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Abstract: As robots become increasingly common in human-populated environments, they must
be perceived as social beings and behave socially. People try to preserve their own space during
social interactions with others, and this space depends on a variety of factors, such as individual
characteristics or their age. In real-world social spaces, there are many different types of people,
and robots need to be more sensitive, especially when interacting with vulnerable subjects such as
children. However, the current navigation methods do not consider these differences and apply the
same avoidance strategies to everyone. Thus, we propose a new navigation framework that considers
different social types and defines appropriate personal spaces for each, allowing robots to respect
them. To this end, the robot needs to classify people in a real environment into social types and
define the personal space for each type as a Gaussian asymmetric function to respect them. The
proposed framework is validated through simulations and real-world experiments, demonstrating
that the robot can improve the quality of interactions with people by providing each individual with
an adaptive personal space. The proposed costmap layer is available on GitHub.

Keywords: autonomous mobile robot; human–robot interaction; proxemics; social robotics

1. Introduction

Recent advances in robotics technology have enabled autonomous mobile robots to be
used in various places. Many robots already perform in social spaces where they coexist
with humans, such as museums, airports, and hotels [1,2]. When navigating social spaces,
robots must avoid obstacles and humans safely. In this context, conventional mobile robot
navigation systems consider humans as dynamic obstacles and focus on avoiding physical
collisions [3–5]. However, humans still feel discomfort or lack trust in such robot behavior.
Therefore, it is crucial for robots to avoid physical collisions with humans and ensure
that humans feel safe and comfortable with the robot’s behavior [6]. Proxemics is a field
of psychological research that studies how people use the physical space around them
and how they position themselves concerning each other [7]. When people navigate an
environment and engage in social interactions, they subconsciously consider the personal
space of others. They may feel uncomfortable if the distance between two people is closer
than expected. Robots should also respect these social norms in social spaces and consider
people’s personal space [8]. In this context, many researchers are applying proxemics
concepts to robot navigation, and this approach has been studied in Refs. [9–11].

Most studies treat all people the same and do not consider different age groups and
situations. However, in the real world, children and adults have different social and
physical characteristics, and people move in different patterns, such as moving alone
or in groups. In particular, children have less ability to react to accidents than adults,
which can lead to safety issues when interacting with robots [12,13]. Ref. [14] investigated
human–robot interaction and found that children tend to keep more distance than adults
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when interacting with a robot. In this context, applying a one-size-fits-all avoidance
strategy to everyone without considering diversity can make people uncomfortable with the
robot’s behavior or lead to unexpected situations. Robots should adopt different avoidance
strategies for different people to feel more comfortable and safer in their interactions. We
propose a novel Social Type-Aware Navigation Framework for robots to directly detect and
track people in real-world environments and adapt avoidance strategies for each individual.

Thus, we propose a framework that enables robots to move safely in social spaces
between different ages and types of people, including socially vulnerable people such
as children and the elderly, while understanding their personal space and social context.
To this end, the framework includes a ‘Social Type Classification Pipeline’ that enables
robots to detect people in real-world environments directly, classify them into different
social types, and a ‘Social Type-Aware Costmap (STAC)’ that enables them to navigate
while respecting the appropriate social distance according to each classified social type. Our
framework is illustrated in Figure 1 and is designed as a plugin that can be easily integrated
into an ROS-based navigation system, allowing it to be used with various path planning
methods. Applying our framework enables robots to move among people more naturally
and in a socially contextualized manner, as shown in Figure 2. Our main contributions to
this work can be summarized as follows:

1. We present a pipeline using robot sensors to classify humans into diverse social types,
moving beyond the conventional approach of treating all humans the same.

2. We develop a new layered costmap that adjusts personal space for each social type,
enabling robots to navigate more sensitively and safely around humans.

3. We validate our framework through qualitative and quantitative analysis in simulated
and real-world human–robot interaction scenarios and demonstrate its performance.

This paper is organized as follows: Section 2 describes the background and necessity of
this research by reviewing the related works. Next, Section 3 details the Social Type-Aware
Navigation Framework proposed in this paper. In Section 4, we qualitatively and quanti-
tatively analyze the results of the experiments conducted with human–robot interaction
scenarios in simulated and real-world environments to validate the performance of the
proposed framework. Finally, Section 5 summarizes the contributions of this work and
concludes the paper with suggestions for future works.

Figure 1. An overview of the Social Type-Aware Navigation Framework.
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Figure 2. Social Type-Aware Navigation Framework for comfort in social spaces.

2. Related Work
2.1. Human Detection and Tracking

In dynamic and unknown environments, detecting nearby obstacles and people
through sensors is essential for robots to navigate safely to their goal. LiDAR and cameras
are commonly used for mobile robots, and LiDAR is useful for detecting humans by track-
ing the geometric features of their legs [15]. However, there is a limitation in identifying
human features, such as age group, using only LiDAR.

On the other hand, with the improvement of computer vision systems, algorithms
such as R-CNN [16], Faster R-CNN [17], and YOLO [18] have made it possible to detect
people in camera images. For example, Ref. [19] presented a method to estimate the age
and gender of a human in an image using YOLO. This approach was used in Ref. [20] to
recognize the gender of a customer so that a robot could interact with them in a shopping
center. Ref. [21] proposed a face detection and tracking framework using convolutional
neural networks and the SORT [22] for integration into various real-world HRI systems.
However, these methods mainly rely on frontal faces, which are less accurate for the side
faces or small-sized faces due to the field of view (FoV) of the camera sensor on the mobile
robot. To address this challenge, Refs. [23,24] proposed a novel approach to distinguish
between adults and children by calculating the ratio of the torso to the face.

