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Abstract: Quality prediction in additive manufacturing (AM) processes is crucial, particularly in
high-risk manufacturing sectors like aerospace, biomedicals, and automotive. Acoustic sensors
have emerged as valuable tools for detecting variations in print patterns by analyzing signatures
and extracting distinctive features. This study focuses on the collection, preprocessing, and anal-
ysis of acoustic data streams from a Fused Deposition Modeling (FDM) 3D-printed sample cube
(10 mm × 10 mm × 5 mm). Time and frequency-domain features were extracted at 10-s intervals at
varying layer thicknesses. The audio samples were preprocessed using the Harmonic–Percussive
Source Separation (HPSS) method, and the analysis of time and frequency features was performed
using the Librosa module. Feature importance analysis was conducted, and machine learning (ML)
prediction was implemented using eight different classifier algorithms (K-Nearest Neighbors (KNN),
Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Decision Trees (DT), Logistic Regres-
sion (LR), Random Forest (RF), Extreme Gradient Boosting (XGB), and Light Gradient Boosting
Machine (LightGBM)) for the classification of print quality based on the labeled datasets. Three-
dimensional-printed samples with varying layer thicknesses, representing two print quality levels,
were used to generate audio samples. The extracted spectral features from these audio samples
served as input variables for the supervised ML algorithms to predict print quality. The investigation
revealed that the mean of the spectral flatness, spectral centroid, power spectral density, and RMS
energy were the most critical acoustic features. Prediction metrics, including accuracy scores, F-1
scores, recall, precision, and ROC/AUC, were utilized to evaluate the models. The extreme gradient
boosting algorithm stood out as the top model, attaining a prediction accuracy of 91.3%, precision of
88.8%, recall of 92.9%, F-1 score of 90.8%, and AUC of 96.3%. This research lays the foundation for
acoustic based quality prediction and control of 3D printed parts using Fused Deposition Modeling
and can be extended to other additive manufacturing techniques.

Keywords: 3D printing; acoustic data acquisition; Artificial Intelligence; quality prediction; digital
signal processing; librosa; spectral feature analysis

1. Introduction

Material extrusion is one of the most prominent AM processes utilized for several
practical applications [1–3]. This process involves building three-dimensional structures
layer-by-layer by melting filament materials in a heated extruder through the nozzle. Fused
deposition modeling (FDM) is a specific type of material extrusion process that focuses
on 3D printing of polymeric materials and related composite structures. FDM-printed
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parts have the advantages of relatively lower cost, little complexity, and faster prototyping
compared to other 3D printing processes. For FDM-printed parts to be fully qualified
for scalable manufacturing processes, there is a need to ensure high reliability and dura-
bility of the process and the final products. Reliable AM processes produce significantly
high-quality products and help lower manufacturing costs; therefore, real-time monitor-
ing of the AM process [4] is crucial to ensure high quality standards. In the past years,
post-manufacturing techniques have been adopted to ensure that printed parts meet the
required specifications, such as checking dimensional accuracy and surface roughness [5,6].
Additionally, researchers have explored image and vision-based techniques to monitor the
quality of printed parts through the use of microscopes, cameras, and other sophisticated
equipment [4,7,8]. However, some of these processes require human intervention, which
could be time-consuming and prone to errors. In the current age of Artificial Intelligence
(AI), numerous machine learning methodologies [9–11] have been devised to improve
online monitoring procedures and guarantee process consistency [12–14].

The FDM set-up has several moving parts that produce acoustic waves during oper-
ations; the main sources of sound are the print bed, extruder assembly, stepper motors,
filament extrusion, and the fans. Acoustics sensors, such as high-frequency microphones,
can collect sound signals during the printing process, which can be further analyzed to
determine print defects and underlying variations in print quality. These sensors have the
advantages of lower hardware costs, much faster response, adaptable configurations, and
little or no modifications to the actual AM process [15]. This approach to quality assurance
(QA) in AM using acoustic signatures should lay a solid foundation for developing a
framework for part qualification. The remaining sections of this paper are organized as
follows: The reviews of past and existing works are highlighted in the literature review
section, the unique approach that we have adopted in our research is presented, followed
by results and findings. We conclude the article by discussing the summary of our findings
and the key next steps.

