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Abstract: Nowadays, control is pervasive in vehicles, and a full and accurate knowledge of vehi-
cle states is crucial to guarantee safety levels and support the development of Advanced Driver-
Assistance Systems (ADASs). In this scenario, real-time monitoring of the vehicle sideslip angle
becomes fundamental, and various virtual sensing techniques based on both vehicle dynamics mod-
els and data-driven methods are widely presented in the literature. Given the need for on-board
embedded device solutions in autonomous vehicles, it is mandatory to find the correct balance
between estimation accuracy and the computational burden required. This work mainly presents
different physical KF-based methodologies and proposes both mathematical and graphical analysis
to explore the effectiveness of these solutions, all employing equal tire and vehicle simplified models.
For this purpose, results are compared with accurate sensor acquisition provided by the on-track
campaign on passenger vehicles; moreover, to truthfully represent the possibility of using such virtual
sensing techniques in real-world scenarios, the vehicle is also equipped with low-end sensors that
provide information to all the employed observers.

Keywords: vehicle state estimation; vehicle dynamics; extended Kalman filter; unscented Kalman
filter; sideslip angle; virtual sensing

1. Introduction

The automotive industry is continuously evolving toward an increasing level of vehicle
automation in accordance with the necessity of improving passenger safety and comfort
to reduce the number of road accidents. To answer this crucial social challenge, one of
the priority areas involved in the research field of vehicle dynamics concerns the design
and development of ADASs (Advanced Driving Assistance Systems) that optimize vehicle
interaction with humans and with the external environment (road, weather conditions, tire
conditions) [1–11].

In this scenario, on one hand, accurate knowledge of the vehicle’s instantaneous
state is crucial to optimize the control logic [12–18]; on the other hand, some physical
variables can be measured only by employing expensive high-end sensors, making it hard
to ensure the large-scale availability of the designed system. In particular, the knowledge
of the vehicle sideslip angle is essential in vehicle lateral dynamic applications, such as
stability control and trajectory planning for autonomous vehicles [19,20]. However, its
on-board measurement requires high-cost vehicle-sensors equipment. Therefore, to extend
the application to a less customized scenario, virtual sensing techniques are adopted to
allow the estimation of the sideslip angle only employing low-end sensors, which are
suitable for mass-production vehicles [21–30].

Three main sideslip angle estimation approaches are currently available in the litera-
ture: kinematic-based, tire model-based, and data-driven approaches.
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Data-driven approaches are usually designed to achieve accurate results in both linear
and nonlinear vehicle operating conditions, employing AI methodologies to capture the
vehicle state toward the measured available signals [31–35]. The main disadvantage of this
approach is related to the necessity of a large and diversified dataset covering the entire
vehicle operating range in order to perform the tuning of the algorithm without incurring
the overfitting risk.

Instead, the kinematic estimator only includes kinematic relationships employing
the real-time measurement of accelerations, yaw rate, and wheel linear velocities. In this
case, the calibration routine of the tire and vehicle model is not required, and the estima-
tion process is robust toward tire parameter variations [36–39]. However, the estimator
becomes unobservable when the vehicle yaw rate approaches zero and the estimation
accuracy is strongly affected by the sensors’ noise, resulting in cumulated errors due to the
integration process.

The current paper focuses on the dynamic tire model-based approach, which involves
the implementation of a dynamic model adopting the vehicle equilibrium equations and
employing a tire model to calculate the forces acting at the ground plane, which are
dependent on the instantaneous kinematic state of the vehicle [40–46]. Although this
approach is more accurate and less corrupted by noise with respect to the previous one,
it is significantly sensitive to the reliability of the identified tire parameters and to the
capability of the estimator to capture the tire dynamics both in the linear and nonlinear
regions [47–50].

In this scenario, the model selection plays a crucial role in optimizing the estimator
design: in the current work, the 3-dof single-track model has been adopted. Although
this formulation is less accurate than others discussed in the literature, which employ
a multibody modeling approach [51–55], it requires a simpler parametrization ruotine.
Moreover, since the vehicle model is integrated within an observer architecture [56–60],
the formulation has to satisfy the observability condition: the available measurements
have to uniquely define the state to optimize the correction based on the instantaneously
acquired signals. Using the single-track approach makes it easier to respect this criterion
also employing a minimum number of measurements, since the model equations are
easily invertible.

In this regard, techniques based on the Kalman filter logic are frequently employed to
build the mentioned observer architecture, including the model equations and the mea-
surement corrections. These algorithms could be designed with differing formulations,
depending on the required level of complexity. In those conditions where the vehicle
dynamics could be simulated through a linear formulation, the extended Kalman filter
consists of the most employed solution to accurately perform the estimation without in-
creasing the computational cost of the estimator [61–63]. However, when the vehicle moves
toward strongly nonlinear conditions, the estimation errors due to linearized formulation
become non-negligible, leading to the necessity of employing more accurate and complex
estimation logic [64–66].