In public spaces and crowded environments, robots need to recognize when people
are in groups to plan safer and more efficient paths and to adjust their interactions with
people properly. In this context, many researchers have proposed many different methods
to detect groups in images. In Ref. [25], the sensor was placed overhead to detect group
interactions between people, i.e., from an exterior perspective, but it did not represent
the robot vision and was challenging to implement in real-world navigation. Therefore,
Refs. [26,27] detected groups from the robot perspective in real time by object detection
and clustering using cameras installed on the robot.

Mobile robots should be able to track humans in real time and predict their trajectories
to reasonably plan their path so that they can complete tasks more efficiently. To achieve this,
Ref. [28] proposed a multi-modal tracking framework that integrates various tracking meth-
ods such as Nearest-Neighbor [29], Extended Nearest-Neighbor [30], Multi-Hypothesis [31],
and Vision-Based MDL [32] to improve human tracking in crowded environments. Also, in
Ref. [33], they used a real-time tracking algorithm, SORT [22], based on a Kalman filter to
identify the bounding boxes captured by a camera to track a human continuously. These
studies contribute to predicting human movements when a mobile robot operates in a
social space.
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2.2. Proxemics in Human–Robot Interaction

When a robot needs to navigate around humans, it is important to consider prox-
emic rules to understand and respond appropriately during interactions with humans.
For example, Ref. [34] evaluated subjects’ reactions to the robot’s avoidance behavior with
real-world experiments in which a robot and a human encountered each other in a hallway.
They found that the subjects felt more comfortable when the robot kept away from them.
Also, Ref. [35] defined the shape of personal space by evaluating the comfort humans feel
with the movement of the humanoid and non-humanoid robots when passing around
the person. These results suggest that robots should respect their personal space and
behave predictably to ensure comfort and safety while interacting with humans. Ref. [11]
developed this concept in this context and modeled a personal space as an asymmetric
Gaussian function. Refs. [36,37] integrated the Gaussian function from Ref. [11] into a
costmap by adding a cost around a person to make the robot respect their personal space.
The research in Ref. [38] developed a dynamic social force model, which determines the
parameters of personal space with a fuzzy inference system and continuously adjusts them
through reinforcement learning. In Refs. [39,40], the robot detected human emotions and
incorporated emotion-based proxemics constraints into the costmap. This approach makes
human–robot interactions smoother by allowing the robot to recognize human emotions
and react appropriately.

Meanwhile, human interaction in crowded environments is not limited to interactions
between individuals. For example, humans tend to avoid groups they are not involved
with. In this context, it is crucial for robots to understand the interactions with human
groups and react accordingly. That is, robots should recognize the spaces generated by
groups of humans and navigate among them effectively. Kendon’s F-formation [41] is a
good tool for understanding the interactions between such groups, including the o-space
shared by group members, the p-space where group members stand, and the R-space that
divides the group from outer space. Refs. [42–46] took this idea and proposed an approach
in which the robot maintains an appropriate distance from the group so that the individual
as well as the group members feel comfortable, and Refs. [47,48] addressed how the robot
detects groups and approaches them with an appropriate pose when joining the group.

Although many studies have applied proxemics to social navigation, a lack of research
defines and considers personal space for children. By categorizing people into different
age groups or situations instead of a single category and respecting their different personal
spaces, a robot can navigate safely and be human-aware in real-world environments. This
differentiated approach is an important step forward. It will make robots interact with all
kinds of humans, including children.

3. Methods
3.1. Social Type Classification Pipeline

Many studies in the area of socially aware navigation use ceiling-mounted cameras to
detect people [49]. In this work, we developed a pipeline to detect, track, and classify people
using sensors installed on a robot for applications in various real-world environments.

First, we chose Ultralytics’ open-source YOLOv7 model [50] to detect people in RGB
images. It provides high accuracy and fast processing speed and improves performance
compared to existing models. We trained YOLOv7 on the CrowdHuman dataset [51], which
provides three annotated datasets: human visible area, head, and full body. Applying the
trained model, we can see that the bounding boxes for the head and the whole body are
detected, as shown in Figure 3.

For the tracking system, we use SORT (Simple Online and Realtime Tracking) [22].
This algorithm tracks each uniquely identified object through the scene and can re-identify
them even if they leave and re-enter the scene. The output of this system includes an ID for
each object, along with its start and end positions in terms of x and y coordinates. These
coordinates can be used to analyze the movement and path of each person. By analyzing
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the history of these positions, the system can estimate a person’s speed and trajectory,
providing valuable insight into their movement patterns within the scene.

Figure 3. Human detection and tracking result in a Gazebo environment.

Figure 3 shows the results of detecting and tracking people using YOLOv7 and SORT
in a Gazebo environment. The left image shows the Gazebo and the right image shows the
detection and tracking results. The blue bounding boxes indicate detections of heads and
the orange ones full bodies. The top of each orange bounding box also shows the ID of the
detected person, which can be used to effectively distinguish between multiple people in
the image.

To estimate the age of the detected person, we use the human head-to-body ratio [52].
Since there is a difference in this ratio for each age group, we can identify adults and
children by comparing the size of the head and body bounding boxes of each detected
person. If multiple humans are detected, classification is performed by ensuring that the
center of the head bounding box is within the full body bounding box before calculating the
ratio of the bounding boxes. The threshold for distinguishing between adults and children
based on their head-to-body ratio was determined through prior experiments in various
real-world settings. A ratio of 7.0 or less was classified as a child, while a ratio greater
than 7.0 was classified as an adult. This classification ensures that the robot moves carefully
when interacting with children.

