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Abstract: The integration of nanocomposite thin films with combined multifunctionalities on flexible
substrates is desired for flexible device design and applications. For example, combined plasmonic and
magnetic properties could lead to unique optical switchable magnetic devices and sensors. In this work,
a multiphase TiN-Au-Ni nanocomposite system with core—shell-like Au-Ni nanopillars embedded in a
TiN matrix has been demonstrated on flexible mica substrates. The three-phase nanocomposite film has
been compared with its single metal nanocomposite counterparts, i.e., TIN-Au and TiN-Ni. Magnetic
measurement results suggest that both TIN-Au-Ni/mica and TiN-Ni/mica present room-temperature
ferromagnetic property. Tunable plasmonic property has been achieved by varying the metallic component
of the nanocomposite films. The cyclic bending test was performed to verify the property reliability of the
flexible nanocomposite thin films upon bending. This work opens a new path for integrating complex
nitride-based nanocomposite designs on mica towards multifunctional flexible nanodevice applications.
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1. Introduction

Metamaterials with plasmonic nanostructures have gained great interest for various
applications including biosensors, surface-enhanced Raman spectroscopy (SERS), and
surface-enhanced infrared absorption spectroscopy (SEIRA) [1-7]. Noble metals, including
Au and Ag, have been proven to be excellent candidates for such nanostructure designs
due to their strong surface-enhanced plasmonic resonance from the visible to near-infrared
range [8-11]. Various nanostructures have been developed, including nanopillars, nanopar-
ticles, and nanoholes for high-resolution imaging [12-16]. Work on creating new nanos-
tructure designs and optimizing the existing ones is crucial for SERS- and SEIRA-based
sensors. Meanwhile, reducing optical loss and enhancing structural stability could further
improve efficiency [15]. As alternative plasmonic candidates, transition metal nitrides,
such as TiN, have been broadly studied for their plasmonic properties and potentials as
nanostructured metamaterials with reduced optical losses [17-19]. Integrating optical
metamaterials with other magnetic-based materials not only opens new platforms towards
probabilistic computing and other combined device functionalities, but also improves the
sensitivity and reproducibility for SERS [17,20-22].

In recent years, researchers have been focusing on finding pathways for the fabrica-
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require drawing blood and traditional bench-top assay methods [23]. The use of flexible,
non-invasive, and wearable biosensors for detecting biomolecules in biofluids can provide
crucial insights into humans’ physiological condition, leading them to receive considerable
Attribution (CC BY) license (https://  attention from the personal healthcare industry [24]. Due to its non-invasive nature and
creativecommons.org/licenses/by/  sensitivity, SERS is a promising detection method to detect analyte in biofluids such as
4.0/). sweat [25-27]. This gives it an edge over the conventional electrochemical method [25,28].
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Currently, for SERS application, most studies focus on various plasmonic nanomaterials.
Magnetoplasmonic materials involve a combination of both magnetic and plasmonic prop-
erties of the materials [29]. As such, the use of such materials can provide an alternative
solution to enhance the Raman signal under a magnetic field, thereby increasing the sensi-
tivity of the sensor. The sensor architecture also needs to be designed for wearable systems,
which necessitates the substrate to be robust enough to withstand multiple bending cycles.

Most plasmonic nanostructures and metamaterials have been fabricated using ei-
ther top-down approaches, including e-beam lithography and the focused ion beam (FIB)
method, or bottom-up methods, such as anodized alumina template and e-beam/FIB
direct writing [30-34]. As a newly developed alternative, self-assembled nanocompos-
ite thin films have been demonstrated for nanoscale metamaterial designs and process-
ing [35,36]. A unique nanocomposite type in a pillar-in-matrix form, also called vertically
aligned nanocomposites (VANSs), provides opportunities in achieving strong anisotropy
in physical properties, easy tuning of physical properties as well as combined functionali-
ties. Considering phase compositions, oxide—oxide-based VAN systems have been widely
studied [37-41], and oxide-metal VAN systems have been recently developed [35,42—-48].
Nitride-based VAN systems are even more scarce [47,49-52]. Interestingly, most of the
VAN demonstrations have been two-phase systems, with limited demonstrations in three
phase systems [53-55] and alloyed metal pillars [56-58]. This is largely due to the narrow
processing windows allowed for the three-phase co-deposition and epitaxial growth of
three phases.