The paper proposes qualitative and quantitative comparisons to evaluate the per-
formance of differing Kalman filter-based methodologies, characterized by increasing
complexity, to estimate the vehicle sideslip angle, with the aim of maximizing the balance
between accuracy and computational cost, also accounting for the deviation of the vehicle
behavior from the nonlinear range. A unique single-track model has been designed and
calibrated through an identification routine based on experimental data, and the estimation
process has been performed using a fixed set of on-board measurements, which are com-
monly available on mass-production vehicles. Compared to previous existing works [67],
the analysis has been performed by dividing the experimental data in differing driving
conditions to verify the improvement provided by highly nonlinear formulations in each
explored vehicle operating range compared with the simplest EKF implementation.

The experimental campaign also provided accurate measurements for the validation
of the estimator, allowing the comparison of the estimation results with an accurate experi-
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mental target. Moreover, since the aim is to analyze the results both in linear and nonlinear
working conditions, the data collection has been carried out by exploring vehicle behavior
in differing maneuvers.

The paper is structured as follows: Section 2 provides an overview of the various
Kalman filter typologies available in the current state of the art, including an accurate
analytical description of their respective architecture. Section 3 describes the model-based
approach employed within the estimation procedure, including the mathematical formula-
tion of the vehicle model, tire model, and measurement update equations. In Section 4, the
experimental activity required for the tire model characterization and the filters’ valida-
tion is reported, both describing the vehicle-sensors equipment and specifying the signals
used in the estimation logic. The results are presented in Section 5 and discussed in the
conclusions in Section 6.

2. KF-Based State Estimation Techniques

Model-based estimation design deals with compromising the output’s accuracy and
the level of complexity. Various kinds of observers are presented in the literature; this work
is mainly based on the Kalman filter (KF) [68]. The original formulation was thought to
be applied to linear systems; however, it is well known that real systems are, in general,
hardly nonlinear. To better understand these kinds of filters, it is mandatory to provide the
reader with some general context to this approach. In 1960, R.E. Kalman defined a recursive
solution to the discrete-data linear-filtering problem. The presented approach involves the
use of a set of mathematical relations that generates an estimate of the process’s state in a
way that minimizes the mean of the squared error. Linear processes can be formulated in
discrete-time form through process and measurement equations. The general formulation
is now introduced (Equations (1) and (2)):

xk = A xk−1 + B uk−1 + W wk−1 (1)

zk = H xk + V vk (2)

where

• xk is the state vector at time step k.
• uk−1 is the input vector at time step k−1.
• A is the matrix that dynamically describes the state’s evolution.
• B is the matrix that correlates the input and state variables, which is also known as the

control matrix.
• H is the measurement matrix.
• W and V are the process and measurement noise matrices.

In general, xk is a column vector with N elements depending on the complexity of the
system, while wk and vk represent the process and measurement noise with Q and R being
the correspondent covariance matrices. The set of equations of the KF-filter is divided into
time update equations and measurement update equations (Figure 1).

In discrete KF filter logic, time update equations (Equations (3) and (4)) provide the
evolution of the system a priori, and they rely only on the system model:

x̂−k = A x̂k−1 + B uk−1 (3)

P−
k = A Pk−1 AT + W Q WT (4)

where x̂−k indicates the a priori estimated state at time step k, Pk−1 the state covariance at
time step (k−1), P−

k the a priori state covariance at time step k. On the other hand, the
measurement update equations (Equations (5)–(7)) allow to correct the a priori estimation
based on chosen measurement, hence providing the a posteriori estimation of the state:

Kk = P−
k HT(H P−

k HT + V R VT)−1 (5)
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x̂k = x̂−k + Kk(zk − H x̂−k ) (6)

Pk = (I − Kk H) P−
k (7)

where Kk is denoted as the Kalman gain, which provides a weighting method between
the actual measurement zk and their prediction H x̂−k . It is worth noticing that covariance
matrices P, W and V are semi-positive definite. While the basic KF filter provides a
suitable solution for the estimation of linear equation systems, its applicability is generally
restricted in wider scenarios. In the automotive field, vehicle dynamics models are usually
strongly nonlinear, leading to the frequent adoption of the first-order extended Kalman
filter (FO-EKF).

Figure 1. The Kalman filter cycle.

2.1. Extended Kalman Filter

For nonlinear stochastic difference equations, the equations can be rewritten as follows
(Equations (8) and (9)):

xk = f (xk−1, uk−1, wk−1) (8)

zk = h(xk, vk) (9)

The generic function f relates the state at the previous time step k−1 to the state at the
current time step k. The main concept of this formulation is to linearize the system, at each
time step, around the estimated state of the system at the previous time step, by employing
the Jacobian matrices (Equations (10)–(13)):

Ak[ij] =
∂ f [i]
∂x[j]

(x̂k−1, uk−1, 0) (10)

Wk[ij] =
∂ f [i]
∂w[j]

(x̂k−1, uk−1, 0) (11)

Hk[ij] =
∂h[i]
∂x[j]

(x̂−k , 0) (12)

Vk[ij] =
∂h[i]
∂v[j]