After detecting and classifying humans, we use the optical principle of RGB-D cameras
to determine their actual location. From the depth image extracted from the RGB-D image,
the bounding box and the internal parameters of the camera can be used to convert the
position of the human from the 2D image to 3D coordinates in the camera coordinate
system. This conversion is calculated as follows:

XC =
u− px

fx
ZC , YC =

v− py

fy
ZC , ZC = Z (1)

In Equation (1), (u, v) is the center coordinate of the 2D bounding box, (px, py) is the
principal point coordinate of the camera, ( fx, fy) are the focal lengths of the camera, Z is the
value of the corresponding pixel in the depth image, and (XC, YC, ZC) represents the 3D coor-
dinate in the camera coordinate system. Finally, the actual human position can be obtained
through a coordinate transformation between the camera and robot coordinate systems.

Figure 4 shows the result of the human position detected by the RGB-D camera in the
robot coordinate system. It shows the process of detecting a person in the RGB image from
the camera on the robot, combining the depth information of the corresponding bounding
box with the internal parameters of the camera and converting the position in the 2D image
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to 3D spatial coordinates in the robot coordinate system. When a robot is navigating around
people, the robot must know the actual position and movement of the person, which allows
the robot to predict the future trajectories of the person and thus avoid collisions with the
person in advance. In this paper, to estimate the human’s motion and obtain the human’s
exact position, we use the Kalman filter [53].

Figure 4. Example of the human position detected using the RGB-D camera in the robot coordinate system.

The robot we use has a 90-degree field of view for the camera and a 270-degree field
of view for the LiDAR. Since the field of view of the RGB-D sensor covers only 1/3 of the
laser scanner’s field of view, we use Ref. [15], which estimates the position and speed of
people with the LiDAR sensor, to recognize all the people around the robot.

There are not only individuals but also human groups in social space. Many re-
searchers proposed a group identification method using clustering techniques in this
context. However, these methods are limited in real-time applications due to data pro-
cessing. Therefore, we propose a simple group detection algorithm that can recognize
groups in a dynamic environment. According to proxemics, people tend to be distant from
strangers more than familiar people. The algorithm calculates the differences in distance
and direction of movement between people. It classifies them into a group if they move in
the same direction and the distance is within a threshold range based on proxemics.

Algorithm 1 shows the proposed group recognition algorithm for recognizing groups
based on individuals’ spatial and orientation data. It utilizes two pieces of information
about each individual: their location, denoted by (xi, yi), and their orientation, represented
by the quaternion qi, to detect whether they are in a group.

The process starts by converting the quaternion into a rotation matrix (using the
RotMat function) so that the orientation of each individual can be easily used for spatial
analysis. This transformation is essential for determining each individual’s heading vector,
which enables us to know where each individual is facing. Next, it calculates the distance
and angular difference between individuals. The distance is determined using the Eu-
clidean distance formula, and the angle is a simple calculation obtained by comparing
the orientation vectors derived from the rotation matrix (using the VecAngle function).
The final step is to apply a predefined threshold to these calculated distances and angles
to classify objects as part of a group or as individual objects. If the distance and angle
differences are within this threshold, they are considered to belong to the same group.
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Algorithm 1 Group Classification

1: Input: For each human pi, position as pi = (xi, yi), orientation as quaternion qi
2: Output: Classification of each pair as a group or individuals
3: function ROTMAT(q)
4: Compute rotation matrix from quaternion q
5: return rotation matrix
6: end function
7: function VECANGLE(v1, v2)
8: u1← v1/∥v1∥
9: u2← v2/∥v2∥

10: dp← dot product of u1 and u2
11: angle← arccos(max(−1, min(1, dp)))
12: return angle
13: end function
14: for i = 1 to n− 1 do ▷ For each pi in people
15: for j = i + 1 to n do ▷ For each pj in people after pi

16: dist←
√
(xj − xi)2 + (yj − yi)2

17: ri ← ROTMAT(qi)
18: ri ← ROTMAT(qj)
19: di ← ri · [1, 0, 0] ▷ Direction vector of pi
20: dj ← rj · [1, 0, 0] ▷ Direction vector of pj
21: angle← VECANGLE(di, dj)
22: if (dist < distThresh) and (angle < angleThresh) then
23: Classify pi and pj as a group
24: end if
25: end for
26: end for

In conclusion, our pipeline becomes an essential basis for the Social Type-Aware
Costmap (STAC).

3.2. Social Type-Aware Costmap (STAC)

Costmap [54] is a data structure that represents the environments around the robot in
the form of a 2D grid map, where each grid cell represents the ’cost’, or ’risk’, of the position.
The cost represents the expected risk of the robot navigating through the area. The robot
can choose a safe and efficient path by avoiding high-cost areas and preferring low-cost
areas. Costmaps are widely used for socially aware motion planning and navigation by
introducing non-lethal costs to represent social space [55]. Ref. [36] proposed a layered
costmap, each containing semantic information about specific attributes such as obstacles,
inflation, or proxemics. They represent proxemics by utilizing the detected position and
velocity of humans to generate Gaussian distributions of costs around them [11].

While these approaches effectively represent human personal space, they must con-
sider that it can vary from person to person. Hence, in this work, we propose a Social
Type-Aware Costmap (STAC), a multi-layer costmap that includes the personal space for
each type of person, such as adults, children, and groups. Our costmap allows the robot
to respect children at a greater distance than adults. The STAC consists of two layers:
the age-based layer, which represents personal space for different age groups, and the
group-based layer, which represents group space.