2. Literature Review

Studies have been conducted on feature extraction, process monitoring, and quality
assurance in AM procedures. Bo Shen et al. [16] employed two digital microscopes for
extracting relevant features from 3D-printed parts. The images obtained from the micro-
scopes were converted into variables, which were used for testing their proposed Clustered
Discriminant Regression (CDR) algorithm. The approach was found to have outperformed
other conventional methods. Further, efforts were made by LK Chang et al. [17] to predict
product properties in metal 3D printing by extracting layer-by-layer features using an
approach called the gray-level co-occurrence matrix (GLCM), with the boosting algorithms
(XGB and LightGBM) giving promising prediction results. Also, Xin Lin et al. [18] worked
to improve the effectiveness of defect detection in a Selective Laser Melting (SLM) process
using a fused feature-based approach in conjunction with a Support Vector Machine (SVM)
algorithm to achieve an accuracy of up to 97%.

Additionally, an online process monitoring methodology for AM processes was de-
veloped by Chenang Liu et al. [19], wherein they combined a manifold learning approach
with supervised classification and regression techniques to extract features from high-
dimensional sensor data with the objective of identifying AM process quality. Similarly,
Zhangyue Shi [20] and his team developed a convolutional and statistical-based approach
for correlating surface quality and process parameters in metal additive manufacturing,
achieving classification accuracy of up to 86%. Researchers have leveraged the capabilities
of sensors in AM for predicting defects and printing abnormalities. Herzog, T. et al. [21]
developed an approach for detecting defects in the printed parts from the Directed Energy
Deposition (DED) process by monitoring the melt pool through the use of high-speed
infrared cameras. A similar approach was adopted by Grasso et al. in the selective laser
melting (SLM) of zinc powder using infrared cameras for predicting abnormal melt pool
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conditions [22]. In addition to the melt pool monitoring, optical, thermal, and vibration sen-
sors have been used for monitoring surface quality and defect correction in AM processes.

Despite the widespread use of vision sensors, the ease of sensor integration and
calibration remains challenging. Fewer researchers have studied the use of acoustic sensing
for predicting print quality and identifying defects in AM, even though equipment and
set-up costs are relatively cheaper and sensor integration is much easier compared to
other sensor types. S.A. Shevchik et al. [23] used acoustic emission (AE) sensors and
machine learning in the powder bed AM process to classify print quality on the basis
of variation in pore concentration. They attained an accuracy that was in the range of
83–89%. Using a similar approach, Hossein Taheri et al. [24] used acoustic signatures for
the in situ monitoring of metal additive manufacturing process under different process
conditions. His group combined acoustic sensing with K-mean clustering for classifying
different process conditions. Researchers have made efforts to leverage different machine
learning algorithms using supervised [25–28], unsupervised [29], and ensemble learning
techniques [30] in critically analyzing AE data.

The use of AE in Structural Health Monitoring (SHM) is becoming increasingly crucial
for the study of FDM processes. Wu et al. [31] developed an online monitoring method for
fused filament fabrication (FFF) by collecting AE hits data in time and frequency domains
to predict failed and normal printing conditions. Z. Yang et al. [32] also developed an
approach that allows for the identification of filament breakage in the FDM printing process
using acoustic emission signals. Jie Liu et al. [33] proposed a method for classifying and
recognizing machine states of the extruder by collecting AE data and extracting relevant
features in time and frequency domains. Table 1 below adapted from PR Prem et al. [34]
shows a brief overview of different machine learning algorithms applied for acoustic
emission data analysis.

Table 1. ML Algorithms applied for acoustic emission data analysis.