(x̂−k , 0) (13)

where Ak[ij], Wk[ij],Hk[ij], and Vk[ij], are the generic element of, respectively, Ak, Wk, Hk, and
Vk, on row i and column j, and fi, hi,xi, vi, and wi represent the i-th element of, respectively,
f, h, x, v, and w. Therefore, the equation contains the Jacobian matrices of the partial
derivatives of the process and measurement functions with respect to the state and the
noise. Time update equations (Equations (14) and (15)) are now introduced to describe the
evolution of the EKF:

x̂−k = f (x̂k−1, uk−1, 0) (14)

P−
k = Ak Pk−1 AT

k + Wk Qk−1 WT
k (15)
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and the a posteriori equations (Equations (16)–(18)) are

Kk = P−
k HT

k (Hk P−
k HT

k + Vk Rk VT
k )−1 (16)

x̂k = x̂−k + Kk(zk − h(x̂−k , 0)) (17)

Pk = (I − Kk Hk) P−
k (18)

Despite the efficient solution provided by the introduction of the EKF to estimate the
state of a nonlinear system, some important aspects need to be underlined. They can briefly
be summarized:

• The calculation of Jacobian matrices may be computationally demanding; this problem
is amplified in scenarios where partial derivatives have to be evaluated online at each
time step.

• The linearization process results in accurate estimation only when the error propaga-
tion can be well approximated by a linear model.

Many studies have been proposed in order to overcome these flaws. Some of them
relate to the introduction of high-order Kalman filters or more sophisticated versions of the
EKF [65,69–72].

2.2. Iterated Extended Kalman Filter

The main concept behind the iterated extended Kalman filter (I-EKF) is acting on the
linearization error by reformulating the Taylor series expansion around the a posteriori
state estimate [57]. The process can be iterated multiple times; however, the majority of the
possible improvement is obtained after the first relinearization, as stated in the literature.
For the sake of completeness, it should be mentioned that the second-order extended
Kalman filter (SO-EKF) can be employed also, and its main feature involves performing a
second-order Taylor expansion of process equations. The main difference between the two
approaches can be found in the iteration cycle that aims at refining the measurement update
equations at generic time k. The mathematical set of equations is equal to the previously
introduced FO-EKF except for the adoption of a recursive update of the state estimate using
the best state estimate available [57]. See Algorithm 1.

Algorithm 1 Iterated Extended Kalman Filter Algorithm

1: x̂0 ▷ Define initial state
2: P0 ▷ Define initial state covariance
3: for k = 1 to T do
4: x̂−k = f (x̂k−1, uk−1, 0) ▷ a priori state estimate
5: P−

k = Ak−1Pk−1 AT
k−1 + Q ▷ a priori state estimate covariance

6: x̂k,1 = x̂−k
7: for i = 1 to N do
8: zk,i = h(x̂k,i, uk, 0)− Hk,i(x̂−k − x̂k,i) ▷ a priori measurement estimate
9: Kk,i = P−

k HT
k,i(Hk,iP−

k HT
k,i + R)−1 ▷ Kalman gain

10: x̂k,i+1 = x̂−k + Kk,i(yk − zk,i) ▷ a posteriori state estimate
11: Pk,i+1 = (I − Kk,i Hk,i)P−

k ▷ a posteriori state estimate covariance
12: end for
13: end for

2.3. Simply Unscented Kalman Filter

An unscented Kalman filter (UFK) provides an alternative approach to propagate
state and error covariance during a nonlinear process, applying the transformation on
single points rather than on a Gaussian distribution. The algorithm performs the nonlinear
transformation on a set of so-called sigma points (Equations (19)–(21)), whose sample pdf
well approximates the pdf of the instantaneous state estimate. The described approach
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ensures robustness to evaluate high-order nonlinear state evolution, also employing a
reduced number of sigma points. If x is a [nx1] vector that is transformed by the nonlinear
function y = f (x), the 2n sigma points are

x(i) = x̄ + x̃(i) i = 1, . . . . . . , 2n (19)

x̃(i) = (
√

nPxx)
T
i i = 1, . . . . . . , n (20)

x̃(n+i) = −(
√

nPxx)
T
i i = 1, . . . . . . , n (21)

where x̄ is the mean of x and Pxx is its covariance;
√

nPxx is the matrix square root of nPxx
and (

√
nPxx)i is the i-th row of

√
nPxx. To evaluate a matrix square root, the Cholesky fac-

torization can be applied. Furthermore, applying the nonlinear function to each individual
sigma point, the transformed entities are computed as

y(i) = f (x(i)) i = 1, . . . , 2n (22)

the approximated mean of y is given by

ȳ =
1

2n

2n

∑
i=1

y(i) (23)

It has been demonstrated that the computed mean approximates the true mean and
covariance of y up to the third order, whereas the linearization only matches the true mean
of y up to the first order.

