
Citation: Lee, S.; Lee, S.; Park, H.

Integration of Tracking,

Re-Identification, and Gesture

Recognition for Facilitating

Human–Robot Interaction. Sensors

2024, 24, 4850. https://doi.org/

10.3390/s24154850

Academic Editor: Antonio

Fernández-Caballero

Received: 14 June 2024

Revised: 11 July 2024

Accepted: 22 July 2024

Published: 25 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Integration of Tracking, Re-Identification, and Gesture
Recognition for Facilitating Human–Robot Interaction
Sukhan Lee 1,*, Soojin Lee 1 and Hyunwoo Park 2

1 Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Republic of Korea;
christie74@skku.edu

2 Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon 16419, Republic of Korea; hwpark0104@skku.edu

* Correspondence: lsh1@skku.edu

Abstract: For successful human–robot collaboration, it is crucial to establish and sustain quality
interaction between humans and robots, making it essential to facilitate human–robot interaction
(HRI) effectively. The evolution of robot intelligence now enables robots to take a proactive role
in initiating and sustaining HRI, thereby allowing humans to concentrate more on their primary
tasks. In this paper, we introduce a system known as the Robot-Facilitated Interaction System (RFIS),
where mobile robots are employed to perform identification, tracking, re-identification, and gesture
recognition in an integrated framework to ensure anytime readiness for HRI. We implemented the
RFIS on an autonomous mobile robot used for transporting a patient, to demonstrate proactive, real-
time, and user-friendly interaction with a caretaker involved in monitoring and nursing the patient.
In the implementation, we focused on the efficient and robust integration of various interaction
facilitation modules within a real-time HRI system that operates in an edge computing environment.
Experimental results show that the RFIS, as a comprehensive system integrating caretaker recognition,
tracking, re-identification, and gesture recognition, can provide an overall high quality of interaction
in HRI facilitation with average accuracies exceeding 90% during real-time operations at 5 FPS.

Keywords: human–robot interaction; person tracking; person recognition; re-identification; gesture
recognition

1. Introduction

Human–robot interaction (HRI) represents a significant technical thrust in robotics,
aimed at maximizing robot serviceability for users. To date, advancements in HRI tech-
nologies have transformed the role of robots from passive tools to active collaborators
with humans, capable of conducting proactive physical and social interactions. Conse-
quently, there is a growing need for robots capable of physically and socially interacting
with humans by accurately and reliably understanding human intentions and emotions,
as well as social norms, in a natural setting, thus enabling mutual acceptance and trust.
Various approaches to verbal, non-verbal, and multi-modal HRI, aimed at identifying
human intent and emotion, have been proposed with the goal of fostering natural, robust,
and user-friendly interaction.

However, despite the rapid evolution of technological advancement, the widespread
application of HRI in intelligent robotic services has yet to be realized in practice. For
instance, Lee et al. [1] proposed human–robot trust in HRI as a critical challenge for which
transparent and effective communication strategies toward seamless collaboration and
coexistence between humans and robots are essential. This may be due to that the success
of real-world implementations of robotic services relies on various technologies in addition
to an understanding of human intent and emotions. For instance, this requires accounting
for (1) the robot’s proactive maintenance of readiness for interaction with the user at any
time and place, for example, through the recognition and tracking of the user in a cluttered
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scene; (2) sufficient robustness and generalization in interaction implementations to handle
variations, disturbances, and novelties in the interaction environment; (3) maintenance of a
natural pace in interactions based on real-time execution of a system integrated with various
technical components; and (4) optimal customization to the unique features associated with
specific applications.

In this paper, we develop an integrated, real-time HRI system for a transport robot that
carries a patient or a person needing assistance in a cluttered environment, in collaboration
with caretakers [2]. Particularly, we emphasize the implementation of real-time caretaker
recognition, re-identification, and tracking, along with caretaker gesture recognition, in a
cluttered scene, enabling the robot to proactively maintain readiness for interaction with
the caretaker anytime and anywhere. Furthermore, we aim to make the proposed robot–
caretaker interaction system generalized and robust against variations, disturbances, and
novelties in interaction environments. This contributes to reducing the caretaker’s burden
in initiating interactions with the robot and enhances efficiency while conserving energy.
During the system’s implementation, we explore deep learning approaches for person
detection, recognition, re-identification, and gesture recognition to achieve efficient and
robust system performance.

1.1. Related Work

Over the past decades, HRI-based frameworks have been implemented and exploited
in unstructured environments such as homes and hospitals due to the broad range of
issues HRI addresses. In this regard, we concentrate on a vision-based HRI system that
encompasses person detection, recognition, tracking, re-identification, and gesture recog-
nition, aiming to achieve natural and sociable HRI. A considerable number of research
studies [3–33] in the literature have investigated individual vision-based HRI components,
including person detection, recognition, re-identification, and gesture recognition. Never-
theless, there has been scarce reporting on HRI systems that integrate various vision-based
modules promoting natural and sociable HRI. Additionally, the recent surge in human–
robot collaboration within smart manufacturing and the expansion of service robotics across
domestic and professional settings have propelled the development of comprehensive HRI
systems to meet the needs for natural and sociable interactions. For example, Sanjeewa
et al. [3] developed a human–mobile robot interaction system designed to deliver objects to
elderly or disabled individuals through a two-step gesture recognition process. An HRI
system tailored for the elderly was crafted by Zhao et al. [4], incorporating a skeleton-
based gesture recognition system. Furthermore, Liu et al. [5] introduced a system enabling
real-time gesture-based communication with individuals outdoors for rescue purposes.
Rollo et al. [6] presented a framework that incorporates person detection, segmentation,
re-identification, and gesture recognition, utilizing RGB-D data for the real-time navigation
of mobile robots. Additionally, Müller et al. [7] engineered a system that facilitates human
detection, recognition, tracking, and re-identification for user-centric navigation such as
robot-guided movement.

1.1.1. Person Detection and Tracking

With advancements in deep learning, the technology for person detection in video
frames has evolved to enable fast and robust person detection in real time. Popular object
detection platforms such as Faster RCNN [8], various versions of YOLO [9], and SSD [10]
have become available, among others [11–13]. Lee et al. [14] introduced a deep learning
approach for detecting vehicles and pedestrians from CCTV footage utilizing YOLO as the
foundational network and CNN for transfer learning. Similarly, Amir et al. [15] developed
a detection method for individuals based on YOLO and CNN, employing more precise
information categories such as stick/clutch and wheelchair/walk for enhanced accuracy.

The challenge of person tracking in crowded environments continues to attract atten-
tion from the mobile robotics and visual surveillance sectors. Tracking is often performed
by predicting the trajectory of a detected person based on motion estimation. Managing
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the potential disappearance of a person being tracked in the crowd, whether temporarily
or over an extended period, remains a critical challenge, potentially necessitating a re-
identification process. In this context, Fernando et al. [16] proposed a deep learning-based
multi-person localization and tracking approach, employing GAN for person localization
and integrating a trajectory prediction scheme for both short- and long-term scenarios,
along with cost-effective data association for tracking. Previously, Choi [17] introduced
a multi-target tracking algorithm that leverages an aggregated local flow descriptor to
provide a reliable affinity measure for linking temporarily separated detections and ensur-
ing efficient and accurate data association between targets and detections in multi-target
tracking scenarios. Additionally, Manzoor et al. [18] developed a system that uses edge
devices to facilitate real-time person detection and tracking; based on tracking data, a
mobile robot can follow a person. This tracking system merges deep learning with metric
learning to provide robust tracking capabilities for various views of a person, including
front, side, and back.

1.1.2. Person Recognition and Re-Identification

Automatic recognition and re-identification of a person in natural and crowded scenes,
based on video images, have captured the interest of the surveillance and robotic service sec-
tors. The principal hurdles in person recognition and re-identification involve overcoming
the technical challenges posed by variations in orientation, size, occlusion, and illumination
of individuals appearing in video images. In the arena of face recognition, deep learning
strategies, including DeepFace and DeepID, have become predominant, epitomizing the
state of the art as highly evolved technologies [19]. To surmount the aforementioned
challenges, methods like CNN, auto-encoder, and GAN-based approaches focusing on face
normalization, super-resolution, and transfer learning utilizing a robust backbone network
have been crafted for real-world deployment. Sohail et al. [20] introduced a deep learning
system that proficiently recognizes a person despite various facial poses by adapting a
segment of the YOLO network specifically for face recognition. Furthermore, Condés
et al. [21] deployed RGB-D sensors on a mobile robot to detect and identify persons using
FaceNet [22]. Subsequently, the robot tracks the identified person through optical tracking
based on the detection outcomes.