Among the previous reports of nitride-based VAN systems, one of the first demon-
strations showed a novel two-phase Au-TiN-based nanostructure with tunable Au pillar
density, leading to adjustable optical properties [49]. Another successful demonstration
showed tailorable Ag nanopillar tilting in a TiN matrix to achieve anisotropic optical
properties [50]. Co-deposition of a three-phase system consisting of a NiO core encased
in a plasmonic Au shell within a TiN matrix capable of strong magneto-optical coupling
has also been reported [53]. Other reports include ferromagnetic CoFe; and Au—CoFe;
core—shell nanopillars embedded in a TiN matrix as multifunctional hybrid metamateri-
als [59,60]. However, other such TiN-based systems need to be explored and studied for
the incorporation of these interesting systems in practical applications.

From the substrate selection point of view, most of the prior metamaterial demon-
strations have focused on rigid substrates, such as Si, sapphire, MgO, and other single
crystalline oxide substrates. Integrating plasmonic metamaterials on flexible substrates
could be very interesting considering the needs on multifunctional materials for flexible
electronics and photonics [28,61-64]. In general, three major classes of flexible substrates
have been used for flexible device fabrication. Polymers such as polyethylene terephthalate
(PET), polydimethylsiloxane (PDMS), and polyimide (PI) are the most widely used type
due to their excellent elasticity and flexibility as well as low cost. However, the poor
thermal stability of polymers limits their usage in the epitaxy growth of thin films. Wafer
transfer could be a viable solution, while multiple steps are usually required, which will
increase the fabrication cost [65]. Metal foils, including Ni and Al, are alternative choices
to polymers, since they are highly thermally stable with a crystallized structure, which is
ideal for thin film epitaxy growth [66-68]. However, metal foils typically require a very
thick diffusion barrier layer to prevent metal diffusion during high-temperature growth.
Layered materials, such as mica, have been developed as flexible substrates for thin film
integration [69,70]. Mica is thermally stable, inexpensive, and biocompatible, with good
flexibility and mechanical properties, which makes mica capable of epitaxy growth for thin
films using most deposition techniques. Multiple oxide materials have been integrated
on mica for different functionalities [71-76]. Hu et. al. demonstrated that the plasmon
resonance on their mica heterostructures remained constant despite several bending cycles.
These make mica an excellent substrate candidate for photonic devices such as wearable
sensors. Recently, nanocomposite integration on mica has also been realized, including
several oxide—oxide and oxide-metal nanocomposites [77-80]. Up to now, no prior study
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on transition metal nitride-based nanocomposite thin films on mica substrates has been
demonstrated.

In this work, three nitride-metal nanocomposite thin films, i.e., TIN-Ni, TiN-Au, and
TiN-Au-Ni, have been integrated on mica substrates using PLD, as illustrated in Figure 1.
TiN is selected considering its high thermal /chemical stability, plasmonic properties, and
low-loss nature to serve as a matrix material for the nanocomposite, with Ni as a typi-
cal ferromagnetic metal and Au as a plasmonic noble metal. The combined plasmonic
and ferromagnetic properties are desired in the newly designed TiN-Ni and TiN-Au-Ni
nanocomposite systems, with the goal also being to explore the growth capability and
mechanism of complex three-phase nanocomposites on mica. Structural characterization
was conducted to understand the microstructure of all the composite films. Optical and
magnetic properties were measured and compared. The bending test was performed to
verify the stability of the integrated VAN films upon cyclic bending.

TiN matrix: Ni:

Core-shell-like
Au-Ni pi//ar

y N

Figure 1. Conceptual drawing of the design of the work. TiN-based nanocomposite films with
plasmonic Au pillars and ferromagnetic Ni pillars as well as core-shell-like pillars demonstrated on
flexible mica substrates.

