping algorithm cropped the images to the
center to only include the reference plate and exclude the background, since the droplets
could only be observed on the reference plate. The images were cropped to the center at a
resolution of 2100 × 1600 pixels.
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The data were collected from 30 October 2023 to 29 March 2024, comprising 9429 im-
ages. These images were divided into a 90% training set (including the validation set) with
8485 images and a 10% test set with 944 images.

2.3. Image Processing and Algorithm Development

The current benchmark stands at 94.4% accuracy when compared to manual observations [16].
The drawbacks of the previous model consisted of detecting smaller droplets and detection during
ambient conditions which were worsened by the image quality of the older low-resolution camera.
In this study, the goal was to surpass the current benchmark accuracy obtained by the previous
model, when compared to manual observations and to the wetness data from the Strawberry
Advisory System (SAS). The labels for the manual observations were assigned by manually looking
at every image in the collected dataset and subsequently assigning the respective label based on
the presence of water droplets in the image.

The Strawberry Advisory System (SAS) employs a sophisticated data collection strat-
egy to optimize the timing of fungicide applications. The SAS utilizes Campbell Scientific
model 237 sensors, placed in various locations within the fields. To enhance the reliability
of the wetness data, the SAS integrates outputs from four distinct leaf wetness models.
This multi-model system helps resolve discrepancies when sensor readings do not align,
ensuring a more accurate assessment of the leaf’s wetness state. Each model processes data
independently, and a consensus approach determines the final wetness status based on the
majority agreement among the models. The system further refines the data through algo-
rithmic processing, which assesses the combined sensor and model outputs. This process
ensures that the advisory system provides the most accurate and timely recommendations
for fungicide application.

The proposed method in the current study was to use a higher-resolution camera to
enable the observation of smaller droplets and detection during ambient conditions with
better quality images and to use multiple models for detection instead of using a single
model for the entire dataset.

The proposed wetness detection algorithm consisted mainly of two steps, Time-of-Day
classification and wetness classification, which are explained below. For the following
section, the image shown in Figure 4a will be considered a “regular image instance” with
usual sunny lighting conditions for comparison.

a. Time-of-Day Classification: The entire dataset consisted of images of a wide variety
of illumination conditions, droplet sizes, brightness levels, clarity levels, and weather
conditions. The droplet appearances in all these classes varied greatly. Using a single
model to learn the features in all the conditions might not be the optimal solution.
Hence, this proposed algorithm first classified the images into the following five
categories:

(1) Blue: These images were taken during dawn or at dusk and had some blueish
tint over the image. Since these images had different compositions of the
intensity values over the three channels, the features in these instances were
different from a regular image. The visibility of the droplets was not optimal
since the droplet shadows were not entirely visible. This class required a
more complex model to preprocess the images to bring up the model visibility.
Figure 4b shows an example image of a Blue class image.

(2) Blurry: There were some instances in the dataset where when it rained a lot;
the water droplets also covered the camera lens and made the entire image
blurry as a result. These images were relatively easier to classify since they
stood out from a regular image. These images can directly be classified as Wet
since the droplets are what makes an image class Blurry. Figure 5a shows an
instance where the lens was covered with water droplets making the entire
image blurry.

(3) Cloudy: These images were the ones that were taken during cloudy weather
conditions. These conditions made the image tone look more grayish. As a
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result of low brightness and lack of a uni-directional light source, these images
had ambient lighting conditions where the droplet visibility was also reduced.
Similar to the Blue class images, these images needed a model of a relatively
higher complexity. Figure 5b shows an example of a Cloudy image.

(4) Day: A Day class image (Figure 4a) was one taken on a sunny day with no
clouds obscuring the sun. This is what was established as a regular image.
The sunlight made the droplet visibility good and all parts of the image
were distinguishable.

(5) Night: These images were taken at night, when there is no light from the sun.
Night class images were solely illuminated by the artificial illumination source,
the LEDs. Since these LEDs were already optimally placed to maximize the
droplet shadows, this class of images is the easiest, in theory, to detect the
droplets. Figure 6 shows a Night class image.
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Figure 6. An image taken during the Night.