Person re-identification typically relies on the matching of features extracted from
pairs of detected persons, where the methodology of matching is pivotal as appearances of
the same individual might differ due to changes in location and pose. The challenges of
deep learning-based re-identification have been tackled through enhancements in feature
representation learning, deep metric learning, and ranking optimization; for further infor-
mation, refer to [23,24]. Wang et al. [25] unveiled a method for spatial–temporal person
re-identification that harnesses a visual feature stream with spatial–temporal constraints,
extracting visual features via the ResNet backbone network. Moreover, Rollo et al. [26]
developed a system for re-identification using features derived from a detection network,
enabling the recognition of a target person in complex settings like shopping malls and
accommodating variations in the target’s appearance and visual occlusions. He et al. [27]
presented a Dense Interaction Learning (DIL) method that leverages temporal information
in video sequences to address the challenge of re-identification. Features are extracted from
each frame, and rich information is learned from interactions between neighboring frames
and combined into a unified representation for the final decision of re-identification. They
represent a novel approach that overcomes the limitations of existing methods.

1.1.3. Gesture Recognition

For gesture recognition, it is necessary to extract a person and his/her body parts from
a series of image frames, based on which the person’s motion can be modeled. Pradyumna
et al. [28] recognized gestures through a deep learning-based multi-channel approach,
where a global channel looks for gross motion across the entire sequence of video images
while a focused channel detects the motion of each hand. To further enhance the accuracy,
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Liang et al. [29] employed a combination of 3DCNN and bidirectional long-short-term
memory network (LSTM) to extract spatiotemporal features for gesture recognition. Muneer
et al. [30] introduced an approach for recognizing hand gestures using 3DCNN architecture
to learn spatiotemporal features, employing transfer learning to address the scarcity of
labeled hand gesture datasets. Dadashzadeh et al. [31] utilized semantic segmentation
to identify hand gestures based on a dual-stream convolutional neural network (CNN)
that integrates data from the hand region’s red-green-blue color channels and segmented
images. Yu, J. [32] extracted spatial and temporal features using a video frame and optical
flow frame, thereafter employing a dual-channel 2D CNN model to identify hand gestures
through feature fusion. Zhu et al. [33] proposed an Action Machine which involves action
recognition of 27 action classes based on RGB images only which obtained 92.5% accuracy
on the UTD-MHAD [34] dataset. They used CNN for the single-frame feature extraction and
optical flow to capture the temporal features from sequential frames. Despite advancements,
gesture recognition continues to face significant technical challenges in achieving sufficient
generalization power to handle a broad range of appearance variations and occlusions.

1.2. Problem Statement and Contribution

The problem we aim to address in this paper is how to implement a natural and real-
time HRI system in a cluttered environment, specifically for interactions between a transport
robot and a caretaker. We emphasize the integration of various lightly configured deep
learning networks to effectively carry out caretaker recognition, tracking, re-identification,
and gesture recognition in real time while maintaining accuracy sufficient for real-world
applications. To achieve the desired robustness and generalization power, the integrated
system should effectively handle disturbances, variations, and novelties occurring in
interaction environments. Ultimately, we intend for the integrated system to enable the
robot to proactively maintain readiness for anytime interaction while achieving sociable
HRI based on gesture-based interaction. In this paper, we demonstrate that a seamless
integration of tracking and re-identification can be achieved for high performance in both
caretaker identification and gesture recognition, enabling robots to remain prepared for
interactions with a caretaker.

2. Overview of the Proposed System

Figure 1 illustrates the overall system flow of the proposed Robot-Facilitated Interac-
tion System (RFIS). The system is composed of four major components: (1) the person and
body-part detection process (in blue), (2) the person tracking process (in green), (3) the care-
taker recognition and re-identification process (in yellow and gray), and (4) the caretaker
gesture recognition process (in orange). Initially, persons and their body parts appearing in
a scene are detected in each frame utilizing a cascaded configuration of YOLOv3 [35], which
identifies various body parts such as the head/face, upper body, and hands. To enhance
body-part labeling accuracy, an image-based deep body-part classifier is integrated with
the cascaded YOLOv3 to refine body-part label classification. Subsequently, the detected
persons and their body parts are tracked across a sequence of image frames based on the
fusion of detected boxes from frame k + 1 with predicted boxes from frames k and k − 1,
utilizing motion-based filtering techniques.

For effective facilitation of interactions with caretakers, the robot must be capable
of recognizing caretakers as they enter the scene and continue tracking them, employing
re-identification as needed to handle disappearances and reappearances. The caretaker
recognition process begins either with the robot’s initial operation or whenever a new
person emerges in the scene. Meanwhile, the caretaker re-identification process is triggered
at each keyframe during person tracking to detect the caretaker’s disappearance and reap-
pearance. Caretaker recognition employs facial images captured by the person detection
network and analyzed using EfficientNet [36], while caretaker re-identification calculates
the conditional probability that candidate facial and upper-body images, obtained from per-
son and body-part detection networks, indeed represent the caretaker based on comparison



Sensors 2024, 24, 4850 5 of 26

with verified caretaker images. The recognized and tracked caretaker, along with his/her
body parts, are then processed through an LSTM-based gesture recognition network to
identify the gestures intended for the robot.
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3. Person and Body-Part Detection and Classification

Figure 2 illustrates the flow of the proposed deep person and body-part detection and
classification network. The box image of a person detected in a scene by the initial YOLOv3
is cropped as the input for the subsequent YOLOv3, which focuses on detecting body parts
such as the head, upper body, and right/left hand of the person. To minimize the omission
of any body parts in detection, the non-maximum suppression threshold of the second
YOLOv3 is adjusted, despite this adjustment causing a reduction in precision and labeling
accuracy of the detected body parts. To counteract the decline in detection precision and
labeling accuracy resulting from the reduced threshold, the box images identified by the
second YOLOv3 are reclassified using a ResNet18-based image classifier, which is trained
under a transfer learning framework. Specifically, images of the body parts identified by
the second YOLOv3 are cropped and fed into the ResNet18 classifier for final body-part
decision-making. For generating feature embeddings from these cropped body-part images,
the ResNet18 model, initially trained with ImageNet datasets, is further refined with a
custom body-part dataset via transfer learning. In this process, the pre-trained ResNet18
is frozen up to the fourth residual block, while re-training is conducted on the blocks
above the fifth residual block using the custom body-part training dataset. The person
and body-part box images, along with their labels, finalized by the cascaded YOLOv3
and associated body-part image classifier, are subsequently linked to the ensuing tracking,
caretaker recognition, and re-identification processes described in the subsequent sections.

Note that the proposed RFIS needs to be mounted on an edge computing device
(Jetson Xavier AGX, NVIDIA Corporation, Santa Clara, CA, USA) to perform caretaker
recognition, re-identification, and gesture recognition in real time. Therefore, when choos-
ing a deep learning model, the performance was taken into consideration in terms of
the trade-off between the accuracy and the number of parameters that suit the required
real-time processing of RFIS with Jetson Xavier AGX. Among the three versions of YOLOv3,
v4, and v5, YOLOv3 is selected based on its processing speed with Jetson Xavier AGX [37]
to maximally shorten the time required for person detection so that it does not burden the
overall processing speed of RFIS.
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4. Person Tracking

Persons identified in video sequences are subject to real-time tracking. The main aim
of this process is to monitor the caretaker across different frames while noting his/her
disappearance and reappearance. To accomplish this, person tracking operations are
executed along with the video frames, during which both the disappearance of one person
and the appearance of another are identified. The outlined process for person tracking
encompasses the following stages: (1) Utilizing the movements of the person boxes depicted
at frame k and frame k − 1, predictions are made regarding the location, size, and shape of
person boxes for the subsequent frame k + 1. The movements of the person are derived
from the temporal alterations in the position, size, and shape of person boxes throughout
the video frames. (2) The person boxes recognized at frame k + 1 are subsequently merged
with the person boxes predicted from frame k to determine the final location, size, and
shape at frame k + 1. For predicting the location, size, and shape at frame k + 1, the
motion trajectories of the 3D boxes and their uncertainties at frame k are calculated based
on the temporal changes from frame k − 1 to frame k. For example, if a box’s motion is
discerned to be moving left and getting closer, the predicted box will be positioned to the
left and enlarged accordingly. Accounting for uncertainties in the estimated box motion, the
location, size, and shape of the predicted person boxes are probabilistically adjusted, which
is considered during the fusion of detected and predicted boxes at frame k + 1. Notably, to
minimize tracking errors due to switching, the uncertainty expansion for size and shape is
limited to the width direction, acknowledging the general horizontal movement of humans
within an image plane. This procedure of merging detected and predicted boxes at frame
k + 1 is referred to as fusion-based person tracking.