S/N Algorithm Name Method Acoustics Applications

1 Principal Component Analysis [35] Preserves important information while
reducing the dimensionality of the dataset

Creates clusters of AE events
to identify similar patterns

2 K-means Clustering [36]
Partitions data points into groups with
minimum variance within each group
or cluster

For identifying different types
of acoustic emissions

3 Convolutional/Deep Neural Networks [37]
Uses interconnected layers with different
activation functions to extract complex
features

Feature extraction, handles
complex AE dataset

4 Recurrent Neural Network/Long
Short-Term Memory [38]

Uses sequential and memory functions to
process sequential tasks

For identifying abnormalities
in temporal patterns

5 Isolation Forest/One-Class SVM [39] Creates decision trees with much lower
instances in isolated partitions

For defect detection in AM
processes

6 Ensemble Methods /Random Forest [30] Aggregates predictions from multiple
classes of models

Better prediction accuracy,
minimizes overfitting

Our research introduces an enhanced sensor-integration approach that adopts a Linux-
based system for real-time, high-efficiency data acquisition for accurate print quality
prediction while minimizing data latency. Our implementation of an ML-based spectral
feature extraction technique within Python 3.10.12 IDE extends beyond time and frequency-
domain analyses previously conducted by Jie Liu et al. [33], which relies on vibration AE
signals collected from only an FDM extruder assembly. Our approach offers more extensive
insights into the behavior of acoustic signals potentially identifying failure modes within
the entire AM print and improving the quality of collected acoustic signals through the use
of an HPSS technique. Unlike prior research which has focused on specific aspects such as
filament breakage by Z. Yang et al. [32] or extruder states by Jie Liu et al. [33], our approach
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aims for comprehensive quality prediction. Furthermore, while acoustic methods have
been broadly applied in other AM processes like the powder bed system [23], this study
provides an FDM-specific acoustic analysis for quality prediction by statistically analyzing
spectral information from audio signals and its correlation with print quality layer-by-layer.
Our research advances real-time process monitoring and quality prediction in AM beyond
existing studies conducted by Wu et al. [31] which focuses on acoustic emission on first
print layer as the foundation for its analysis of failure detection.

3. Methodology
3.1. Experimental Set-Up

The framework of conventional acoustic emission (AE) monitoring systems comprises
AE transducers, an external or in-built preamplifier, and a data acquisition and storage
system equipped with software for data visualization and analysis. Figure 1 illustrates the
fundamental configuration used in the acoustic data collection set-up. Samples of cubes
measuring 10 mm × 10 mm × 5 mm were fabricated using an additive manufacturing
(AM) printer—Snap maker A350T 3-in-1 3D printer—which is housed in a safety trans-
parent enclosure (Snapmaker, Shenzhen, China). Two high-frequency microphones were
employed as transducers, collecting the sound waves and converting them into electrical
signals during the printing process. The electrical signal is digitized by an Analog-to-Digital
Converter to obtain the digital representation through sampling. A single-board computer,
a 2GHz ODROID-XU4Q (Hardkernel Co., Ltd., Anyang-si, Republic of Korea) running on
Ubuntu Linux 22.04 LTS (Jammy Jellyfish), was utilized for executing Python scripts and
equipped with a multi-media interface card (e-MMC) of 128 GB of memory size for storing
the audio data. The Odroid is a compact system that has high computational efficiency and
can help with data processing and storage with minimal levels of data latency.
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The HF microphones and Odroid were connected to a mixer (Scarlett 18i20 Focus-
rite) (Focusrite Audio Engineering Ltd., High Wycombe, UK) embedded with a dynamic
preamplifier to enhance and standardize the audio signals. Additional auxiliary equipment
included a display screen for data visualization, a keyboard, connecting cables, and a
mouse. The microphone placement is very crucial. The microphones 1 and 2 were placed
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in close proximity to the center of the build plate without any interference, at an angle of
depression of 45◦, and were held firmly in place by adjustable holders. The extruder and
nozzle were kept at a temperature of 220 ◦C and the heated bed was maintained at 60 ◦C
throughout the experiment. The filament type used is 1.75 mm PLA filament. All collected
audio data was stored as a .wav file.