This Time-of-Day classification took uncropped images, since the image background
also has a lot of information regarding the illumination conditions. The model trained on
this classification was also provided with the time when the image was taken to better
classify the images into the five categories. When an image was taken, the timestamp of
the exact instant was also stored with the image itself. When the image data were provided
to the model for training and testing, the timestamp data of the specific image were also
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provided. The timestamp was in 24-h format stored with year, month, date, hour, minutes,
and seconds. Only the two values, hour and minutes, were provided to the model, as
shown in Figure 7, where the time value accounted for an additional two parameters (hour
and minutes). Furthermore, since the visual signature of the time of the image taken could
be observed in the lighting conditions and the detail in the image did not matter, the images
for this classification were resized down to 224 × 224 pixels from the original images size
of 4608 × 2592 pixels, making sure that the visual signature was not lost. The model
architecture used for training on these Time-of-Day classifications is illustrated in Figure 7.
The training set for this model training included 9429 images and the test set included
944 images. The time element was introduced in the first dense layer by concatenating the
time information to the flattened output from the last convolutional layer. This enabled the
model to consider the time of the image and make the classification more sensible.
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b. Wetness Classification: After classifying the images into Time-of-Day categories, these
images of different classes were independently trained using CNN-based wetness
detectors. A training set of 2784 images, a validation set of 280 images, and a test
set of 310 images were used for this classification. Since the Blurry images already
had droplets in them, they were directly classified as Wet. Due to the observed high
correlation between the Blue and Cloudy images, a single model was trained on the
combined dataset of Blue and Cloudy images for wetness classification. Figure 8
shows typical examples of Wet and Dry images during the Day. Because of the
presence of brighter and stronger sunlight, the visibility of the water droplets is also
increased. Figure 9 shows typical Wet and Dry images at Night. In the Night images,
the droplet visibility is exaggerated due to the angle of the illumination.
A wetness detector CNN model architecture used for the wetness classification of the
images is shown in Figure 10. As can be observed from the illustration, it is apparent
that the model is much simpler and computationally lighter compared to the previous
model by Patel et al. (2022) [16] or the Time-of-Day classifier.
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Figure 10. The architecture of the model layers used for the wetness classification.

Table 1 shows the number of images used in the training, validation, and test sets for
the Time-of-Day classification and all the wetness classifications. The Time-of-Day dataset
included images from all the classes, whereas the wetness classification datasets included
only the datasets of the respective classes.
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Table 1. Dataset sizes used for the Time-of-Day and wetness classifications.

Time-of-Day Blue and Cloudy Day Night

Training Set Size 7637 2784 2565 3285
Validation Set Size 848 280 256 296

Test Set Size 944 310 385 385
Total 9429 3374 3206 3966

2.4. Evaluation Methods

Several evaluation metrics can be used to assess the performance of these models.
However, since this task is a classification task, the accuracy score proved to be the best
metric. The accuracy score can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP = True Positives, TN = True negatives, FP = False Positives, and FN = False Negatives.
The results from the obtained models were compared to manual labels, the data

obtained from the Strawberry Advisory System (SAS), which uses a combination of two
leaf wetness sensors and LW models [20], and the results from the previous model. The
comparisons were carried out by calculating correlations, accuracy scores, precision scores,
recall scores, and plotting confusion matrices.

3. Results

The models were trained to classify the images with manual labels. Figure 11 shows
the learning curve obtained from training the model shown in Figure 7 on the Time-of-Day
classification dataset. It is apparent from the learning curves that the accuracy increases in
an expected fashion and the loss decreases normally. The training was stopped after just a
few epochs when the model started to overfit. The stochasticity in the curves is a result of
training the model with a smaller batch size.
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Figure 11. Learning curves of the Time-of-Day classification model.

Figure 12 shows the learning curves obtained from training a model, as shown in
Figure 10, on the wetness classification dataset. The accuracy also increases, and the loss
decreases normally right before it starts to overfit. In this case too, the training was stopped
after just a few epochs when the model started to overfit. Early stopping was implemented
so that only the best model with the best (least) validation loss in the epochs was saved
for testing.
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the Blue class images were also misclassified as Cloudy images. This was because the Blue 
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3.1. Results from the Time-of-Day Classification

The model trained on the Time-of-Day classification outputted the following results:
the training accuracy was 95.3%, the validation accuracy was 92.9%, and the test accuracy
was 92.0%.