3.2.1. Age-Based Layer

We use an asymmetric Gaussian function to represent the personal space in mathe-
matical form [11]. It is defined in Equation (2) and is visually illustrated in Figure 5. This
modeling method helps the robot to move while ensuring an appropriate distance from the
humans around it.
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f (x, y) = Aexp

−
(dcos(θ − θi)√

2σx

)2

+

(
dsin(θ − θi)√

2σy

)2
 (2)

σx = σi(1 + kvv), σy = σi (3)

Figure 5. Example of the personal space around a human using an asymmetric Gaussian distribution.

Using the human position from our Social Type Classification Pipeline, we define
a danger zone centered on the human’s location (x0, y0). Given the moving direction of
the person as θi = atan2(vy, vx), we calculate the cost value as the difference between the
distance and direction of the person and any cell (x, y) on the costmap, where d is deter-
mined by d =

√
(x− x0)2 + (y− y0)2 and θ is by θ = atan2((y− y0), (x− x0)). The value

decreases as it goes further from the person and adjusts based on the orientation difference
between the person and the cell. The parameters of the Gaussian function, A, σx, σy, repre-
sent the amplitude of the function and the standard deviation in the horizontal and vertical
directions, respectively, which determine the size and shape of the personal space around
the person. This zone of danger scales with the direction of the person’s movement, and, the
faster the person moves, i.e., the greater the speed, the wider this zone of danger becomes.
This is regulated through the scaling factor kv, which adjusts the shape of the Gaussian
function depending on the human’s speed and is shown in Equation (3). Through all this,
the robot can accurately determine the personal space around people and move carefully
between them accordingly. This is essential for the robot to respect social manners and
personal space during interactions with people. Ref. [14] studied proxemics with a robot
regarding participants’ age and found that children tended to stand further away from
the robot than adults. This study suggests differences in proxemics between children and
adults. Therefore, in this paper, we propose a new approach to make children’s personal
space more extensive than that of adults. The size and shape of the personal space are
based on the basic parameter σ0, and Equation (4) describes how to use this parameter to
differentiate the size of the personal space for children and adults. This takes into account
the different proxemic needs of children and adults.

σi =

{
σ0, if adult

1.4σ0, if child
(4)

The personal space parameter σ0 for adults is set based on the proxemics. This theory
takes the average distance an adult maintains in their general social interactions with
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strangers as a reference to their personal space. For example, if an adult’s average distance
in a typical interaction with a stranger is 1.2 m, this distance is set to σ0. On the other hand,
research in Ref. [14] shows that children keep a distance of about 1.7 m on average when
interacting with a robot. It is relatively longer than adults’ distance with a robot, so we
should consider children’s personal space to be about 1.4 times larger than that of adults.
Therefore, the personal space parameter for children is set to 1.4 times that of adults. This
approach respects the difference in proxemics between children and adults and contributes
to a more accurate interaction design.

Figure 6 shows the result of applying the age-based layer. Notice the difference in
the size of the Gaussian distributions applied to adults and children, particularly that the
distribution for a moving child is extended in the moving direction. Using this information,
the robot can adapt its path to avoid getting too close to the child.

Figure 6. The result of applying an age-based layer. The personal spaces are shown at different sizes
for a moving adult, a moving child, and a stationary child.

3.2.2. Group-Based Layer

fG(x, y) = AGexp

−
(dcos(θ − θ̄i)√

2σG
x

)2

+

(
dsin(θ − θ̄i)√

2σG
y

)2
 (5)

σG
x = σG(1 + kvv̄), σG

y = σG (6)

To ensure human comfort in the context of human standing and moving in groups,
the robot should also respect the group space shared by the group members. Compared to
the age-based layer, represented based on the position and heading of individuals, shown
in Figure 7a, the group-based layer captures the dynamics of the group of people shown in
Figure 7b. It represents the group space based on the center position of the group (x̄0, ȳ0)
and the average direction θ̄i in which the group is moving together. Group space is defined
similarly to individual space and is shown in Figure 7b and Equation (5). The group
space is formed at the center of two individuals and, like the individual space described
in Section 3.2.1, computes the cost values around the group members by comparing a
random cell in the cost map with the group’s center position and moving direction. Here,
d is determined by d =

√
(x− x̄0)2 + (y− ȳ0)2, and θ is by θ = atan2((y− ȳ0), (x− x̄0)).

The parameter σG, which determines the size of the space, is defined by the distance dG
from the group’s center to the farthest group member and the scaling factor kG. That is, it
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is calculated with σG = kGdG. The wider the group members are separated, i.e., the larger
d is, the larger σG is, and the wider the danger zone around the group. It helps the robot
keep a safe distance from all group members as it plans its path, considering the group.

(a) (b)

Figure 7. Asymmetric Gaussian distribution illustrating (a) two individuals’ personal spaces and
(b) the integration of personal and group spaces.

Figure 8 shows a comparison of the results with and without the STAC, simulating a
situation where two people are talking in a virtual environment, Gazebo. Figure 8a shows
without STAC, which does not capture the interaction between the two people, and the
area between them is shown as free space for the robot to pass through, while Figure 8b
is the result of with STAC, which detects both the individual and group space of the
two people and shows the space where the robot cannot pass through, i.e., the lethal space.
The proposed costmap layer is released as an open-source repository on GitHub [56].

(a) Without STAC (b) With STAC

Figure 8. A comparison of the results with and without the STAC.