2. Results and Discussion

Pulsed laser deposition with a KrF laser (Lambda Physik Compex Pro 205, A = 248 nm)
(Coherent Corp.—Global, Saxonburg, PA, USA) was used to deposit the nanocomposite
films on the mica (001) substrate. A commercial TiN target with Au and Ni strips was
used for the deposition. The substrate temperature was 600 °C during deposition. To
investigate the crystallinity information of the nanocomposites, an X-ray diffraction (XRD)
0-20 scan was carried out for all three films. XRD was performed using a Panalytical
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X'Pert X-ray diffractometer (Malvern Panalytical, Malvern, UK). As shown in Figure 2, for
TiN-Ni/mica film, TiN (111) and (222) peaks can be identified, while Ni also grows in the
(111) direction. For the TiN-Au/mica film, both TiN (111) and (200) peaks are observable,
with (111) as the dominate growth orientation for TiN. Au (111) growth can also be found
in the TiN-Au/mica film, with partial overlap with the TiN (111) peak. The (111) growth of
the matrix and the metals in the TiN-Au/mica and TiN-Ni/mica films is coherent with the
three-fold symmetry of mica (001). Interestingly, for the co-growth TiN-Au-Ni/mica film,
only the TiN (200) peak can be seen as the dominant growth orientation for TiN. The Au
(200) and Ni (111) peaks could potentially overlap with the mica (001) peak. Overall, all
three films show the high crystallinity of the film phases.
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Figure 2. XRD results of the TiN-Ni/mica, TIN-Au/mica, and TiN-Au-Ni/mica films. * stands for
mica (001) peaks.

To understand the overall microstructures and morphology of the nanocomposite films,
scanning transmission electron microscopy (STEM) was conducted on the TiN-Au/mica
and TiN-Ni/mica films. The TEM, STEM, and EDX were conducted on FEI TALOS F200X
(Thermo Fisher Scientific, Waltham, MA, USA). The deposited film was taken for TEM
sample preparation, achieved by conducting hand polishing and grinding manually, until a
desired thickness. Later, the sample was then taken for dimpling and polishing in diamond
paste. Finally, the sample was kept for ion milling to obtain a thin area for TEM. As shown
in Figure 3a, a clear VAN structure can be found for the TiN-Au/mica film, and Au grow
as pillars within the TiN matrix. The average diameter of the Au pillars is ~4 nm. For the
TiN-Ni/mica film, as shown in Figure 3b, a pillar-in-matrix structure can also be seen, and
Ni grow as pillars embedded in the TiN matrix. The diameter of the Ni pillars is around
2 nm. Interestingly, both Au and Ni pillars in both films are slightly tilted (~10° for the
TiN-Au system and ~25° for the TiN-Ni system), which could be related to the texture of
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(111) and the tendency to expose the low-surface-energy facets of (111) by tilting the (111)
oriented pillars.

Figure 3. Schematic drawings and cross-sectional STEM image as well as the corresponding EDS
mappings for (a) TiN-Au/mica and (b) TiN-Ni/mica films.

The microstructure analysis was also performed on the TiN-Au-Ni/mica film, as
summarized in Figure 4. It is interesting that the co-growth of the three phases results in a
vertical pillar growth in the matrix, with the Au and Ni phases forming a core—shell-like
pillar structure, i.e., an Au-core and Ni-shell, embedded in the TiN matrix, as suggested
by both the cross-sectional and plan-view STEM images as well as the corresponding EDS
mappings. More specifically, based on the composition EDS mapping in Figure 4m, Au
prefers to grow in the inner part of the pillars, while Ni shows a higher distribution at the
shell of the pillar. It is possible that there is a transition layer at the shell of the pillars with
Au and Ni alloyed together. The co-growth of the two metals shows more vertical pillars,
which are related to the preferred (002) texture of Au based on XRD (Figure 2) and TEM
plan-view (Figure 4h), and this is also typical for other Au-alloyed metal pillar growths in
VANS [50].