A more in-depth analysis of these results can be inferred from the confusion matrix.
Figure 13 shows the normalized confusion matrix of the Time-of-Day classification results
on the test set. The diagonal numbers in the matrix represent the percentage of the total
images that were correctly classified. The model excels at classifying Cloudy, Day, and
Night class images, which is apparent from the higher percentages in the diagonal entries
corresponding to the Cloudy, Day, and Night classes. However, the model needs improve-
ment in the Blue and Blurry classes, since these diagonal entries have fewer percentages
representing the images correctly classified. From the matrix, it is also apparent that the
Blue class images were also misclassified as Cloudy images. This was because the Blue
class images were closely correlated with the Cloudy class images, for which the reason
found was the low-intensity levels in the Blue and Cloudy classes. Hence, a single model
was used to classify the Blue and Cloudy images into Wet or Dry instances in the wetness
classification stage.
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3.2. Results from the Wetness Classification

A model was trained on the combined dataset of Blue and Cloudy class images due to
their close resemblance. The accuracy results are as follows when compared to the manual
labels. The training accuracy was 98.2%, the validation accuracy was 97.9%, and the test
accuracy was 97.4%.

From the confusion matrix of these results shown in Figure 14, the model perfectly
isolated the Dry class images, although there was a small error in classifying Wet images.
This makes sense because since the lighting conditions of these images were relatively poor,
the droplet visibility was largely reduced, which made the model mistake a Wet instance as
a Dry instance.
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Another model was trained on the dataset of Day class images, whose accuracy results
are as given when compared to the manual labels. On a training set of 2565 images, the
training accuracy was 99.6%. On a validation set of 256 images, the validation accuracy
was 96.5%, and on a test set of 385 images, the test accuracy was 98.9%.

The normalized confusion matrix of Day classification results is shown in Figure 15.
Similar to the Blue–Cloudy model, the Day classification model also perfectly isolated
the Dry class images, although there was a small error in classifying Wet images. The
reason stays the same since during the very early stages of the dawn, the angle of the
sun was so low that the reference plate was not fully illuminated, making the visibility of
droplets difficult.
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Finally, a different model was developed and trained on the dataset of Night class images.
Since these images were the easiest of the whole dataset, a model with relatively lower
complexity was used with a smaller number of convolutional kernels. The accuracy results
are as provided when compared to the manual labels. On a training set of 3285 images, the
training accuracy was 98.8%. On a validation set of 296 images, the validation accuracy was
97.5%, and on a test set of 385 images, the test accuracy was 97.3%.

The normalized confusion matrix of Night classification results is shown in Figure 16.
Unlike the previous models, the Night classification model had both False Positives and
False Negatives. The main reason for the False Positives (Wet classified as Dry) was that the
instances of dew onsets had very small droplets and the model could not detect them. The
False Negatives (Dry classified as Wet) happened when dust particles on the plate were
falsely detected as water droplets.
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3.3. Overall Algorithm Results

Combining all the trained models into one algorithm, the overall result was calculated
on a test set of 8896 images as shown in Table 2. The overall accuracy for the manual labels
was 95.8%, and when compared to SAS data, it was 83.8%. The confusion matrix of the
entire algorithm is shown in Figure 17.

Table 2. Accuracy scores of the overall algorithm.

Comparison Accuracy Scores

Number of images 8896
Manual observation vs. Image detection system 95.8%

Manual observation vs. SAS 90.3%
Image detection system vs. SAS 83.8%
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4. Discussion

From the results presented in the last section, it can be concluded that there is a
significant improvement in the model performance compared to the one presented by
Patel et al. (2022) [16]. The new algorithm performed well, resulting in a correlation of
95.75% when compared to manual observations. This correlation dropped to 83.78% when
compared to the SAS data, although the correlation between SAS data and the manual
observations was 90.30%.

Upon careful inspection of the data from all three sources, the LWD (or wetness durations)
in the Imaging System predictions and the manual observations was lower than that from the
SAS data. The wetness durations were shorter in the Imaging System predictions, meaning the
system was detecting wetness with a higher threshold, as illustrated in Figure 18. The manual
observations had wetness for slightly longer durations, and the SAS data had the longest,
meaning that the SAS data were detecting wetness with the lowest threshold. The reason
for the highest correlation between manual observations and Imaging System predictions,
followed by the correlation between manual and SAS data, and the least correlation between
SAS and system predictions can be inferred from Figure 18.
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Figure 18. Illustration of the differences in correlations of wetness durations (LWDs).