Pyy =
1

2n

2n

∑
i=1

( f (x(i))− ȳ)( f (x(i))− ȳ)T (24)

In general, it can be said that the UFKs propagate the mean and the covariance of
the sigma points using systems of nonlinear equations, and the a priori state estimate is
the weighted mean of them. This also applies to the predicted measurement that can be
computed using all measurement equations for each propagated sigma point, and the
predicted measurement vector is the weighted mean of them. Unlike EKFs, in UFKs,
there is the introduction of a cross-covariance matrix. The simplest UKF, known as simply
unscented Kalman filter (S-UKF), is characterized by the use of 2n sigma points and
equal weights.

2.4. General Unscented Kalman Filter

The selection of sigma points and weight becomes crucial to classify different observers;
in [73,74], it is shown that the same order of mean and covariance estimation accuracy can
be obtained by choosing 2n + 1 sigma points (Equations (25)–(28)). This type of UKF is
referred as a general unscented Kalman filter (G-UKF).

x(0) = x̄ (25)

x(i) = x̄ + x̃(i) i = 1, . . . . . . , 2n (26)

x̃(i) = (
√
(n + k)Pxx)

T
i i = 1, . . . . . . , n (27)

x̃(n+i) = −(
√
(n + k)Pxx)

T
i i = 1, . . . . . . , n (28)

Another feature is the use of different weights (Equations (29) and (30)):

W(0) =
k

n + k
(29)
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W(i) =
1

2(n + k)
i = 1, . . . . . . , 2n (30)

In the weight’s definition, the introduction of the parameter k is useful to decrease high-
order errors in mean and covariance propagation. Indeed, if x is normally distributed, then
choosing k = 3 − n results in a minimization of the fourth-order terms error. It is, then, pos-
sible to apply the nonlinear transformation to each sigma point (Equations (31) and (32)):

ȳ =
2n

∑
i=0

W(i)y(i) (31)

Pyy =
2n

∑
i=0

W(i)( f (x(i))− ȳ)( f (x(i))− ȳ)T (32)

It is worth noticing that the S-UKF formulation can easily be obtained by choosing
k = 0, resulting in 2n sigma points and equal weights. Furthermore, it should be mentioned
that other variations of the same algorithm can be found in the literature; the key concept
is modeling the distribution of sigma points around the mean state value, employing
parameters (α, k), while the introduction of the β value relates to the definition of weights
of the transformed points.

2.5. Simplex Unscented Kalman Filter

Another set of sigma points and weight factors can be introduced; therefore, choosing
n + 1 sigma points for x (x has n elements) results in the minimum number of sigma
points which gives the same order of estimation accuracy. This observer aims to reduce
computational burden by acting on the number of sigma points without losing performance.
The algorithm presented in [74] deals with n + 2 sigma points, but the number can be
reduced to n + 1 by choosing one weight to be zero. Although this filter can be helpful for
high dimension problems, it is shown that the ratio of W(n) to W(1) is 2n−2 (same for σn

i ),
resulting in numerical problems as the dimension of the state increases.

2.6. Spherical Unscented Kalman Filter

The proposed UKF aims to rearrange the sigma points of the S-UKF to obtain better
numerical stability. The filter is referred as a spherical unscented Kalman filter (SPHE-UKF),
and its main features are the equal weight factors and the ratio formulation (Equation (33)):

n√
n(n + 1)W(i)

/
1√

n(n + 1)W(1)
= n (33)

In general, all UFKs have a great advantage, as they do not require Jacobian or Hessian
computation, but the main obstacle is the state covariance matrices that must be positive
semidefinite to obtain real matrices after Cholesky decomposition. Furthermore, sigma
points’ evaluation is required at each time step, leading to computational cost.

3. State Estimation Architecture
3.1. Model Equations

Vehicle modeling evaluates three groups of equations: kinematic (congruence) equa-
tions, equilibrium equations, and tire constitutive equations. The definition of the set of
equations depends on the vehicle model adopted. The commonly used vehicle models
are the double-track and the single-track models, which differ from each other in the as-
sumptions underlying the model. The advantage of using one or the other depends on the
results needed and the kind of precision requested. Generally, the single-track model is
enough to describe a vehicle’s behavior, but due to the main assumption that consists of
neglecting the roll motion, it is impossible to describe the vertical dynamics. Regarding this
paper, since in the following discussions in-plane dynamics is described, the single-track
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assumptions allow us to evaluate all the vehicle equations needed. The single-track model
consists of only one wheel per axle. The Ackermann coefficient is set equal to zero. If the
static toe is null, due to this hypothesis, the steering angles of the front wheels are the
same, so the wheels are characterized by parallel steering. Considering δ1 as the front axle
steering angle (Equations (34) and (35)),

δ11 = δ12 = δ1 (34)

δ21 = δ22 = δ2 (35)

where δ11 and δ12 are the steering angles of the left and right front tires in a double-track
model, and δ21 and δ22 are related to the rear tires.