Considering the ferromagnetic nature of Ni, magnetic property measurement was con-
ducted on the TiN-Ni/mica and TiN-Au-Ni/mica films. A MPMS-3 SQUID Magnetometer
(Quantum Design, San Diego, U.S.) was used for this characterization. Both the in-plane
(IP) and out-of-plane (OP) measurement results for both films are plotted in Figure 5a,b. It
is clear that both films show a soft ferromagnetic response to the applied magnetic field. For
the TiN-Ni/mica film, the coercive fields for the IP and OP are 77.0 Oe and 45.8 Oe, with
corresponding saturation moments of 96.7 emu/cm? and 84.8 emu/cm?. For the TiN-Au-
Ni/mica film, the coercive fields and saturation moments for the IP and OP are 102.5 Oe,
5.8 emu/cm?, and 144.3 Oe, 5.4 emu/cm3. The low coercive field of the TiN-Ni/mica
film is owing to the very small diameter of the Ni nanopillars. The TiN-Au-Ni/mica film
shows a higher coercive field in the OP, with a similar saturation moment in both directions.
The out-of-plane-dominated anisotropic magnetic property of the TiIN-Au-Ni/mica film
is mainly due to the structural anisotropy. The overall soft saturation moment of the
TiN-Au-Ni/mica films is mainly due to the very thin shell structure of Ni in the system.
Note that the volume used to calculate the moment was the entire film volume. The actual
magnetization of Ni regions could be much higher.
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Figure 4. (a) Schematic drawing of TiN-Au-Ni/mica film. (b) Cross-sectional STEM image with
(c—f) corresponding EDS mappings. (g) Cross-sectional TEM image. (h) Plan-view TEM image.
(i) Plan-view STEM image, with (j—m) corresponding EDS mappings.
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Figure 5. IP and OP M-H curves for the (a) TiN-Au-Ni/mica and (b) TiN-Ni/mica film. (c) IP and
(d) OP M-H curves for the TiIN-Au-Ni/mica film after the bending test.
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Since the films were fabricated on flexible substrates, the stability of the film’s physical
properties was verified against the bending test. Magnetic property measurement was
also conducted on the TiN-Au-Ni/mica film when bent concavely, convexly, and after
cyclic bending in both IP and OP directions. A stable magnetic response could be found
in both directions, as shown in Figure 5c,d. The coercive fields stayed around 102.5 Oe
and 144.3 Oe for IP and OP, and the saturation moments stayed around 5.8 emu/ cm? and
5.4 emu/cm? at the different bending statuses and after 1000th bending. The robustness of
the magnetic property suggests the high stability of the nitride-based nanocomposite films.

Optical measurements were also conducted to characterize the optical properties of
the nitride nanocomposite films. Ellipsometry measurement was first performed to attain
the permittivity of the films by fitting the ellipsometry parameters. A RC2 ellipsometer
(J.A. Woollam, Lincoln, U.S.) was used for the ellipsometry measurement. The uniaxial
B-spline mode was used for the fitting. As shown in Figure 6a,b, all films showed similar
trends in both IP and OP directions, with the TiN-Ni/mica behaving as even more metallic.
A transmittance measurement was also conducted, with the result plotted in Figure 6¢c. The
transmittance measurement was performed on a UV-vis—-NIR spectrophotometer (Perkin
Elmer Lambda 1050). The typical plasmonic resonance ranges for TiN, Ni, and Au are
375 nm, 400-500 nm, and 500-600 nm, respectively, and the size of the nanostructure also
impacts the plasmonic resonance wavelength. From the results, a red shift can be observed
by varying the metallic component of the nanocomposite from Ni to Ni-Au and Au, which
is due to the higher Au contribution to the overall plasmonic response of the film. Two
major plasmonic peaks at around 470 nm and 515 nm could be observed in the TiN-Ni/mica
and TiN-Au-Ni/mica film, with a higher absorption in the TiN-Au-Ni/mica film. The
peaks become less obvious in the TiN-Au/mica film, probably due to a stronger plasmonic
response near 485 nm from Au. The transmittance result of the TiN-Au/mica film is also
consistent with a previous report of the same system demonstrated on an MgO substrate.
The transmittance measurement was also performed for the TiN-Au-Ni/mica film when
bent concavely and convexly, as shown in Figure 6d. However, the tilting of pillars might
cause a minor shift in the transmittance peaks. The consistent film transmittance at different
bending statuses indicates the reliability and robustness of the nanocomposite film. Note
that the absolute value of transmittance difference between the films is mainly from their
substrate thickness difference. From the Raman measurement in Figure S1, the intensity
of the TiN-Au-Ni film is higher than the TiN-Au and TiN-Ni films. The Raman shift for
the films at approximately 215 cm~!, 305 cm !, and 580 cm ! are related to the transverse
acoustic, longitudinal acoustic, and transverse optical modes of TiN.