The proposed fusion-based person tracking method provides a systematic approach
for the automatic identification and tracking of persons newly appearing in a scene, as
well as for the re-identification and re-tracking of a person who reappears. Figure 3
schematically depicts the process of this fusion-based person tracking, which includes
predicting person boxes from cascaded YOLOv3 at frame k + 1 and fusing the detected and
predicted person boxes at the same frame. As detailed earlier, the predicted person boxes
for frame k + 1 are derived by linearly extrapolating the changes in location, size, and shape
of the person boxes from frame k − 1 to frame k. The fusion process at frame k + 1 begins
by pairing matching detected and predicted boxes, if any, which track the same individual
across the video frames. Initially, for each detected box, candidate-predicted boxes that
meet a proximity threshold are selected for potential matching, followed by computing
probabilistic matching scores based on similarities in box positions, sizes, shapes, and
probabilities associated with box labels, while considering the uncertainties of the predicted
box characteristics. If a detected box at frame k + 1 lacks a counterpart among the candidate-
predicted boxes, it is labeled as newly appeared in the scene. Conversely, if a predicted box
at frame k + 1 has no matching detected box, it is considered to have disappeared. The
proposed person tracking based on motion-based box prediction is intended to make person
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tracking highly efficient, say, about four times faster than the state-of-the-art approach,
BoostTrack [38]. To enhance tracking robustness, persons detected with high uncertainty are
monitored for several additional video frames until these uncertainties are resolved. This
advanced fusion-based process seamlessly manages the appearance and disappearance of
persons, facilitating the recognition, tracking, and re-identification of the caretaker as the
primary tracking target. For further details on this tracking method, refer to Algorithm 1.

Algorithm 1. Person Tracking Algorithm

Input: Individual boxes at frame k − 1 and k, YOLOv3 boxes at frame k + 1
Require: delta t = 30, rho = 0.04, iou_threshold = 0.4, T = 500
1: for i in frame k − 1 and k boxes:
2: (frame k + 1 box linear estimation)

delta X, delta Y, delta W, delta H = (frame k − 1’s i-th box − frame k’s i-th box)
3: (Uncertainty Box) Oi

Oi = [delta X, delta Y, delta t ∗ rho ∗ delta W, delta t ∗ rho ∗ delta H]
4: (Box Overlap)

for j in YOLOv3 boxes:
Yj = YOLOv3 j-th box at frame k + 1
Box overlap ratio between YOLOv3 boxes at frame k + 1 and Uncertainty Box

5: (Distance between Oi and Yj)
if Box Overlap Ratio > iou_threshold:

distance =

√
0.3
(

Oic − Yjc
)2

+ 0.4
(

Oiw − Yjw
)2

+ 0.4
(

Oih − Yjh
)2

6: (Conditional Probability)
for k in N:

# N is the total number of line 5 result
P
(

Yk
Oi ̸=Yk

)
= 1 − e−(

distancek
T ): Negative Conditional Probability

P
(

Yk
Oi=Yk

)
= e−(

distancek
T ): Positive Conditional Probability

for n in N
if n ̸= k:

P
(

Yn
Oi ̸=Yk

)
∗ = e−( distancen

T ): Positive Conditional Probability

P
(

Yn
Oi=Yk

)
∗ = 1 − e−( distancen

T ): Negative Conditional Probability

P
(

Oi=Yk
Y1,Y2,...,YN

)
= 1

1+
P
(

Yk
Oi ̸=Yk

)
P
(

YN
Oi ̸=Yk

)
P
(

Yk
Oi=Yk

)
P
(

YN
Oi=Yk

)
7: (Assign Tracking Number)

The max value of Conditional Probability means that Yk is the same person as Oi.

Oi trackingID = argmax(P
(

Oi=Y1
Y1,Y2,...,YN

)
, P
(

Oi=Y2
Y1,Y2,...,YN

)
, . . . , P

(
Oi=YN

Y1,Y2,...,YN

)
)
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Figure 3. Schematic description of the proposed person/body-part tracking process with person
prediction and fusion.
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5. Caretaker Recognition and Re-Identification

Automatic recognition and tracking of the caretaker in a scene represent one of the
key tasks for the robotic facilitation of HRI, which requires monitoring the appearance,
disappearance, and reappearance of the caretaker. To this end, the proposed RFIS checks
video frames if the caretaker is identified in a scene or is lost in tracking, and if any newly
appeared person in a scene is the caretaker in case the caretaker is lost in tracking.

5.1. Caretaker Recognition

Caretaker recognition is based on the facial image boxes of the persons detected as
newly appearing when the caretaker is not present in a scene. The newly appeared facial
image boxes are cropped from the output of the second YOLOv3 and up-sampled to input
to EfficientNet for caretaker recognition. Note that, since a caretaker may change his/her
outfit daily, we opt to rely on facial images for caretaker recognition instead of including
other body-part images. For caretaker recognition, EfficientNet-B0 was employed as it is
most light in terms of the number of parameters. In addition, we applied transfer learning
to the full layers of a pre-trained EfficientNet-B0 in such a way as to optimize the caretaker
recognition. On the other hand, in the case of the caretaker re-identification for which the
outfit of the caretaker is surely maintained, both facial images and upper-body images are
adopted for caretaker recognition.

5.2. Caretaker Re-Identification

Re-identification of the caretaker is crucial due to the potential disappearance and sub-
sequent reappearance during tracking in crowded environments. This process is initiated
when the caretaker box disappears for several video frames, during which the tracking
remains intact until the probability of disappearance reaches a high threshold. Once the
disappearance is confirmed, the re-identification protocol is activated to scrutinize newly
appeared person boxes to detect the caretaker’s reappearance. The approach relies on
measuring the similarity in facial and upper-body images between the previously detected
caretaker box and the new candidate boxes, as depicted in Figure 4b. Specifically, reidentifi-
cation involves computing the conditional probability that a newly appeared candidate
box is the caretaker box, based on the similarity measure between them. To assess this
similarity, the Structural Similarity Index Measure (SSIM) [39] is employed between the
two images. The conditional probability for a candidate box being the caretaker is then
derived using two similarity measures from the facial and upper-body images, as outlined
in Equation (1).

P

Bj = Caretaker{
S f , Su

}Bj

 =
1

1 +
P

 {S f}Bj

Bj ̸=Caretaker

P

(
{Su}

Bj
Bj ̸=Caretaker

)
P(Bj ̸=Caretaker)

P

 {S f}Bj

Bj=Caretaker

P

(
{Su}

Bj
Bj=Caretaker

)
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(1)

In Equation (1),
{

S f

}Bj
and {Su}Bj represent the similarity measures for facial and

upper-body images, respectively, from the candidate box Bj compared to the caretaker box.