Looking at the strengths of the algorithm, images where the droplets were clearly
visible had no difficulty in being classified into Dry or Wet. Figure 19 shows example
images of a Dry instance and a Wet instance from the Night class where the new algorithm
succeeded in correctly classifying them into Wet or Dry classes. Figure 20 shows example
images of a Wet instance and a Dry instance from the Day class where the new algorithm
succeeded in the correct classification of images.
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tives are the instances that are actually Dry but classified by the algorithm as Wet. Figure 
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the system predicted Dry instead of Wet because, most of the time, the water droplets 
were not so clearly visible due to their very tiny size (less than 1 mm). This was mostly 
during the onset of dew formation, where the droplet size was very small, as shown in 
Figure 22a, inside the red frame. Figure 22b shows an example of an instance where the 
droplets were lower in number. As in the case of Figure 22b, only one droplet can be ob-
served encircled by a red circle. 
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during the onset of dew formation, where the droplet size was very small, as shown in 
Figure 22a, inside the red frame. Figure 22b shows an example of an instance where the 
droplets were lower in number. As in the case of Figure 22b, only one droplet can be ob-
served encircled by a red circle. 

Figure 20. Correctly classified instances during the Day: (a) Wet image and (b) Dry image.

The overall algorithm has a small error in this classification, as can be observed
from Figure 17. From the confusion matrix, 3.1% of False Positives can be observed.
False Positives are the instances that are actually Dry but classified by the algorithm as
Wet. Figure 21 shows a few examples of the False Positives. Occasionally, dust particles
accumulated on the reference plate and contributed to the wetness detection error. This
remained a problem for the current system, as shown by the red box in Figure 21a. Some
insects flying over the reference plate also contributed to this error, as shown by the red
circle in Figure 21b.
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Figure 21. False positives due to: (a) dust particles all over the image and (b) insects on the reference
plate indicated by the red circle.

The False Negatives were the ones that were indeed Wet but were classified as Dry by
the algorithm. False Negatives contributed 7.5% to the total error. For these instances, the
system predicted Dry instead of Wet because, most of the time, the water droplets were
not so clearly visible due to their very tiny size (less than 1 mm). This was mostly during
the onset of dew formation, where the droplet size was very small, as shown in Figure 22a,
inside the red frame. Figure 22b shows an example of an instance where the droplets were
lower in number. As in the case of Figure 22b, only one droplet can be observed encircled
by a red circle.
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Figure 22. False Negatives due to: (a) dew onset with very tiny droplets and (b) lower number
of droplets.

Even with the improved performance, the new system still has some room for im-
provement. During this research, some issues were encountered such as color degradation
of the reference plate, power outages, and network connectivity issues. The most important
problem with this setup is that the reference plate will degrade after roughly five months
and will need to be repainted or replaced. This happens due to various factors such as
dust, overexposure to the sun, and bird droppings, and manual maintenance is needed
for the system to keep running for longer than half a year. These reasons also contributed
to the False Positives in the results. In the future, these problems can be overcome by
implementing wipers, or different materials for the reference plate, bypassing the need for
manual maintenance. Furthermore, the challenge of detecting very tiny droplets during the
onset of dew can be tackled with the application of time series models, which can capture
the phenomenon of growing droplets [21].

5. Conclusions

This research presents a significant advancement in precision agriculture with the
development of a highly accurate leaf wetness detection system using imaging and deep
learning. By employing convolutional neural networks to analyze high-resolution images
of a reference plate, this study introduces an innovative divide-and-conquer approach
that classifies images based on different times of the day and weather conditions. The
introduction of high-definition cameras enabled the detection of smaller water droplets,
enhancing the system’s sensitivity and precision. This method has been shown to enhance
the reliability of leaf wetness measurements, which are critical for managing fungal diseases
in many crops.

The system achieved an overall accuracy of 95.75%, demonstrating its efficacy in
detecting leaf wetness with high precision. The implementation of this advanced detection
system within the SAS may improve decisions about fungicide applications and has the
potential to be expanded to other disease support systems. Further improvement could
focus on the detection of smaller droplets during the onset of dew formation, possibly by
integrating time series predictive models to track and predict changes in wetness over time.
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