3.2. Data Acquisition

A cube with dimensions of 10 mm × 10 mm × 5 mm was designed in SolidWorks 2023.
The Luban software slices the three-dimensional model and saves it in readable format (G-
code) for the Snap-maker A350T. Several samples were printed on the Snap-maker at layer
thicknesses of 0.2 mm, 0.3 mm, 0.70 mm, 1.0 mm, and 1.3 mm at a constant infill density (IF)
of 50% and wall thickness of 0.3 mm. The Python script was run using a PyAudio module
with the channel = 1 (mono), a chunk size of 2048, and a hop length of 512. The sampling
frequency of 48,000 Hz was adopted within a 16-bit audio encoding system. This sampling
rate was chosen to ensure high quality of collected audio samples and prevent information
loss, as stated by the Nyquist–Shannon theorem [40]. The microphone sensors collect the
audio signal during printing of each sample and store it as a WAV file. Two microphones
were held by adjustable holders and placed in close proximity to the printed sample. The
octa-core processor of the Odroid XU-4Q is able to provide enough computational power
for processing the collected audio data during the experiment, without any significant
information loss. The chosen sampling rate is commonly used in professional digital audio
applications.

Based on visual inspection and expert domain knowledge, the printed samples with
layer thicknesses of 0.2 mm and 0.3 mm were classified as good prints and those of 0.7 mm,
1.0 mm, and 1.3 mm as bad prints. From now on, the terms “good” and “bad” prints will
be used according to the layer thicknesses provided earlier. Figure 2 below shows an image
of some of the printed samples.
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3.3. Data Preprocessing

The collected audio signals were preprocessed using a denoising technique called
Harmonic–Percussive Source Separation (HPSS). This approach has been described in
the literature for sound source separation [41,42] and denoising. In HPSS, the harmonic
segment of the sound is separated from the percussive component. As it relates to 3D
printing, the harmonic segment indicates the stable, repetitive sound that emanates from
the printer, such as the movement of the print platform, extruder assembly, and the stepper
motors during printing. However, the percussive segments are transient audio signals
such as environmental noise during the printing process. The harmonics are multiples
of the fundamental frequency of the audio which are computed by converting the audio
samples, from time to frequency domain through short-time Fourier transform (STFT),
into spectrograms, extracting the peak frequency from the frequency bins and separating
them from the lower frequency bands. The resulting sound is derived by reconstructing
the signal using inverse short-time Fourier transform (ISTFT). This denoising technique
has proven to be effective based on experimental observations, as denoised audio signals
closely matched the resulting sound signals obtained when environmental noise around the
3D printer was recorded separately for some audio samples and the derived spectrograms
were subtracted from those of the raw sound signals. External noise can significantly
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interfere with the quality of the audio samples by reducing the Signal-to-Noise Ratio (SNR),
which makes differentiating real AM audio signals from environmental or background
noise challenging. The schematic of the HPSS algorithm is given in Figure 3 below.
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3.4. Spectral Feature Extraction

Sound signals can be analyzed statistically to extract different features. Researchers
focusing on sound and music classification have utilized three methodologies: time, fre-
quency, and time–frequency analysis. In this research, our focus is on independently
extracting time-domain and frequency-domain components of AM sounds. Table 2 shows
a description of the different features of the acoustic signals used in the sound experiment.
The mean and variance of these spectral features were used within the machine learning
models to identify good and bad 3D printed parts. As an example, higher ZCR suggests
more rapid changes in the movement of the print head or excessive vibration of the print
bed or frame, potentially relating to surface roughness or dimensional inaccuracies. Thus,
the bad part had higher mean (0.105) and variance (7.83 × 10−4) ZCR as compared to
the good part mean (0.09) and variance (7.1 × 10−4). Similarly, higher RMS energy levels
indicate that there is over-extrusion or higher heat generation, which could affect the qual-
ity of the printed sample, and were reported for a bad print (mean: 0.0102 and variance:
1.45 × 10−5) as compared to a good print (mean: 0.01 and variance: 1.53 × 10−5). A flatter
spectrum usually points more towards consistent printing conditions for a good print
(mean: 0.023 and variance: 7.35 × 10−4), while peaks could indicate printing issues for a
bad print (mean: 0.0275 and variance: 1.186 × 10−3).