In our experiments, these similarity measures,
{

S f

}Bj
and {Su}Bj , are directly used as the

conditional probabilities, P
(

{S f}Bj

Bj=Caretaker

)
and P

(
{Su}

Bj

Bj=Caretaker

)
, respectively. For candidates

likely not being caretakers, a default probability of 0.5 is assigned to both P
(

{S f}Bj

Bj ̸=Caretaker

)
and P

(
{Su}

Bj

Bj ̸=Caretaker

)
. The prior probability, P

(
Bj = Caretaker

)
, is determined by the effec-

tiveness of the tracking in predicting the caretaker box; if less effective, a default value of 0.5
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is assigned. The re-identification decision for the caretaker is made when the conditional
probability of a candidate box surpasses a predefined threshold.
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Figure 4. The schematic flow of the proposed caretaker recognition and re-identification process
particularly highlights the SSIM-based re-identification of the caretaker: (a) the caretaker recognition
network based on EfficientNet. (b) the caretaker re-identification based on SSIM of the face and upper
body images.

To utilize the proposed caretaker re-identification approach within the integrated RFIS
system, we applied supplementary algorithms to ensure effective re-identification across
contiguous video sequences. In scenarios where re-identification relies solely on a single
frame, the error probability significantly increases due to limited evidence available for
assessment. To enhance the reliability of this evidence, we instituted additional prerequi-
sites, such as specific timing for collecting images of the caretaker’s head and upper body
along with those of new candidates. For optimal results, it is crucial that the images being
compared are captured under comparable conditions, fostering the most effective SSIM
outcomes. Discrepancies in perspectives, such as comparing a side view with a front view,
can lead to notably lower SSIM values, even if the individuals in both images are identical.
In our approach, we accumulate 30 images of both the caretaker’s face and upper body
from the initial moment of identification. This collection provides a diverse set of 30 facial
and upper body images. When a new candidate appears after the caretaker has exited the
scene, it is essential to promptly gather images of any newly surfaced individuals. Each
image, capturing both the face and upper body, is taken over 40 frames beginning from
their appearance. Subsequently, SSIM measurements of both the caretaker and the new
candidate’s facial and upper-body images are conducted to compute the re-identification
probability using Equation (1). The highest of the 30 probabilities is then selected as the
definitive similarity score between the candidate and the caretaker. A re-identification
probability of 0.7 or higher confirms the candidate’s identity as the caretaker, allowing
gesture recognition to proceed without necessitating further recognition processes.

6. Caretaker Gesture Recognition

While tracking the caretaker, RFIS captures a sequence of the caretaker’s body parts,
specifically focusing on the upper body and hands throughout the progression of video
frames. This process is used to determine whether the caretaker is making a gesture
intended for the robot, and if so, recognizes the gesture. RFIS pinpoints the intended
gesture based on a sequence of body-part movements recorded sequentially during a pre-
defined interval of video frames. To facilitate this, a series of gestures are pre-defined for
the system to learn beforehand. Figure 5 delineates four categories of these pre-prepared
gestures: “Here I am” (a), “Come here” (b), “Stay there” (c), and “Follow me” (d). Gestures
not aligning with these are categorized as “No gesture”. For gesture recognition, we
depicted a gesture as a trajectory of the poses of both hands relative to the center of the face
box with reference to the pixel coordinate. To define these relative poses, we normalized
the detected caretaker box to 256 × 256 in size such that the relative pose between face
and hand becomes stabilized. Examining changes in delta x (red) and delta y (blue) across
frames during the execution of pre-defined gestures shows notable differences; for instance,
“Here I am” (a) exhibits a greater amplitude on the y-axis compared to the x-axis and
sustains a longer gesture period than “Come here” (b) and “Follow me” (d) with higher
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amplitude. In contrast, “Come here” (b) demonstrates a greater emphasis on the y-axis than
the x-axis, with smaller variations in delta x and delta y. “Follow me” (d) shares a similar
gesture cycle with “Come here” (b) yet exhibits variations in delta x and delta y across
different poses. “Stay there” (c) uniquely involves the hand rising and then maintaining a
fixed position for a duration, distinctly affecting the behavior of the signal.
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Figure 5. Four categories of pre-defined gestures to communicate with robots: (a) “Here I am”,
(b) “Stay there”, (c) “Come here”, and (d) “Follow me”. Note that in each figure, the white and yellow
arrows indicate the pixel coordinates from the center of the face box to the center of the hand box.

Ultimately, hand pose class labels from 180 (6 s) consecutive video frames are fed into
a stacked LSTM to encode the feature embedding, as depicted in Figure 6. This encoding is
then processed through a fully connected network to classify the input into one of the five
gesture categories, including “No gesture”.
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7. Experimental Results

To demonstrate the proposed robotic facilitation of HRI, we integrated the person/body-
part detection and classification, person tracking, caretaker re-identification, and caretaker
gesture recognition developed individually into a real-time RFIS. The integrated RFIS keeps
track of the caretaker and recognizes his/her gestures in real time based on the RGB-D data
captured by the Intel RealSense D455 as its input. Despite its limited computational power,
we adopted the Nvidia Jetson AGX Xavier, an edge computing device, for implementing
RFIS, particularly for processing the deep learning networks involved. Note that an edge
computing device was adopted for processing to ensure that the entire system can be easily
worn and carried by a user. Given the limited computational power, we managed to process
the integrated RFIS on the Jetson AGX Xavier with a processing speed of approximately
0.2097 s per frame. In the experiment, we evaluated the end-to-end performance of RFIS
in terms of identifying, tracking, and re-identifying the caretaker as well as recognizing
his/her gestures, if any, such that the quality of interaction between the robot and the
caretaker provided by the proposed RFIS was adequately assessed.

The evaluation of RFIS is comprised of two phases, one for evaluating individual
components including person/body-part detection, person tracking, caretaker recognition
and re-identification, and gesture recognition, and the other for evaluating RFIS as an
integrated system. To this end, we custom-collected 24 video datasets in a real laboratory
environment under five growing complexity levels of scenarios (refer to Section 7.5) with
four, three, three, eight, and six video datasets allocated to the respective five levels,
respectively. The average duration of each dataset was approximately six minutes. A video
scene covering a distance ranging from 0.9 m to 5 m was taken by a camera located at
about 1 m height from the ground, where the camera height was chosen to take account of
the height of the hospital trolley. The customized datasets include the scenario in which
both the caretaker and the non-caretakers are free to move around in the camera’s field of
view. Out of 24 custom-collected video datasets, 18 were used for training and testing the
individual components while six were saved exclusively for testing RFIS as an integrated
system based on one, one, one, one, and two from the respective five levels. In terms of
evaluating the individual components with 18 video datasets, the remaining three, two,
two, seven, and four datasets after saving six datasets for testing RFIS were individually
divided by an 8:2 ratio for training and testing. One exception is that the person/body-part
detector was trained based on the MOT17 [40] and COCO [41] datasets together with the
customized datasets. Figure 7 illustrates typical instances of the five complexity levels
of custom-collected video datasets (a) and the benchmark datasets, MOT17, COCO, and
ChokePoint (b), used for person/body-part detection.
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Figure 7. Dataset examples: (a) customized dataset, (b) benchmark datasets (MOT17, COCO,
ChokePoint).

7.1. Experiment of Person/Body-Part Detection and Classification

To evaluate the performance of the person/body-part detection and classification
network, we utilized the MOT17 [40] and COCO [41] benchmark datasets along with a
customized dataset collected in a real environment for training and testing. Specifically, the
evaluation of the person detection incorporated 62,000 images from MOT17 and COCO
for training, while 8300 indoor scene images from MOT17 and COCO, along with 200
images from the customized dataset, were used for testing. Meanwhile, the evaluation of
the body-part detection employed 23,800 images from MOT by MOT17 and COCO along
with 3000 images from the customized dataset for training, while 3570 images from MOT17
and COCO, alongside 1500 images from the customized dataset, were used for testing. The
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body-part classifier, attached to the YOLO detector and based on transfer learning, used
200 images from the customized dataset to refine the accuracy of body-part labeling under
realistic scenarios.

We used MODA (Multiple Object Detection Accuracy) and MODP (Multiple Object
Detection Precision) as performance evaluation metrics [42] for evaluating the person/body-
part detection and classification, as outlined in Equations (2) and (3).