Considering Figure 2, it is possible to extrapolate the kinematics equations
(Equations (36)–(39)):

Vx1 = u cos(δ1) + (v + ra1)sin(δ1) (36)

Vy1 = (v + ra1)cos(δ1)− u sin(δ1) (37)

Vx2 = u (38)

Vy2 = (v − ra2) (39)

where x indicates the longitudinal axis of the vehicle and y indicates the lateral axis so that
Vx and Vy represent the longitudinal and lateral velocities. u, v, and r are, respectively,
the longitudinal, the lateral, and the yaw velocities (rate) at the center of gravity. Finally,
a1 and a2 are, respectively, the front and rear wheelbase. Condensing two wheels per axle
into a single one, coherently with the hypothesis of the single-track vehicle model, leads to
the following equations (Equations (40) and (41)) to calculate tire slip angles and slip ratios,
which are provided as input to the tire model, which is going to be described:

αj = arctan

 Vyj∣∣∣Vxj

∣∣∣
 (40)

k j = −
Vxj − ωjRrj∣∣∣Vxj

∣∣∣ (41)

Figure 2. Single-track vehicle model basic scheme.
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Substituting the terms of the slips equations (Equations (42)–(45)) with the ones
evaluated with the kinematics equations,

α1 = arctan
(

(v + ra1)cosδ1 − usin(δ1)

|ucos(δ1) + (v + ra1)sin(δ1)|

)
(42)

k1 =
ω1Rr1 − ucos(δ1) + (v + ra1)sin(δ1)

ucos(δ1) + (v + ra1)sin(δ1)
(43)

α2 = arctan
(
(v − ra2)

|u|

)
(44)

k2 = −ω2Rr2 − u
u

(45)

Finally, the equilibrium equations can be written as follows (Equations (46)–(48)),
indicating the longitudinal and lateral velocities derivative as u̇ and v̇ and the yaw rate
derivative as ṙ:

m(u̇ − vr) = X (46)

m(v̇ + ur) = Y (47)

Jz ṙ = N (48)

where
X = Fx1 cos(δ1)− Fy1 sin(δ1) + Fx2 (49)

Y = Fy1 cos(δ1)− Fx1 sin(δ1) + Fy2 (50)

N = Fy1 a1cos(δ1)− Fx1 a1sin(δ1) + Fy2 a2 (51)

In the previous equations (Equations (49)–(51)), Fxj , with j = 1,2, represents the longi-
tudinal forces on each axle, Fyj , with j = 1, 2, represents the lateral forces on each axle, X
and Y represent the net forces, respectively, on the longitudinal and lateral direction, and N
represents the net momentum around the z-axis. Vehicle quantities are described in Table 1.

Forces appearing at the equilibrium equations are calculated by a simplified Pacejka
Magic Formula (MF) tire model [48,49,75,76]. This formulation takes into account only
macroparameters, and it has been preferred among other more computationally demanding
models [77–80], which require a high-cost and complex experimental routine to identify the
parameters [81–88]. On the other hand, it has been preferred to other simplified approaches,
which do not reproduce the nonlinear tire behavior at high slip values [48,89].

F0 = D sin(C arctan[B xs − E(B xs − arctan(B xs))]) + Sv (52)

where
xs = Xs + Sh (53)

The formulation (Equations (52) and (53)) is the same for the calculation of longitudinal
and lateral forces, while the independent variable Xs, respectively, identifies the tire slip
ratio or slip angle, which have been previously mentioned. The described formulation
refers to pure condition F0. The parameters are now introduced:

• B: stiffness factor;
• C: shape factor;
• D: peak value;
• E: curvature factor;
• Sv, Sh: shifts from Cartesian axes center.

Furthermore, a vertical load dependence (Equation (54)) is adopted for the peak value:

D = D(Fz) = µ Fz (54)
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Table 1. Vehicle quantities.

Quantity Name Symbol Units

Vehicle mass m kg

Inertia moment around z-axis Jz kg m2

Steering angle δj rad

Front wheelbase a1 m

Rear wheelbase a2 m

Longitudinal CoG speed u m/s

Longitudinal CoG acceleration u̇ m/s2

Lateral CoG speed v m/s

Lateral CoG acceleration v̇ m/s2

Vehicle yaw rate r rad/s

Vehicle yaw acceleration ṙ rad/s2

Lateral slip angle αj rad

Longitudinal slip ratio kj -

Axle longitudinal force Fxj N

Axle lateral force Fyj N

Net longitudinal force X N

Net lateral force Y N

Net momentum around z axis N N

Axle angular velocity ωj rad/s

Rolling radius Rrj m

The MF is also suitable for combined slip cases where the introduction of the Hill
function (G) is needed (Equations (55)–(57)):

G =
cos(Cc arctan[Bc xc − Ec(Bc xc − arctan(Bc xc))])

cos(Cc arctan[Bc SHc − Ec(Bc SHc − arctan(Bc SHc))])
(55)

where
xc = Xc + SHc (56)

The combined tire force is then evaluated as

Fc = F0 G (57)

It can be noticed that the two independent variables Xs and Xc assume the value of
the tire slip angle and slip ratio if employed in lateral force evaluation, while their values
are exchanged in longitudinal force formulation.