Overall, all three films possess a pillar-in-matrix microstructure. Both the TiN-Au-
Ni/mica and TiN-Ni/mica film show a room-temperature ferromagnetic nature, with
tunable plasmonic response observed in all three films. Compared to previous oxide-based
VAN integrations on mica, the TiN-based VANSs provide more opportunity for optical-
related device applications due to their intrinsic plasmonic nature and high temperature
stability. The mechanical flexibility of the films as well as the robust physical properties of
the films are crucial for the design and application of future flexible SERS-based sensors.
Using the above properties, a novel SERS-based sensor can be created. The use of mica
allows for use of the sensors in more aggressive environments due to its high thermal and
chemical stability. The use of a TiN matrix allows for use in more extreme environments
and provides better protection to the core shell VANs as a matrix. Thus, a novel sensor
structure has been proposed in Figure 7, consisting of TiN Au-Ni VAN as an active sensing
layer on the flexible mica substrates, along with a power supply unit and a communication
unit, all encased in an encapsulation layer.
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For future directions, the magneto-optical coupling effect of the systems is worth
exploring further, considering the plasmonic matrix and magnetic Ni pillars. Meanwhile,
other transition metal nitride-based nanocomposites with different metal components,
including Co, Au, Ag, and Fe, could also be explored on a mica substrate towards unique
magneto-optical coupling demonstrations in nitride-based VAN systems. Adding the
magnetic material to an optical metamaterial as a new platform for SERS could potentially
increase the sensitivity.

3. Conclusions

Three different types of nitride-metal nanocomposite thin films, including TiN-Ni,
TiN-Au, and TiN-Au-Ni systems, have been integrated on mica substrates. All the films
present a pillar-in-matrix microstructure, with Au and Ni forming a unique core—shell-like
pillar for the TiN-Au-Ni/mica film. A room-temperature ferromagnetic property was
confirmed for both the TiN-Au-Ni/mica and TiN-Ni/mica films. A tunable transmittance
property was realized by varying the metallic component of the nanocomposite film. The
TiN-Au-Ni/mica film showed a higher absorption than the other two films by showing
major plasmonic peaks at 470 nm and 515 nm. For the TiN-Au-Ni/mica film, the coercive
fields and saturation moments for in-plane (IP) and out-of-plane (OP) configurations were
102.5 Oe, 5.8 emu/cm?, and 144.3 Oe, 5.4 emu/cm?, respectively. These values remained
consistent, with coercive fields around 102.5 Oe for IP and 144.3 Oe for OP, and saturation
moments around 5.8 emu/cm? for IP and 5.4 emu/cm?® for OP, under various bending
conditions and even after 1000 bending cycles. The physical properties were proven to be
stable against the cyclic bending test. This work opens an avenue towards complex nitride-
based nanocomposite designs for multifunctional flexible devices and sensor applications.
Thus, this demonstration of a magneto-optical system on a robust mica substrate, which
retains its properties despite undergoing several bending cycles, could provide a pathway
for the development of future SERS-based wearable based sensors.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/s24154863/s1, Figure S1: Raman measurement of the TiN-Au,
TiN-Ni and TiN-Au-Ni film.
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