MODA(t) = 1 −
cm(mt) + c f ( f pt)

Nt
G

(2)

MODP(t) =
(Mapped Overlap Ratio)

N(t)
mapped

(3)

where cm and c f represent the cost function for missed detections and the penalty for false

detections, respectively, while Nt
G and N(t)

mapped represent the number of ground truth objects
and the number of mapped objects, respectively, in the tth frame. The results, summarized
in Table 1, show that the IoU threshold of 0.6 was employed to measure the MODA and
MODP performance. It is important to note that the proposed transfer learning-based
refinement significantly enhanced the MODA and MODP performances for body-part
detection from 87% and 85.7% to 96.63% and 97.34%, respectively. Figure 8 shows the
person and body-part detection results of (a) MOT17, (b) COCO, and (c) customized dataset.

Table 1. MODA and MODP performance of the proposed person/body-part detection and classification.

IoU threshold MODA MODP

Person Detection 0.6 94.7% 94.6%
Body-part Detection 0.6 96.63% 97.34%

Sensors 2024, 24, x FOR PEER REVIEW 13 of 26 
 

 

Figure 7. Dataset examples: (a) customized dataset, (b) benchmark datasets (MOT17, COCO, Choke-
Point). 

7.1. Experiment of Person/Body-Part Detection and Classification 
To evaluate the performance of the person/body-part detection and classification net-

work, we utilized the MOT17 [40] and COCO [41] benchmark datasets along with a cus-
tomized dataset collected in a real environment for training and testing. Specifically, the 
evaluation of the person detection incorporated 62,000 images from MOT17 and COCO 
for training, while 8300 indoor scene images from MOT17 and COCO, along with 200 
images from the customized dataset, were used for testing. Meanwhile, the evaluation of 
the body-part detection employed 23,800 images from MOT by MOT17 and COCO along 
with 3000 images from the customized dataset for training, while 3570 images from 
MOT17 and COCO, alongside 1500 images from the customized dataset, were used for 
testing. The body-part classifier, attached to the YOLO detector and based on transfer 
learning, used 200 images from the customized dataset to refine the accuracy of body-part 
labeling under realistic scenarios. 

We used MODA (Multiple Object Detection Accuracy) and MODP (Multiple Object 
Detection Precision) as performance evaluation metrics [42] for evaluating the per-
son/body-part detection and classification, as outlined in Equations (2) and (3). 𝑀𝑂𝐷𝐴ሺ𝑡ሻ = 1 − 𝑐௠ሺ𝑚௧ሻ ൅ 𝑐௙ሺ𝑓𝑝௧ሻ𝑁௧ீ  (2)

𝑀𝑂𝐷𝑃ሺ𝑡ሻ = ሺ𝑀𝑎𝑝𝑝𝑒𝑑 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑅𝑎𝑡𝑖𝑜ሻ𝑁௠௔௣௣௘ௗሺ௧ሻ  (3)

where 𝑐௠ and 𝑐௙ represent the cost function for missed detections and the penalty for 
false detections, respectively, while 𝑁௧ீ   and 𝑁௠௔௣௣௘ௗሺ௧ሻ   represent the number of ground 
truth objects and the number of mapped objects, respectively, in the tth frame. The results, 
summarized in Table 1, show that the IoU threshold of 0.6 was employed to measure the 
MODA and MODP performance. It is important to note that the proposed transfer learn-
ing-based refinement significantly enhanced the MODA and MODP performances for 
body-part detection from 87% and 85.7% to 96.63% and 97.34%, respectively. Figure 8 
shows the person and body-part detection results of (a) MOT17, (b) COCO, and (c) cus-
tomized dataset. 

 
(a) 

 
(b) 

Sensors 2024, 24, x FOR PEER REVIEW 14 of 26 
 

 

 
(c) 

Figure 8. Person/body-parts detection and classification results of each dataset: (a) MOT17, (b) 
COCO, (c) customized dataset. 

Table 1. MODA and MODP performance of the proposed person/body-part detection and classifi-
cation. 

 IoU threshold MODA MODP 
Person Detection 0.6 94.7% 94.6% 

Body-part Detection 0.6 96.63% 97.34% 

7.2. Experiment of Person Tracking 
The proposed person-tracking algorithm was evaluated using 3000 image frames 

from the MOT17 dataset alongside 200 image frames from a specialized custom dataset, 
both of which were previously utilized for testing person detection and classification. We 
employed the MOTA (Multiple Object Tracking Accuracy) [42] metric to assess the track-
ing performance, as outlined in Equation (4), and the results are summarized in Table 2. 

𝑀𝑂𝑇𝐴 = 1 − ∑ ሺ𝑐௠ሺ𝑚௜ሻ ൅ 𝑐௙ሺ𝑓𝑝௜ሻ ൅ log௘ሺ𝐼𝐷௦௪௜௧௖௛௘௦ሻሻே೑ೝೌ೘೐ೞ௜ୀଵ ∑ 𝑁௜ீே೑ೝೌ೘೐ೞ௜ୀଵ  (4)

where 𝐼𝐷௦௪௜௧௖௛௘௦ represents the number of objects the tracking ID of which are switched 
along the procession of frames. Noteworthy is that the performance depicted in Table 2, 
which ranked 10 on the MOT17 leaderboard, includes contributions from the custom da-
taset sourced from a distinct environment in addition to the benchmark dataset. Figure 9 
illustrates the typical results of person tracking in the MOT17 dataset. The same person is 
indicated with the same color over all the frames. The MOT17 dataset includes very com-
plex scenes such as shopping malls, streets, or station halls, in which the person’s image 
size is too small to detect. However, the proposed tracking approach successfully tracked 
even if the box size was small. 

Table 2. Performance of the proposed person/body-part tracking evaluated by the MOTA metric. 

Tracking MOTA 
Person Tracking 74.96% 

Importantly, while implementing the person tracking, we concentrated on optimiz-
ing computational efficiency to be well suited for an edge computing environment, 
achieving approximately 40 ms tracking time on the Jetson AGX Xavier, and simultane-
ously preserving a satisfactory level of tracking accuracy. Figure 10 demonstrates the per-
formance of our integrated person-tracking, detection, and classification network. To il-
lustrate the robustness of the person tracking, we selected three challenging scenarios: 
overlapping, disappearance, and reappearance of a person: (a) tracking in a narrow pas-
sage with overlapping, (b) tracking during a brief 2 s interval, and (c) tracking during 
temporary disappearance with crossing. In Figure 10, consistency is maintained by using 
the same color to represent the same ID of a person detected across the frames. It is crucial 
to note that our proposed person tracking dependably followed the person irrespective of 
these challenging conditions. 

Figure 8. Person/body-parts detection and classification results of each dataset: (a) MOT17,
(b) COCO, (c) customized dataset.



Sensors 2024, 24, 4850 14 of 26

7.2. Experiment of Person Tracking

The proposed person-tracking algorithm was evaluated using 3000 image frames
from the MOT17 dataset alongside 200 image frames from a specialized custom dataset,
both of which were previously utilized for testing person detection and classification. We
employed the MOTA (Multiple Object Tracking Accuracy) [42] metric to assess the tracking
performance, as outlined in Equation (4), and the results are summarized in Table 2.

MOTA = 1 −
∑

N f rames
i=1

(
cm(mi) + c f ( f pi) + loge (IDswitches))

∑
N f rames
i=1 Ni

G

(4)

where IDswitches represents the number of objects the tracking ID of which are switched
along the procession of frames. Noteworthy is that the performance depicted in Table 2,
which ranked 10 on the MOT17 leaderboard, includes contributions from the custom
dataset sourced from a distinct environment in addition to the benchmark dataset. Figure 9
illustrates the typical results of person tracking in the MOT17 dataset. The same person
is indicated with the same color over all the frames. The MOT17 dataset includes very
complex scenes such as shopping malls, streets, or station halls, in which the person’s
image size is too small to detect. However, the proposed tracking approach successfully
tracked even if the box size was small.

Table 2. Performance of the proposed person/body-part tracking evaluated by the MOTA metric.