4. Experiments

We demonstrated on both a simulator and an actual mobile robot that the proposed
method enabled the robot to arrive at its destination in a dynamic environment where
humans move around without causing discomfort. By experimenting with the robot’s
interactions with different types of humans, including children, adults, and human groups,
we verified that our method provides more comfort for humans than the traditional method.
It presents a significant challenge to existing navigation strategies that consider humans
only as single objects.

We used the Navfn [57] as the global planner and the Dynamic Window Approach
(DWA) [58] as the local planner, and the navigation settings were kept consistent through-
out the experiments. The main comparison is between the traditional costmap (obstacles
and inflation layer) with and without the Social Type-Aware Costmap (STAC). Also, due to
the child’s small size, the LiDAR cannot detect the child’s legs, so the camera holds the last
detection position for 4 seconds in case the child is out of range. A video with our experi-
mental results is available at https://youtu.be/LywBJ9KIxSE, accessed on 24 June 2024.

https://youtu.be/LywBJ9KIxSE
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4.1. Robot Specifications

As shown in Figure 9a,b, the mobile robot used in both simulations and real-world ex-
periments is Jackal [59], which is equipped with a 2D LiDAR and RGB-D sensor. The LiDAR
sensor can measure objects between 0.05 m and 25 m and has a field of view of 270 degrees.
We used Intel RealSense D435 as the RGB-D sensor, which has a minimum depth capability
of 10.5 cm and supports depth/RGB frame rates up to 90/30 fps. The camera provides
sensor resolutions up to 1280 × 720 for depth and 1920 × 1080 for RGB, with the field of
view (FoV) being 87° × 58° × 94° for depth and 69° × 42° × 77° for RGB. Figure 9c shows a
comparison of the field of view of the LiDAR and camera installed on the robot. The LiDAR
sensor has a field of view of 270 degrees and the RGB-D camera has a field of view of
87 degrees for depth.

(a) (b) (c)

Figure 9. (a) The simulated robot model used in the experiment, (b) the real robot, and (c) the field of
view (FoV) of the sensors mounted on the robot. The gray area depicts the range of the LiDAR sensor,
and the white area depicts the camera sensor.

4.2. Experimental Setup and Scenarios

Our study includes simulation experiments to evaluate the framework with the Gazebo
and the Robot Operating System (ROS) and real-world experiments to validate the perfor-
mance of the proposed framework in social space. The simulation test environment was a
corridor-like environment with child and adult models. To simulate the behavior of social
agents, we used pedsimROS [60], an ROS package that models walking pedestrians using
the Social Force Model [61]. They were set to recognize the robot and avoid it if necessary,
and the child model was moved slower than the adult model.

We designed three test scenarios in which the robot had to move from the initial
position to the goal while passing an adult, a child, and a human group. Each of these
scenarios was conducted five times to ensure the consistency and reliability of the results.
These scenarios were designed to evaluate how socially appropriate the robot interacts with
humans with and without the Social Type-Aware Costmap (STAC). With this comparison,
we can see how the use of the STAC affects the robot’s social type-aware navigation.

The real-world experiments consisted of 8 scenarios, each involving the robot inter-
acting with an adult and a child and group interactions with two participants. The group
interaction experiments included cases with two adults and cases where one participant
was a child and the other an adult. Each scenario was designed for two different situations:
when the participants were stationary and moving. The more detailed description of the sce-
nario and its illustrations is presented in Section 4.4. It allowed us to observe how the robot
reacted in different social situations. All experiments were compared between traditional
navigation methods and using the STAC to evaluate how the robot navigated. The STAC
parameter settings for simulation and real-world environments are shown in Table 1.
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Table 1. Parameter settings.

Parameter Simulation Real World

A 150 125
σ0 0.8 0.5
σG 0.7 1.0
kv 5 5
AG 170 125
kG 1.5 1.3

4.3. Simulation Experiment Results

Figure 10 shows the trajectories of the robot and human model in the simulation
experiment. Here, the robot’s destination is indicated by the red arrow. In Figure 10a,
the red line shows the trajectory of the adult model and the green color shows the trajectory
of the robot, where the light green is the trajectory of the robot when using the traditional
costmap alone and the dark green is the trajectory when applying our proposed STAC
method. Figure 10b shows the trajectory when the robot interacts with the child model,
where the gray line shows the movement trajectory of the child model, and the light and
dark orange show the robot trajectory when the traditional and STAC methods are applied,
respectively. Figure 10c shows the trajectory of the robot avoiding an adult model moving
in a group, comparing the results of the traditional and STAC methods. Here, the gray and
cyan colors indicate the trajectories of the group members, the green indicates the trajectory
of the robot, the light color indicates the traditional method, and the dark color indicates
the trajectory when using the STAC method.

(a) Adult (b) Child (c) Group

Figure 10. Trajectory results of the robot and humans in three simulated passing scenarios displayed
in Rviz.

From these comparisons, we can see that, when using the STAC method, the robot
moves with a clearer avoidance of the humans. In particular, when comparing Figure 10a,b,
we can see that the robot tends to avoid the child model with a wider trajectory compared
to the adult model. In addition, Figure 10c shows that the robot avoids the group more
effectively when applying STAC than when using the traditional method, and, notably,
we can see that the human nearest to the robot (light gray trajectory) tries to avoid the
robot. The comparative analysis of these trajectories demonstrates the effectiveness of
our approach on the robot’s avoidance strategy with respect to humans. More detailed
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numerical results can be found in Table 2. We used the following indices to evaluate and
compare the methods.