Table 2. Time and frequency-domain features of the acoustic signals.

Feature Definition Domain Mathematical Representation

Zero Crossing Rate (ZCR) [43] Number of times the waveform
changes sign in a window. Time ZCRt =

1
2

(t+1).K−1
∑

k=t.K
|sgn(sk)− sgn(sk+1)|

- sgn: sign of function (+1, −1, or 0)

Amplitude Envelope(AE) [44]
AE indicates how the energy of the
signal fluctuates over time and shows
the magnitude of variations directly.

Time AEt = max
(

s(k)[t.K, (t + 1).K − 1]
)

- AEt: AE at kth frame t
- s(k): amplitude of sample
- K: number of samples in a frame

Root Mean Squared Energy
(RMSE) [45]

Root mean square of all samples in a
frame. It is an indication of loudness. Time RMSt =

√
1
K

(t+1).K−1
∑

K=t.K
s2
(k)

Spectral Centroid (SC) [46]

It is the center of mass of the
magnitude spectrum, which is
determined by calculating the
weighted mean of all frequencies.

Frequency SCt =
∑N

n=1 mt(n).n

∑N
n=1 mt(n)
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Table 2. Cont.

Feature Definition Domain Mathematical Representation

Spectral Flatness (SF) [47]

The geometric mean divided by the
arithmetic mean of the spectra: it
determines how much of a sound is
noise-like versus tone-like.

Frequency
SFt =

(
∏N

n=1 mt(n)

) 1
n

1
n ∑N

n=1 mt(n)

Spectral Roll-off (SR) [15]
Fraction of bins in the power
spectrum at which 85% of the power
is at lower frequencies.

Frequency SRt = i s.t.
i

∑
n=1

∣∣∣mt(n)

∣∣∣ = η
N
∑

n=1

∣∣∣mt(n)

∣∣∣
Power Spectral Density
(PSD) [48]

Estimates the distribution of a signal’s
strength across a frequency spectrum. Frequency PSDdB = 10log10(PSD)

The mean and standard deviation of the time and frequency-domain features were
extracted from 10-s segments of the audio samples corresponding to each layer thickness
setting. The printing times for the 0.2 mm, 0.3 mm, 0.7 mm, 1.0 mm, and 1.3 mm LT are
300 s, 210 s, 120 s, 80 s, and 61 s, respectively. The computation of these features was
performed in a Python package called Librosa library. This Python module is very robust
and widely used for audio and music analysis.

3.5. Machine Learning

A Schematic of a typical supervised machine learning project is shown in Figure 4. Our
methodology includes normalizing the dataset using the “Standard Scaler”, determining
feature ranking and importance with the Extra Tree Classifier, and carrying out model
training, validation, and performance assessment. Standard scaler helps to scale the
features to fit a standard distribution and ensures that no feature significantly influences
the model performance as a result of the differences in scales and units of the individual
features. Machine learning algorithms such as Logistic regression, Support Vector Machines,
and Gaussian Naïve Bayes perform better when given datasets that are standardized.
Additionally, ExtraTree Classifier is a chosen candidate because it is an ensemble technique
that constructs decision trees in parallel and can potentially speed up model training
compared to other feature selection techniques [49]. This technique randomizes data subsets
into multiple decision trees, which can reduce bias and provide a more comprehensive
evaluation of feature importance [50].

Eight different ML classifiers were employed for predicting print quality based on
the collected temporal and spectral data of the printed samples. The supervised learning
technique was employed, as the output variables were labeled (print quality) and coded as
“1” for good print and “0” for bad print. The classifiers and a brief description are presented
below. See Table 3.

Table 3. ML algorithms implemented and brief description.

Classifier Description

Decision Tree (DT)

Decision tree is a graph to represent choices and their results in the form of a tree.
The nodes in the graph represent an event or choice and the edges of the graph
represent the decision rules or conditions. Each tree consists of nodes and
branches. Each node represents attributes in a group that is to be classified, and
each branch represents a value that the node can take.