Tracking MOTA

Person Tracking 74.96%
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Importantly, while implementing the person tracking, we concentrated on optimizing
computational efficiency to be well suited for an edge computing environment, achiev-
ing approximately 40 ms tracking time on the Jetson AGX Xavier, and simultaneously
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preserving a satisfactory level of tracking accuracy. Figure 10 demonstrates the perfor-
mance of our integrated person-tracking, detection, and classification network. To illustrate
the robustness of the person tracking, we selected three challenging scenarios: overlap-
ping, disappearance, and reappearance of a person: (a) tracking in a narrow passage with
overlapping, (b) tracking during a brief 2 s interval, and (c) tracking during temporary
disappearance with crossing. In Figure 10, consistency is maintained by using the same
color to represent the same ID of a person detected across the frames. It is crucial to note
that our proposed person tracking dependably followed the person irrespective of these
challenging conditions.
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in a narrow passage with overlapping, (b) tracking in a short-term interval of 2 s, and (c) tracking
under temporary disappearance with crossing.

7.3. Experiment of Caretaker Recognition and Re-Identification

The performance of the proposed caretaker recognition system was assessed using
two datasets: the ChokePoint dataset [43] as a benchmark and a custom dataset gath-
ered in a real-world setting. The ChokePoint dataset contains 62,833 facial images from
29 persons, including 737 test images, 277 of which identify a caretaker. Out of 29 people,
we randomly selected one person as a caretaker and the remaining 28 as non-caretakers.
The custom dataset was compiled in crowded hallways and laboratories under varied
lighting conditions, with some individuals wearing masks that partially occluded their
faces. This dataset comprises 61,510 facial images from five persons including the caretaker,
segmented into 44,058 training images and 17,452 testing images, with 10,369 and 4392
of those images, respectively, identified as caretaker images. Two of the five individuals
are designated as caretakers, and the data for each caretaker consists of the following:
Caretaker 1 (train: 15,278, test: 7277) and Caretaker 2 (train: 11,545, test: 3092).

Figure 11 shows the caretaker recognition results of the ChokePoint dataset and the
customized dataset. Figure 11a presents the prediction results for the ChokePoint dataset,



Sensors 2024, 24, 4850 16 of 26

where the first row depicts the prediction result for a caretaker, while the second row
represents the result for the non-caretakers. The recognition accuracy is satisfactory for
facial images captured from slightly skewed angles as well as when the caretaker is looking
straight ahead. Figure 11b illustrates the results for the customized dataset. The first
row depicts the prediction results for the two caretakers, while the second row shows the
results for the remaining non-caretakers. The caretaker is recognized as a caretaker even
when part of the face is obscured by gestures or the image is taken from the side of the
face while walking. Conversely, the non-caretaker case encompasses not only the faces of
non-caretakers but also the cases where the face is unidentifiable, such as the back of the
head or where it is heavily occluded by other individuals.
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Figure 11. Caretaker recognition results of each dataset: (a) ChokePoint, (b) customized dataset. Note
that the cropped face image is small because the face is a very small area of the overall scene image.

The caretaker recognition accuracy was gauged using the pAUC metric [44], set to
p-values of 1.0, 0.5, and 0.1, respectively. The results, summarized in Table 3, demonstrate
that caretaker recognition achieves high accuracy, exceeding 95 pAUC at the p-value of 0.1
for the custom test dataset.

As described, caretaker re-identification is based on the SSIM of face and upper-body
box images between the caretaker and a candidate under evaluation. Table 4 illustrates
that a notable disparity exists in the SSIM values of face and upper-body images in case
the two persons at T − n and T frames are different, compared to the SSIM values in
case the persons at T − n and T frames are the same. Based on the SSIM values of the
face and upper-body box images between the two persons at T − n and T frames, the
conditional probability, Equation (1), of the candidate box at T frame being the caretaker
box at T − n frame, is shown in Table 4. We evaluated the performance of caretaker re-
identification by using the three customized video datasets of level 3 complexity as testing
datasets which consist of a total of 11 re-identification scenarios. We initiated the caretaker
re-identification after the caretaker disappeared from the scene at least for 4 s. In the total
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11 caretaker disappearance and appearance scenarios, there were 29 incidents of candidate
evaluations, including 11 reappearances of the caretaker and 18 appearances of the non-
caretaker. We set the threshold of maximum conditional probability as 0.75 to determine
whether or not a candidate is the caretaker. In addition, to ensure the robustness of the
decision, we introduced the indecision category to represent the case where either decision
is too risky to take due to uncertainty. Specifically, indecision occurs in case the respective
maximum and average conditional probabilities are either greater than 0.75 and less than
0.6 or less than 0.75 and greater than 0.65. In the case of indecision due to uncertainty,
the decision is deferred to the subsequent frames. The performance of the proposed re-
identification is summarized in Table 5. As shown, out of 29 incidents of re-identification,
we obtained 11 correct decisions for 11 caretaker reappearances while 16 correct decisions,
one incorrect decision, and one indecision for 18 non-caretaker appearances, resulting in
96.43% of accuracy.

Table 3. pAUC performance of the proposed caretaker recognition.

p-Value pAUC

ChokePoint Dataset
1.0 1.0
0.5 1.0
0.1 1.0

Customized Dataset—Single Caretaker
1.0 0.9965
0.5 0.9955
0.1 0.9835

Customized Dataset—Multiple Caretaker
1.0 0.9958
0.5 0.9948
0.1 0.9829

Table 4. Typical SSIM values of face and upper-body images at T − n and T frames for Person A and
Person B.

T − n Frame
T Frame Person A Person B

(Caretaker) (Non-Caretaker)

Person A
(Caretaker)

Face 0.66830 0.05613
Upper-Body 0.41907 0.13146

Conditional Probability 0.5283 0.0286

Person B
(Non-Caretaker)

Face 0.08085 0.73129
Upper-Body 0.11232 0.69456

Conditional Probability 0.0350 0.6701

Table 5. The results of accuracy, recall, and precision were evaluated with 29 caretaker re-identification
situations in terms of caretaker and non-caretaker predictions.

Prediction
GT

Caretaker
Non-

Caretaker Recall Precision Accuracy

Caretaker 11 1 1.0 0.9167
0.9643Non-Caretaker 0 16 0.9412 1.0

DIL [27]: 97.1 mAP (DukeMTMC-reID), 87 mAP (MARS).

One thing to note is that the proposed re-identification approach was intended to
maximize computational efficiency with the SSIM-based conditional probabilities applied to
a pair of detected face and upper-body image boxes, such that the re-identification process
imposes little burden on implementing real-time RFIS in an edge computing environment.
This contrasts with most of the state-of-the-art re-identification approaches in the literature,
for instance, based on deep learning. As far as the benchmark performance is concerned,
Dense Interaction Learning (DIL) proposed by He et al. [27] is currently top-ranked with
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97.1 mAP for the DukeMTMC-reID [45] dataset and second-ranked with 87 mAP for the
Motion Analysis and Re-identification (MARS) [46] dataset. However, DIL takes about
400 ms for process re-identification, compared to 40 ms of processing time by the proposed
SSIM-based re-identification.

Figure 12 depicts various typical instances that occurred during the process of caretaker
re-identification. Panel (a) shows the head and upper-body images of a caretaker, panel (b)
illustrates the re-identification of a newly appeared candidate as a caretaker, and panel (c)
shows the re-identification of a newly appeared candidate as a non-caretaker. It is important
to note, as discussed in Section 5, that the decision regarding caretaker re-identification is
conclusively made based on additional evidence gathered over the subsequent 40 frames
following the initial re-identification.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 26 
 

 

(Non-Caretaker) Upper-Body 0.11232 0.69456 
Conditional Probability 0.0350 0.6701 

Table 5. The results of accuracy, recall, and precision were evaluated with 29 caretaker re-identifi-
cation situations in terms of caretaker and non-caretaker predictions. 

 GT 
Caretaker Non-Caretaker Recall Precision Accuracy 

Prediction   
Caretaker 11 1 1.0 0.9167 

0.9643 
Non-Caretaker 0 16 0.9412 1.0 

DIL [27]: 97.1 mAP (DukeMTMC-reID), 87 mAP (MARS). 