3.2. Filter Design

A common structure is adopted in designing the different model-based observers. The
general structure of state variable vector is

xK = [uk, vk, rk]
T (58)

The sideslip angle is then evaluated as β = arctan( v
u ).
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3.3. Measurement Equations

Measurement equations are needed to evaluate the estimate zk at time step k knowing
the a priori state estimate and the additional input values uk. In general, they can be
written as

zk = h(x̂−k , uk) + vk (59)

For this work, a set of five measurements was chosen, and the criteria were taking
advantage of low-end sensors such as encoders for sensing the wheel speed and IMU for
accelerations. The acquired signal vector is now presented:

yk = [ωENCODER
1,1k

, ωENCODER
1,2k

, rIMU
k , axIMU

k , ayIMU
k ] (60)

The estimated measurement vector will then be

zk = [ω1,1k , ω1,2k , rk, axk, ayk] (61)

h functions are able to estimate yk using typical vehicle dynamics equations. The yaw
rate is defined as both the state and measurement variable; therefore, the h() function will
be an identity.

axk = X/m (62)

ayk = Y/m (63)

rk = rk (64)

ω11k = Vx11k /Rr1 (65)

ω12k = Vx12k /Rr1 (66)

Since the wheel angular velocities are available at the vehicle corners, the wheel linear
velocities Vx11k Vx12k appearing at the previous equations (Equations (62)–(66)) have to be
obtained by translating the vehicle velocities from the center of gravity to the hub locations
coherently with a double-track formulation [90]. Moreover, they have to be rotated to
account for the wheel steering angle. In addition, for the filter to properly work, input
signals need to be defined. For this application, the steering wheel angle, wheels’ rotational
velocity and longitudinal acceleration are used.

3.4. QR Calibration

During the description of KF-based filters’ variables such as process noise and mea-
surement noise, respectively, w and v were introduced. It can be said that the process
noise represents the discrepancy between the target state value and the model’s a priori
estimate; on the other hand, the measurement noise is generally related to the employed
sensor’s accuracy. The previously introduced variables w and v are considered mutually
independent, white and normally distributed (Equations (67) and (68)):

p(w) ∼ N(0, Q) (67)

p(v) ∼ N(0, R) (68)

It can be said that model errors are more systematic than measurement errors. Q
and R are defined as process and measurement noise covariance matrices, whose defini-
tion is fundamental to reach the best possible accuracy and robustness of the estimation.
Their definition is often a hard task. Because sensor errors are likely to be uncorrelated,
R will result in a diagonal matrix, while for Q, manual tuning is practically impossible.
In this work, Q and R are determined through the so-called “Maximizing the Joint Likeli-
hood” algorithm [91], which is based on an offline calculation of the errors made by the
model to update the state, starting from the target state defined at the previous instant
(Equations (69) and (70)). The target state xk has been provided by the S-motion readings,
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and the errors’ covariance has been calculated on the entire data collection (N is the number
of samples).

Q =
1
N

N

∑
i=1

(xk − f (xk−1, uk−1))(xk − f (xk−1, uk−1))
T (69)

R =
1
N

N

∑
i=1

(yk − h(xk))(yk − h(xk))
T (70)

This procedure ensures an objective comparison between the examined filters, because
the Q and R matrices have been calculated through a deterministic method and their values
are only related to the model and sensor accuracy with respect to the target data.

4. Experimental Campaign

To collect the required data for calibration and validation of the proposed filters, a
testing procedure was conducted with a test vehicle. Initially, all the relevant vehicle
parameters were collected as presented in Table 2.

Table 2. Vehicle parameters.

Parameter Name Value Units

Vehicle Mass 1197.5 kg
Unsprung Mass 200 kg

Wheelbase 2.31 m
Front Wheelbase 1.088 m

Front Track Width 1.495 m
Rear Track Width 1.505 m

CG Height 0.489 m
Front Roll Center Height 0.0767 m
Rear Roll Center Height 0.2084 m

Z Inertia Moment 950 kg m2

Nominal Steer Ratio 14.2 -

The required vehicle signals were collected by utilizing a set of low and high-end sen-
sors. The required measurements for the estimator filters were obtained through common
affordable vehicle sensors such as an inertial measurement unit (IMU) and provided by
the standard controller area network (CAN). On the other hand, an optical sensor was also
installed to obtain reliable measurements of the vehicle’s longitudinal and lateral speeds,
which are both crucial to the accurate calculation of the actual sideslip angle. The complete
list of signals and respective sensors used for this study is presented in Table 3.

Table 3. Vehicle sensors and respective accuracy.