• Navigation Time (NT): The traveling time until the robot arrives at the goal position [s];
• Path Length (PL): The total distance of the robot until it arrives at the goal position [m];
• Minimum Distance (MD): The minimum distance to human in all cases [m];
• Invasion Distance (ID): The total distance the robot moved while invading the personal

space (1.2 m for an adult; 1.7 m for a child) [m].

Note that all the metrics except for minimum distance are average values.

Table 2. Simulation results.

Social Type Method NT [s] PL [m] MD [m] ID [m]

Adult Traditional 22.39 9.51 0.76 0.59
STAC (Ours) 22.69 9.59 1.11 0.15

Child
Traditional 22.23 9.51 0.86 1.20

STAC-A 22.77 9.65 1.23 0.99
STAC (Ours) 23.62 9.75 1.46 0.68

Group Traditional 31.69 12.68 0.41 0.19
STAC (Ours) 30.28 12.91 1.00 0.33

4.3.1. Adult

When using only the traditional costmap, the robot considered the adult as an obstacle
and followed the shortest path to the goal, as shown by the light green line in Figure 10a. It
tended to approach without any specific avoidance behavior that causes discomfort to the
adult. However, MD and ID, indicators of human discomfort were found to be 0.76 m and
0.59 m, respectively, where MD means that the robot was closer to the person by 0.76 m. ID
means that the robot invaded about 0.59 m, the minimum distance of 1.2 m that a human
tries to maintain with a stranger, which means that, with the traditional costmap, the robot
could get too close to the personal space of an adult and cause discomfort.

On the other hand, when applying our proposed STAC system, the robot approached
the human at a minimum distance of 1.11 m, which is slightly closer than the human
personal space threshold of 1.2 m. Moreover, the minimum distance the robot approached
into the personal space was reduced by 0.44 m compared to the traditional method. Al-
though STAC did not fully respect the human’s personal space, it still represents a sig-
nificant improvement in ensuring that the human does not feel uncomfortable with the
robot’s behavior compared to the traditional costmap method, as shown by the green line
in Figure 10a. In addition, the navigation time and path length increased by 0.3 s and
0.08 m, respectively, compared to the conventional costmap results, but the difference was
insignificant. These results show that STAC can be applied to navigate without significantly
reducing navigation efficiency while respecting personal space and ensuring that humans
are not uncomfortable with the robot’s behavior in human–robot interactions.

4.3.2. Child

In the child–robot interaction scenario, we compared the traditional costmap, STAC,
and STAC-A, which used the same settings as adults. The results show that the traditional
costmap performed best regarding NT and PL. However, STAC performed the best in terms
of MD and ID, which are indicators of ensuring a safe distance to a child. When the child’s
personal space was set to 1.7 m, the ID value was 0.68 m despite using STAC. This is because
the costmap generated around the child was defined as a Gaussian with a radius of about
1.7 m, but the center of the costmap was set to high risk, and the edges were set to relatively
low risk. This is because, if the entire costmap was set to high risk, the robot would not
be able to generate a path and would stop. While STAC-A also performed well regarding
personal space consideration, the STAC method is more appropriate as it provides a larger
personal space for children to protect them from unexpected situations during interaction
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with the robot. Furthermore, despite the NT and PL of 23.62 s and 9.75 m, respectively,
increases of about 1.4 s and 0.24 m compared to the traditional method, the difference is
insignificant throughout the navigation. The important thing is that the results show that
our method reliably detects children and fully understands the extended personal space of
children compared to the experiment with adults, applying different avoidance strategies
than adults. This result demonstrates that our proposed Social Type-Aware Navigation
Framework effectively distinguishes between children and adults and applies appropriate
navigation strategies for each. As shown in Figure 10a,b, it is clear that the robot takes
different trajectories when interacting with an adult and a child.

4.3.3. Group

In a group interaction with a robot, we set the goal to the center of the group members.
Using the traditional method, the robot planned the shortest path through the group’s
center, which caused people to move to avoid the robot, as shown by the light green line in
Figure 10c. While this approach may appear to reduce PL, increase NT, and improve ID
values, this is actually because the robot had to stop while driving between people. The MD
of 0.41 m may be a sign that the robot caused discomfort rather than providing comfort.

In contrast, when STAC is applied, the robot plans its path in a way that recognizes
and respects personal and group space. As shown by the green line in Figure 10c, this
allows people to move while maintaining their original trajectory, providing the robot a
way of behaving that considers social etiquette. In particular, the traditional approach of
trying to drive through the middle of a group is contrary to social etiquette, which is an
important consideration for robot operation in public spaces. Using STAC, the robot can
plan its avoidance path, reducing NT while achieving good performance in MD and ID,
making human–robot interactions more natural and comfortable.

4.4. Real-World Experiments
4.4.1. Individuals

The real-world individual experimental scenarios were designed for two social types,
an adult and a child, as illustrated in Figure 11. The experiments consisted of four different
scenarios, including situations where the human is standing or moving, with a distance
of about 0.4 m between the robot and the human. The robot navigates from a starting
to a ’Robot goal’. The human standing is located 3.5 m vertically and 0.4 m horizontally
away from the robot’s starting point, which can be seen in Figure 11a,b. On the other hand,
in the scenario where the human is moving, the human and the robot start from the same
point. The human moves about 6 m vertically and 0.4 m horizontally to the ’Human goal’,
as shown in Figure 11c,d. By experimenting and comparing the robot’s response in these
different situations using only the traditional costmap and the proposed STAC technique,
we evaluated the performance of our framework in detecting the human and moving to
the goal while respecting the personal space of different social types.