One thing to note is that the proposed re-identification approach was intended to 
maximize computational efficiency with the SSIM-based conditional probabilities applied 
to a pair of detected face and upper-body image boxes, such that the re-identification pro-
cess imposes little burden on implementing real-time RFIS in an edge computing environ-
ment. This contrasts with most of the state-of-the-art re-identification approaches in the 
literature, for instance, based on deep learning. As far as the benchmark performance is 
concerned, Dense Interaction Learning (DIL) proposed by He et al. [27] is currently top-
ranked with 97.1 mAP for the DukeMTMC-reID [45] dataset and second-ranked with 87 
mAP for the Motion Analysis and Re-identification (MARS) [46] dataset. However, DIL 
takes about 400 ms for process re-identification, compared to 40 ms of processing time by 
the proposed SSIM-based re-identification. 

Figure 12 depicts various typical instances that occurred during the process of care-
taker re-identification. Panel (a) shows the head and upper-body images of a caretaker, 
panel (b) illustrates the re-identification of a newly appeared candidate as a caretaker, and 
panel (c) shows the re-identification of a newly appeared candidate as a non-caretaker. It 
is important to note, as discussed in Section 5, that the decision regarding caretaker re-
identification is conclusively made based on additional evidence gathered over the subse-
quent 40 frames following the initial re-identification. 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Various typical instances that occurred during the process of caretaker re-identification,
where (a) shows the head and upper-body images of a caretaker, (b) illustrates the re-identification of
a newly appeared candidate as a caretaker, and (c) illustrates the re-identification of a newly appeared
candidate as a non-caretaker.

7.4. Experiment of Gesture Recognition

For the evaluation of caretaker gesture recognition, we used 18 customized video
datasets of up to level 4 complexity for training and six customized video datasets of up
to level 5 complexity for testing. Note that the six video datasets for testing are the same
saved for testing RFIS as an integrated system. The 18 customized video datasets for
training amount to a total of 4000 gesture sequences of five gesture categories: “Here I am
(Waving)”, “Come here (Come)”, “Stay there (Stop)”, “Follow me (Follow)”, and “None”.
Each gesture sequence consists of 2 s or 120 frames of video images. For testing with the
six customized video datasets, we tested the two cases separately: (1) testing a total of
980 gesture sequences of up to the level 4 complexity with no alteration of the caretaker
and (2) testing a total of 855 gesture sequences of the level 5 complexity with two caretakers
alternated. Table 6 shows the accuracy of gesture recognition associated with five gesture
categories for the above two cases. As shown, we obtained the average gesture recognition
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accuracy of 93.9% by averaging over all five gesture categories from both cases. Figure 13
provides confusion matrices showing performance details. Figure 13 indicates that the
relatively lower accuracy associated with the “Come here” gesture is from its confusion with
the “Stay there” gesture as the two have a common hand trajectory in a large part of their
motions. Gesture recognition in RFIS is carried out under continuous interactions with the
intent of gesture properly delivered, such that there exists a high probability of correcting
the error, if necessary, in the subsequent interactions. We compared the performance of the
proposed gesture recognition with the state-of-the-art performance [33] based on the action
recognition benchmark datasets, in particular, the action recognition UTD-MHAD [34]
dataset. We selected [33] for comparison since a part of the 27 actions used in [33] are
similar to our gestures while its action recognition is based on RGB images. Ref. [33]
obtained 92.5% accuracy for 27 action classes while we obtained 93.9% accuracy for five
gesture classes. However, they considered only the simplest action scenario with a single
actor, representing level 1 complexity, whereas we considered up to level 5 complexity in
evaluation scenarios.

Table 6. Accuracy of the proposed gesture recognition for the five categories of gestures.

Gesture Type
Accuracy

Case 1
(Single)

Case 2
(Multiple)

“Here I am” 100% 100%

Average 93.9%
“Stay there” 94.8% 94.1%
“Come here” 93.3% 85.3%
“Follow me” 95.9% 98.8%
“No gesture” 92.8% 84.2%

Action machine [33] accuracy: 93.8%.
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Figure 13. The confusion matrix detailing the performance of proposed gesture recognition for the
five categories of gestures: (a) the results of level 1 to 4 scenarios. (b) the results of the level 5 scenario.

Figure 14 displays typical instances of five categories of gestures recognized in real time
within a realistic setting, employing the proposed gesture recognition network integrated
into RFIS, with each caretaker highlighted in a red box.
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Figure 14. Typical instances of 5 categories of gestures recognized in real time within an authentic
environment are showcased, utilizing the gesture recognition network integrated into RFIS. Note: the
use of a low-resolution camera for computational efficiency somewhat compromises the image quality.

7.5. Experiment of RFIS as an Integrated System

To assess the overall quality of interaction facilitated by RFIS as an integrated system,
we custom-collected five video scenarios independently of the datasets used for training
and testing the individual components of RFIS. Each video scenario intends to represent
a different level of interaction complexity including challenging conditions. For the five
scenarios of different interaction complexity, a total of 26 video datasets were collected in a
real laboratory environment. The five video scenarios consist of the following five levels of
complexity: (1) a single caretaker present in a scene (1 C + 0 N/C), (2) a single caretaker
plus up to two non-caretakers present in a scene (1 C + 2 N/C), (3) a single caretaker plus up
to two non-caretakers present in a scene with the caretaker disappearing and reappearing
(1 C + 2 N/C + ReID), (4) a single caretaker plus up to three non-caretakers present in
a scene with the caretaker disappearing and reappearing (1 C + 3 N/C + ReID), (5) two
caretakers plus up to three non-caretakers present in a scene with the caretakers disappear-
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ing and reappearing (2 C + 3 N/C + ReID). Each of the five levels of scenarios involves
caretaker recognition, tracking, and gesture recognition whereas only levels 3, 4, and
5 perform caretaker re-identification. Note that levels 4 and 5 represent the most com-
plex interaction scenarios with the highest crowdedness and multiple caretaker protocols.
Figure 15 shows typical results of the caretaker recognition, re-identification, tracking, and
gesture recognition in level 4, where (a) and (b) show the results of caretaker recognition
and re-identification, respectively, in a crowded environment. Notice in Figure 15b that,
in the situation of the caretaker’s disappearance and reappearance, RFIS can accurately
recognize the non-caretakers and re-identify the caretaker from a newly appeared person
along the lapse of video frames. Level 5 is distinct from the preceding levels in that two
caretakers are simultaneously present in a scene. In that case, we set the following rule
for caretaker identification from the scene: (1) the caretaker identified in the current scene
is given priority as long as he/she remains in the scene, (2) in case the current caretaker
disappears from a scene and does not reappear in a certain amount of time, then one of the
multiple caretakers who appears first in a scene is designated as the caretaker. Figure 16
illustrates a level 5 scenario, where (a) RFIS keeps track of the female caretaker (red box)
identified in the first place even though a male caretaker (green box) walks into the scene.
Figure 16b illustrates the case where RFIS identifies a female caretaker who appeared first
in the scene after the disappearance of the male caretaker as a caretaker.

Sensors 2024, 24, x FOR PEER REVIEW 21 of 26 
 

 

the use of a low-resolution camera for computational efficiency somewhat compromises the image 
quality. 

7.5. Experiment of RFIS as an Integrated System 
To assess the overall quality of interaction facilitated by RFIS as an integrated system, 