Signal Device Accuracy/Sensitivity

Longitudinal Velocity S-Motion [92]
<±0.2%

Range: up to 400 km/hLateral Velocity

Longitudinal Acceleration

OxTS 3000 [93]

Bias stability: 2 µg
Range: ±10 gLateral Acceleration

Vertical Acceleration

Yaw Rate
Bias stability: 2◦/h

Range: ±100◦/s

Steer Angle
Steering Wheel Sensor

(CAN [94])
Resolution: 0.1◦
Range: ±780◦

Wheel Speeds (FL, FR, RL, RR)
Wheel Speed Encoder

(CAN [94])
Timing accuracy: 2%
Range: 0 to 2500 Hz
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To characterize the tire–road interaction, a specific testing procedure known as TRICK [95]
was conducted. The driver was instructed to employ four different driving styles (Gen-
tleman, Pure Interaction, Max Performance and Sliding), which attempt to stress the tires in
different conditions, as presented in Table 4. The obtained data, along with the previously
mentioned vehicle parameters, were then fed into an inverse model to calculate the relevant
tire kinematic and dynamic quantities such as slips and forces (Figure 3).

Table 4. Driving styles’ description.

Driving Style Description Goal

Gentleman Driving at a relatively high pace
around the track

Characterize pure and combined
linear tire range

Max Performance Driving as fast as possible around
the track

Characterize pure and combined
peak tire performance

Pure Interaction
Avoiding combined tire–road
interaction by separate use of
throttle/brake and steering

Characterize the tire’s pure
interaction curves

Sliding Forcing the tire to work in the
frictional region

Characterize the “over the peak”
region of the interaction curves

Figure 3. Tire model calibration results.

The tire model-fitting process followed a classic approach that can be split into different
phases. Initially, a preprocessing routine was applied to remove outliers and collect the
relevant samples for the calibration procedure. A reference nominal load was selected
for the fitting process and was then used as a reference to start calibrating the force–slip
curves in pure lateral and longitudinal conditions. The admissible values of slip ratio
and slip angle were limited to a small range for the lateral and longitudinal models,
respectively, to exclude any combined interaction from the fitting process. Once the fitting
at nominal vertical loads was satisfactory, the load dependency characteristic was calibrated
by selecting vertical load ranges below and above the nominal condition. As a simplified
Magic Formula was employed for the estimators’ tire model, no other dependencies such as
camber, pressure or temperature were taken into account. The final step of the calibration
procedure focused on identifying the combined interaction, fitting the force–slip curve for
combined values of slip angle and slip ratio.

5. Results

In this section, a comparative analysis of different filters is introduced. To underline
specific features, different runs were properly chosen. They involve both short and long
acquisition in terms of time and different conditions of lateral excitation, which are reached
through combining the previously introduced driving styles (Table 5). All the simulations
were performed using the MATLAB R2023b environment on a PC employing WINDOWS
11 with a 13th Gen Intel(R) Core(TM) i7-1370P @1.90 GHz (Santa Clara, CA, USA).
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Table 5. Breakdown of each run.

Run Driving Styles N. Lap Duration [s]

1 Gentleman 1 120

2 Gentleman 1 80

3 Gentleman 2 250

4
Pure Interaction 1

300Sliding Lap 2
Max Performance 1

5
Gentleman 1

250Sliding Lap 2
Gentleman 1

6
Gentleman 1

300Max Performance 1
Gentleman 1

To provide the reader with more accurate details on the different runs, some major
input signals are described in Figure 4.

(a) Speed and steering input signals, run 1

(b) Speed and steering input signals, run 2

Figure 4. Cont.
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(c) Speed and steering input signals, run 3

(d) Speed and steering input signals, run 4

(e) Speed and steering input signals, run 5

Figure 4. Cont.
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(f) Speed and steering input signals, run 6

Figure 4. Speed and steering input signals: (a) run 1, (b) run 2, (c) run 3, (d) run 4, (e) run 5, (f) run 6.

The first three runs are initially analyzed, and the performance of the six observers is
almost the same as they explore relatively reduced levels of β values (Figures 5–7).

In particular, considering run 1 (equal consideration can be made for run 2 and run 3),
the two EKFs show the same level of accuracy, and the same result can be observed when
comparing UKFs (Figures 8 and 9).

Figure 5. Comparison of all the observers, run 1.

Figure 6. Comparison of all the observers, run 2.
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Figure 7. Comparison of all the observers, run 3.

Figure 8. Comparison of EKFs, run 1.

Figure 9. Comparison of UKFs, run 1.

Moreover, the last three runs are discussed; they exploit an increasing number of laps
and driving styles, exploring both high and low levels of lateral excitement
(Figures 10 and 11). Considering, for instance, run six, as its results can be generalized for
the other two, a comparative analysis shows that

• The two EKFs perform equally (Figure 12);
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• S-UKF and G-UKF show comparable results (Figure 13);
• SIMP-UKF and SPHE-UKF have almost the same estimation accuracy (Figure 14);
• In general, SIMP/SPHE-UFKs perform the best out of all the observers; while S-UKF

and G-UKF are more precise than the two EKFs (Figures 15 and 16).

Figure 10. Comparison of all the observers, run 4.

Figure 11. Comparison of all the observers, run 5.

Figure 12. Comparison of EKFs, run 6.
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Figure 13. Comparison of S-UKF vs. G-UKF, run 6.

Figure 14. Comparison of SIMP-UKF vs. SPHE-UKF, run 6.