In the real-world experiments, we found that, across all scenarios, NT and PL, the nav-
igation efficiency metrics as shown in Table 3 were best when using only the traditional
costmap. However, STAC achieved better performance on MD and ID, indicators of hu-
man comfort. In the scenario where an adult is stationary, the traditional costmap kept
a minimum distance of 0.66 m from the human following the planned path without any
consideration for the human, and the total distance traveled within 1.2 m of the human’s
personal space was measured to be 3.16 m. While the minimum distance of 0.66 m is
shown numerically, this only takes into account the distance between the center of the
robot and the human, which means that, in reality, given the width of the Jackal is 430 mm,
the human may feel like the robot came within about 0.45 m. This is the general distance a
human would keep from family or friends. In contrast, when STAC was applied, the robot
considered the personal space when planning its path, ensuring that the minimum dis-
tance from the person was 1.09 m, and invaded the personal space while moving 2.80 m.
A 1.2 m personal space around the person was not perfectly protected because giving a
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high-risk value to a space of this size would cause the robot to stop and be unable to
generate a path.

(a) Stationary Adult (b) Stationary Child (c) Moving Adult (d) Moving Child

Figure 11. Real-world experiment scenarios for individual–robot interaction.

Table 3. Individual experiment results.

Scenario Method NT [s] PL [m] MD [m] ID [m]

Stationary Adult Traditional 18.79 6.92 0.66 3.16
STAC (Ours) 21.06 7.09 1.09 2.80

Stationary Child Traditional 19.85 6.56 0.38 3.12
STAC (Ours) 23.20 6.72 1.61 0.34

Moving Adult Traditional 17.89 7.34 0.41 1.31
STAC (Ours) 21.57 7.70 0.88 0.83

Moving Child Traditional 20.02 6.73 0.70 3.22
STAC (Ours) 21.40 7.30 1.47 0.62

In the scenario where a child is standing, the traditional method approached the child
with a minimum distance of 0.38 m, resulting from moving closer to the child than the adult
due to the child’s smaller size. However, with STAC, the personal space applied around
the child was set to be larger than that of the adult, allowing the robot to pass around
the child more safely, resulting in a minimum distance between the robot and the child
of 1.61 m. This means that a larger personal space was adopted even when compared to
the experiment with the adult. When the child’s personal space was set to 1.7 m, the robot
invaded this space while traveling 3.12 m with the traditional method, but STAC reduced
this to 0.34 m. These results can be seen in Figure 12b,d, where the robot follows a safer
trajectory around the child. It is important to note that planning a safe trajectory prioritizes
safety even at the expense of some navigation efficiency, as shown by the increase in NT of
about 3.35 s and PL of 0.16 m compared to the traditional method. This is a small tradeoff
for safety. For the moving adult scenario, the traditional method resulted in driving at
0.41 m, closer than the stationary adult scenario, which caused the human to take action to
avoid the robot. This approach did not respect the personal space, making the human feel
uncomfortable. However, with STAC, the robot recognized the increased personal space in
the direction of the human’s movement and moved away from it, maintaining a distance of
0.88 m from the adult. The experiment with the child showed similar results, maintaining
a distance of at least 1.47 m from the child, which is significantly greater than the 0.70 m
measured with the traditional method.

Overall, in the scenario of interacting with a single person, traditional methods could
not maintain the required minimum distance due to their approach of considering people
as obstacles and following the shortest path without taking any special avoidance measures.
This approach was particularly challenging in environments with vulnerable individuals,
such as children. Because of their small size, traditional methods only recognize children
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as small obstacles and tend to navigate at closer distances than adults. In contrast, STAC
respects personal space, especially in interactions with children. We use cameras to identify
children and apply appropriately sized costmap to them, even if they are too small to be
detected by LiDAR sensors. Once a child is detected, the costmap is kept at the child’s last
known location for a short time, even if the camera no longer detects the child, to ensure a
safe distance between the child and the robot. Our approach allows the robot to respect
better personal space in interactions with all people, not just children, and enables safe and
comfortable navigation.

(a) Stationary Adult—Traditional (b) Stationary Adult—STAC

(c) Stationary Child—Traditional (d) Stationary Child—STAC

(e) Moving Adult—Traditional (f) Moving Adult—STAC

(g) Moving Child—Traditional (h) Moving Child—STAC

Figure 12. Experimental results in the real world with individuals. The left side of the figure is a
snapshot of the Rviz visualization. The first row shows using the traditional costmap; the second row
shows using STAC.

4.4.2. Human Group

The real group experiment scenario is shown in Figure 13; the experiments focused on
setting the distance between the robot and the group members, with a distance of approxi-
mately 1 m between group members and either 3.5 or 6 m from the robot. The experiments
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were tested for two cases: a group consisting entirely of adults and a group including
one child. The robot moves from a given starting position to the ’Robot goal’. When the
group is standing and interacting with each other, the robot starts 3.5 m away from the
group, and the robot goal is set at a position across the center of the group, as shown in
Figure 13a,b. In the group moving scenario, the group members start about 6 m away from
the robot and move to the ’Group goal’, where the robot goal is also located across the
group’s center. It can be seen in Figure 13c,d. These experiments are designed to compare
the robot’s behavior when only applying the traditional costmap and STAC methods. This
allows us to evaluate how the robot reacts differently to a group consisting of only adults
versus a group containing children and how efficiently the robot can access the goal set by
crossing the group’s center.

(a) Standing Group (b) Standing C-Group (c) Moving Group (d) Moving C-Group

Figure 13. Real-world experiment scenarios for group–robot interaction.