we custom-collected five video scenarios independently of the datasets used for training 
and testing the individual components of RFIS. Each video scenario intends to represent 
a different level of interaction complexity including challenging conditions. For the five 
scenarios of different interaction complexity, a total of 26 video datasets were collected in 
a real laboratory environment. The five video scenarios consist of the following five levels 
of complexity: (1) a single caretaker present in a scene (1 C + 0 N/C), (2) a single caretaker 
plus up to two non-caretakers present in a scene (1 C + 2 N/C), (3) a single caretaker plus 
up to two non-caretakers present in a scene with the caretaker disappearing and reappear-
ing (1 C + 2 N/C + ReID), (4) a single caretaker plus up to three non-caretakers present in 
a scene with the caretaker disappearing and reappearing (1 C + 3 N/C + ReID), (5) two 
caretakers plus up to three non-caretakers present in a scene with the caretakers disap-
pearing and reappearing (2 C + 3 N/C + ReID). Each of the five levels of scenarios involves 
caretaker recognition, tracking, and gesture recognition whereas only levels 3, 4, and 5 
perform caretaker re-identification. Note that levels 4 and 5 represent the most complex 
interaction scenarios with the highest crowdedness and multiple caretaker protocols. Fig-
ure 15 shows typical results of the caretaker recognition, re-identification, tracking, and 
gesture recognition in level 4, where (a) and (b) show the results of caretaker recognition 
and re-identification, respectively, in a crowded environment. Notice in Figure 15b that, 
in the situation of the caretaker’s disappearance and reappearance, RFIS can accurately 
recognize the non-caretakers and re-identify the caretaker from a newly appeared person 
along the lapse of video frames. Level 5 is distinct from the preceding levels in that two 
caretakers are simultaneously present in a scene. In that case, we set the following rule for 
caretaker identification from the scene: (1) the caretaker identified in the current scene is 
given priority as long as he/she remains in the scene, (2) in case the current caretaker dis-
appears from a scene and does not reappear in a certain amount of time, then one of the 
multiple caretakers who appears first in a scene is designated as the caretaker. Figure 16 
illustrates a level 5 scenario, where (a) RFIS keeps track of the female caretaker (red box) 
identified in the first place even though a male caretaker (green box) walks into the scene. 
Figure 16b illustrates the case where RFIS identifies a female caretaker who appeared first 
in the scene after the disappearance of the male caretaker as a caretaker. 

 
(a) 

Sensors 2024, 24, x FOR PEER REVIEW 22 of 26 
 

 

 
(b) 

Figure 15. The caretaker recognition and re-identification results of the level 4 scenario experiment: 
(a) the caretaker recognition. (b) the caretaker re-identification. 

 

(a) 

 

(b) 

Figure 16. The caretaker recognition and re-identification results of the level 5 scenario experiment: 
(a) the female caretaker recognition and switched to male caretaker by recognition after the female 
caretaker’s disappearance. (b) the male caretaker recognition and switched to female caretaker by 
recognition after the male caretaker’s disappearance. 

Table 7 presents the overall performance of RFIS summarized in terms of five com-
plexity levels of scenarios as a fully integrated system. In Table 7, the accuracies of RFIS 

Figure 15. The caretaker recognition and re-identification results of the level 4 scenario experiment:
(a) the caretaker recognition. (b) the caretaker re-identification.



Sensors 2024, 24, 4850 22 of 26

Sensors 2024, 24, x FOR PEER REVIEW 22 of 26 
 

 

 
(b) 

Figure 15. The caretaker recognition and re-identification results of the level 4 scenario experiment: 
(a) the caretaker recognition. (b) the caretaker re-identification. 

 

(a) 

 

(b) 

Figure 16. The caretaker recognition and re-identification results of the level 5 scenario experiment: 
(a) the female caretaker recognition and switched to male caretaker by recognition after the female 
caretaker’s disappearance. (b) the male caretaker recognition and switched to female caretaker by 
recognition after the male caretaker’s disappearance. 

Table 7 presents the overall performance of RFIS summarized in terms of five com-
plexity levels of scenarios as a fully integrated system. In Table 7, the accuracies of RFIS 

Figure 16. The caretaker recognition and re-identification results of the level 5 scenario experiment:
(a) the female caretaker recognition and switched to male caretaker by recognition after the female
caretaker’s disappearance. (b) the male caretaker recognition and switched to female caretaker by
recognition after the male caretaker’s disappearance.

Table 7 presents the overall performance of RFIS summarized in terms of five com-
plexity levels of scenarios as a fully integrated system. In Table 7, the accuracies of RFIS
in caretaker recognition, tracking, re-identification, and gesture recognition are compared
across the five scenarios of varying complexity. In Table 7, “C”, “N/C”, and “ReID”
represent caretaker, non-caretaker, and re-identification, respectively. Table 7 indicates
that the proposed RFIS can provide sufficiently high accuracy for caretaker recognition,
tracking, re-identification, and gesture recognition despite the complexity level of sce-
narios moving up to the highest. Note that the accuracy associated with caretaker track-
ing is purely based on the motion-based prediction of a caretaker box without fusing
the result from caretaker recognition. For additional details, refer to the videos corre-
sponding to the five levels of complexity of the scenarios, available at the following link:
https://youtu.be/nKncFBXBGAw (accessed on 11 July 2024).

https://youtu.be/nKncFBXBGAw
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Table 7. The overall interaction quality of RFIS as a fully integrated system, where the accuracies of
RFIS in caretaker recognition, tracking, re-identification, and gesture recognition are shown for the
three different complexity scenarios.

1 C + 0 N/C 1 C + 2 N/C 1 C + 2 N/C +
ReID

1 C + 3 N/C +
ReID

2 C + 3 N/C +
ReID

Caretaker
Recognition Accuracy 100% 100% 100% 100% 100%

Caretaker
Tracking MOTA 100% 100% 87.5%

(1 failure) 100% 100%

Caretaker
Re-identification Accuracy N/A N/A 100% 100% 93.75%

(1 failure)

Caretaker
Gesture

Recognition
Accuracy

“Here I am” 95.8% 100% 95.8% 98.7% 100%
“Stay there” 95.6% 100% 89.2% 91.8% 90.6%
“Come here” 89.2% 86.3% 80.0% 92.2% 85.6%
“Follow me” 96.1% 97.1% 100% 94.6% 95.3%

None 97.4% 100% 88.1% 92.9% 86.4%

7.6. Discussion

The performance of RFIS, as summarized in Table 7, is considered sufficient to effec-
tively facilitate HRI, achieving an average accuracy of over 90% as an integrated system
for caretaker recognition, tracking, re-identification, and gesture recognition, while main-
taining a real-time operation of 5 FPS. Nonetheless, we suggest that further experiments
involving the developed RFIS would be advantageous, particularly to address unexpected
situations, including novel and unconventional HRI scenarios that might emerge in more
complex interaction environments.

8. Conclusions

A Robot-Facilitated Interaction System (RFIS) has been designed and implemented
to enable proactive facilitation by an autonomous mobile robot transporting a patient for
real-time, user-friendly interaction with a caretaker who monitors and nurses the patient.
The proposed RFIS integrates the detection, classification, and tracking of persons/body
parts with caretaker recognition, re-identification, and gesture recognition modules into
a cohesive real-time system operational in an edge computing environment. This paper
demonstrates that by effectively integrating deep learning with traditional engineering
approaches, a complex HRI facilitation system comprising several functional modules of
high complexity can be achieved in a real-time system with state-of-the-art performance in
terms of overall accuracy and an operational speed of approximately 5 FPS. For instance,
we achieved over 90% in MODA and MODP and over 70% in MOTA metrics based on
the custom-collected testing datasets, which may be indirectly compared with the current
state-of-the-art performance of 50–90% for MODA [47] and MODP [47] and 40–70% for
MOTA [47] (Note: This indirect comparison is noted due to differences in the testing
environments.) In particular, we were able to assess the overall interaction quality of RFIS,
performing caretaker recognition, tracking, re-identification, and gesture recognition as
a fully integrated system, and found that the RFIS is capable of providing effective HRI
facilitation with over 90% accuracies on average in a real-time operation of 5 FPS.

For effective integration, we devised several novel approaches, including improving
the accuracy of body-part labeling while maintaining a high level of detection recall,
employing Bayesian conditional probabilities associated with predicted and detected boxes
for person and body-part tracking, and directly linking person and body-part tracking to
caretaker re-identification and gesture recognition. In the future, we plan to expand our
experiments to a variety of real-world settings with more complex interaction scenarios to
further enhance performance, while continuing to refine RFIS as an integrated system.
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In the future, we plan to expand our experiments to more varieties of real-world
settings including a hospital environment, possibly, with a higher complexity level of
interaction scenarios, such that we can find many challenging conditions to be addressed
for RFIS. In addition, we plan to continue searching for alternative approaches to caretaker
detection, recognition, tracking, re-identification, and gesture recognition, whether custom-
designed or adopted from open-source platforms, that can provide better performance for
real-time RFIS operations in real-world settings. For instance, we plan to explore how the
recent advancement of YOLO versions from v7 to v10, in particular, YOLOv8, provides a
new opportunity to further improve the performance of person/body-part detection and,
consequently, of the overall performance of RFIS as an integrated system.
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