Figure 15. Comparison of EKF vs. SIMP-UKF, run 6.

Figure 16. Comparison of all the observers, run 6.
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It is worth noticing how the performance of the different observers changes as the run
explores the various levels of lateral excitation. Indeed, for lower values of sideslip angle,
the performances are comparable, while on the other hand, the estimation error of the EKFs
tends to increase. This can be due to the highly nonlinear conditions reached during those
specific runs, which results in the worse performance shown by the two EKF filters.

To provide the reader with a more general overview of the estimation accuracy reached
through the simulations, the root mean square error (RMSE) of the estimated sideslip angle
has been evaluated, and it is used as a term of comparison (Table 6, Figure 17).

Table 6. RMSE comparison between all the observers.

RUN

RMSE 1 2 3 4 5 6

FO-EFK 0.007 0.01 0.01 0.20 0.05 0.15

I-EKF 0.007 0.01 0.01 0.17 0.05 0.14

S-UKF 0.006 0.01 0.01 0.07 0.035 0.06

G-UKF 0.006 0.01 0.01 0.14 0.035 0.04

SIMP-UKF 0.007 0.01 0.009 0.01 0.030 0.02

SPHE-UKF 0.007 0.01 0.01 0.01 0.030 0.02

Figure 17. Visual representation of RMSE comparison between all the observers on each run.

Furthermore, a comparison analysis of the computational time needed for the different
filters to work is presented. Each observer has been executed multiple times for each run to
obtain the execution time average values reported in Table 7. To summarize the results of
this analysis, the mean computational time has been calculated for each filter, and it has
been reported in the last column of Table 7. When comparing the two EKFs, it is obvious
that more iterations lead to additional time needed (I-EKF). SIMP-UKF and SPHE-UKF
are the fastest among the other UFKs, and this is due to the lower number of sigma points.
Indeed, it can be said that the G-UFK is slower than the S-UKF, because not only does it
have a larger number of sigma points, but also different weights are applied to them.
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Table 7. Comparison of time taken for each observer on the different runs.

Mean Computational Time (Single Run) [s]

Observer 1 2 3 4 5 6 Average Computational Time [s]

FO-EKF 2.8 2.5 6.5 7.7 6.8 8.1 5.8

I-EKF 7.2 6.4 13.2 15 13.5 15.5 11.8

S-UKF 7.6 7.4 15.1 17 15.5 17.3 13.3

G-UKF 10.2 9.6 20 23.5 19.3 23 17.6

SIMP-UKF 7.4 6.3 13.4 16.4 13.4 15.9 12.1

SPHE-UKF 7.4 6.4 13.4 16.4 13.6 16.5 12.3

6. Conclusions

In the current article, a qualitative and quantitative comparison has been carried out
on the estimation results of KF-based state observers with variable accuracy and complexity
to perform real-time estimation of the vehicle sideslip angle. Since a dynamic approach
has been performed, employing a Magic Formula tire model, the calibration procedure
required an outdoor experimental campaign to identify the parameters during the pure
and combined interaction. The performed on-track experimental campaign also provided
the on-board measurements acquired to validate the estimation algorithm, including the
low-end sensors useful within the analytical estimation process and the accurate high-end
sensors’ signals that provide the optimal target for the results’ comparison.

Differing maneuvers have been performed to investigate the performance of the filters
in a wide operating domain and to verify the errors due to linearization when the vehicle
works in critical driving conditions and its dynamics become strongly nonlinear. To account
for the necessity of employing the algorithm in on-board scenarios, also the computational
cost of the differing filters has been evaluated by comparing the respective computational
time taken to perform a simulation of the online estimation.

As shown in the Results, within the linear working range, characterized by small
sideslip angle values and negligible high-order transient dynamics, the improvements
provided by high-complexity solutions compared with the simple FO-EKF are not sensitive
enough to justify their employment. However, on the other hand, nonlinear conditions with
higher values of sideslip angle lead to increasing estimation error when a linear formulation
is applied to propagate error covariance and a Gaussian distribution around the previous
state estimate is supposed. This occurs also when the estimator employs a redundant
iterative procedure that increases the computational effort (I-EKF).

The UKF-based observer showed great accuracy also in this range, demonstrating
their suitability in all the explored operating conditions; furthermore, for this estimation
architecture, most detailed formulations do not ensure increasing accuracy, as evidenced by
the comparisons with the experimental target. This justifies the employment of the version
of the UKF, SIMP-UKF, which provides the optimal balance in terms of computational
effort and estimation robustness.

Based on these results, further developments will include the development of a hybrid
observer to optimize the estimation performance, which would employ an EKF formula-
tion, switching on the nonlinear UKF implementation toward nonlinear vehicle driving
situations. However, to avoid a too complex formulation, the dynamic-based EKF could be
integrated into a fuzzy-logic architecture, working in feedback with a kinematic estimator,
which is more accurate in nonlinear conditions and during transient maneuvers. In the end,
to extend this study to a less customized context, the sensitivity analysis will be carried out
by employing experimental data acquired on-board different vehicles.
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