The behavior of the robot and its global path are shown in Figure 14 for all scenarios
in the group interaction experiments. The robot using the traditional costmap was utterly
unconscious of group interaction and chose paths that crossed between group members,
whether they were stationary or moving. This passing behavior between group members is
particularly problematic in scenarios involving children. Passing by children is problematic
because they can be more sensitive and unpredictable and require more space to ensure
their safety and comfort. When a robot invades the personal space of a group, including
children, it can lead to discomfort and safety issues. With STAC, on the other hand, the robot
can regard both the personal space of the group members and the group space, which is
the space between the group members. This allows the robot to choose a path that avoids
disrupting the group’s interaction and moves without moving through the group.

The results of the experiments are detailed in Table 4. In the experiment with a group
including a child, the Invasion Distance value was measured by adjusting the personal
space required by the child from 1.7 m to 1.2 m, as opposed to the previous experiment.
With a group of stationary adults, using the traditional method, the robot traveled at a
minimum distance of 0.61 m from the person. However, with STAC, the robot traveled at a
minimum distance of 1.10 m. This distance makes people more comfortable by moving
through a path that largely avoids the group. Although STAC did not fully respect the
personal space of 1.2 m for the group, choosing a path that avoided the group instead of
driving through resulted in a safer and more comfortable interaction. In the scenario with a
group including a child, there may not be much difference between the traditional method
and STAC in the minimum distance (MD), measuring 0.44 and 0.62 m, respectively. This
is because group space is adapted between group members, and each individual is given
their own space. However, the significant difference is that STAC travels around the group
space rather than having the robot pass directly between people. This approach makes the
child and group members feel more comfortable with the navigation than having the robot
pass directly between group members, especially for a group with a child.
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(a) Standing Group—Traditional (b) Standing Group—STAC

(c) Standing Child Group—Traditional (d) Standing Child Group—STAC

(e) Moving Group—Traditional (f) Moving Group—STAC

(g) Moving Child Group—Traditional (h) Moving Child Group—STAC

Figure 14. Experimental results in real-world group interaction. The left side of the figure is a
snapshot of the Rviz visualization. The first row shows using the traditional costmap; the second row
shows using STAC.

In the moving adult group experiment, when using the traditional costmap, the robot
chose a path that went through the group, avoiding people who were closer to the robot.
The measured MD and ID in this scenario were 0.51 m and 1.14 m, respectively. However,
when applying our proposed STAC, the robot was proactively aware of this and modified
its path to avoid it, with a costmap that considered personal and group space. The MD was
found to be 0.63 m, although it did not respect the human’s personal space of 1.2 m. This
is a significant improvement as it allows the human to move without having to modify
his/her path, considering that it is not always possible to ensure absolute personal space in
a dynamic environment. When a child and an adult were moving together, the robot, using
only the traditional costmap, traveled between them and maintained a minimum distance
of 0.33 m from the person. However, the MD increased to 0.86 m for the robot using
STAC. These results show that STAC is more respectful of personal space than traditional
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methods and is particularly effective at ensuring a safe distance between robots and people
in groups containing a child, meaning that the robot will follow a safer trajectory around
the child. Thus, STAC shows more respect for human interaction and works to provide
driving trajectories that ensure the safety and comfort of all group members.

Table 4. Human group experiment results.

Scenario Method NT [s] PL [m] MD [m] ID [m]

Standing Group Traditional 17.75 6.71 0.61 2.19
STAC (Ours) 21.27 7.36 1.10 0.58

Standing C-Group Traditional 18.20 7.30 0.44 4.30
STAC (Ours) 22.75 7.68 0.62 3.23

Moving Group Traditional 20.16 7.05 0.51 1.14
STAC (Ours) 21.15 7.59 0.63 0.97

Moving C-Group Traditional 20.32 7.01 0.33 2.68
STAC (Ours) 23.75 7.94 0.86 0.85

5. Conclusions

In this paper, we propose a new framework, the ’Social Type-Aware Navigation
Framework’, for robots to classify individuals and groups within a social space and navigate
while respecting the appropriate social distance. This framework utilizes sensors commonly
mounted on robots, such as a camera and LiDAR, to detect and track people in real time,
classify them by social type, and apply social distances for each type to make people feel
comfortable and safe with the robot’s driving. The ‘Social Type-Aware Costmap’ proposed
in this research is developed as a compatible plugin to the ROS-based navigation stack,
which can be easily integrated into various robot systems and path-planning algorithms.
The robot can recognize the behavior patterns based on age and group and adopt suitable
avoidance strategies for each situation to ensure the safety of the interaction. This is
expected to increase the social acceptance of robots, providing a new perspective in the
field of human–robot interaction, with a particular focus on interactions with children.
By recognizing vulnerable subjects such as children and maintaining an appropriate social
distance for them, this research provides a basis for a robot to be perceived as a social being.
Future research will include the consideration of not only children but also other vulnerable
individuals such as the elderly and wheelchair users. Additionally, it is important to
consider the size of the robot as a significant variable in developing the costmap and
planning avoidance strategies. While our current study focused on a relatively small robot,
future research should explore how different robot sizes affect human–robot interactions
and the effectiveness of the proposed navigation framework. The goal is to further enhance
the social acceptability of robots by enabling them to recognize and act on a wider range
of people. However, the definition of personal space can vary depending on cultural
and individual differences, so this is an area for continuous research and development in
human–robot interaction. This is a significant challenge in enhancing the ability of robots
to understand and adapt to social and cultural contexts.
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