K-Nearest Neighbors (KNN)

KNN uses data and classifies new data points based on similarity measures (e.g.,
Euclidean distance function). Classification is computed from a simple majority
vote of the K-Nearest Neighbors of each point. KNN can be used both for
classification and regression.
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Table 3. Cont.

Classifier Description

Random Forest (RF)
It is well known as an ensemble classification technique that uses parallel
ensembling to fit several decision tree classifiers on different dataset sub-samples
and uses majority voting for the outcome.

Gaussian Naive Bayes (GNB)
The naive Bayes algorithm is based on Bayes’ theorem with the assumption of
independence between each pair of features. It works well and can be used for
both binary and multi-class categories in many real-world situations.

Extreme Gradient Boosting (XGB)

Gradient Boosting, like Random Forests above, is an ensemble learning algorithm
that generates a final model based on a series of individual models, typically
decision trees. The gradient is used to minimize the loss function, similar to how
neural networks work.

Logistic Regression (LR) Logistic regression typically uses a logistic function to estimate the probabilities,
which is also referred to as the mathematically defined sigmoid function.

Support Vector Machine (SVM)

A support vector machine constructs a hyperplane or set of hyperplanes which has
the greatest distance from the nearest training data points in any class. It is
effective in high-dimensional spaces and can behave differently based on different
mathematical functions (kernel).

Light Gradient Boosting Machine
(LightGBM)

It is a variant of the gradient boosting algorithm, which uses multiple sets of
decision trees to create a strong predictive model. The algorithm iteratively trains
DTs to minimize the loss function by trying to improve on the mistakes made by
the previous trees.
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4. Results and Discussion

A snapshot of the audio preprocessing that was conducted in this research using the
HPSS is presented below. In Figure 5 below, the waveform of a 10-s-long sample audio
of layer thickness of 0.2 mm, an infill density of 50%, and a wall thickness of 0.3 mm is
shown. The harmonic and percussive components of the signal were separated using the
librosa.effects.hpss module.
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An analysis of the time and frequency-domain features of a 10-s audio segment of
different layer thicknesses is presented in Figures 6 and 7. As can be seen in the graphs,
there were distinctive behavioral patterns exhibited by the different audio samples when
computing the RMSE and SR against corresponding frame indices. Signal 1 represents a
good print segment, while signals 2 and 3 are bad print segments. Signal 1 is an audio
segment from a 0.2 mm layer thickness sample, while signals 2 and 3 were samples from
layer thicknesses of 0.7 mm and 1.3 mm, respectively, collected at the same time stamp.
The RMSE and frequency bands of the corresponding signals varied across the specified
time window.
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This section presents the findings and insights gained from analyzing the time and
frequency-domain features extracted from the audio samples collected during the 3D print-
ing process. It also demonstrates the effectiveness of using ML algorithms to predict quality
outcomes based on extracted features. The feature importance analysis was carried out
on the collected dataset to provide insights into the most relevant audio features using
the Extra Trees classifier algorithm. The spectral relationship between all the identified
features was visually shown in the form of a correlation matrix. The standardized and
cleaned dataset is trained on eight classification algorithms, including ensemble and boost-
ing techniques, and the performance analysis was performed by measuring and comparing
the prediction, precision, recall, and F-1 score on a test dataset which represents 20% of the
entire dataset. The collected audio signals were preprocessed using a denoising technique
called Harmonic–Percussive Source Separation (HPSS), a technique that separates audio sig-
nal into stable printer sounds (harmonics) and transient environmental noises (percussives).
The time-dependent audio signal is first converted into a time-frequency component using
a technique called short-time Fourier transform. The resulting time–frequency-domain
signal is then smoothened in the horizontal and vertical direction using defined median
filters. Soft masks are created based on the filtered vertical and horizontal spectrograms
which determine what proportion of each frequency bin belongs to either the harmonic
or percussive segment. This HPSS algorithm we employed was executed in Python using
the librosa.effects.hpss module, and a sample result has been presented in Figure 5. We
validated the effectiveness of HPSS by comparing its outcome with the resulting sound
data obtained when we discounted environmental sound from recorded raw AM sound
just by mere spectral subtraction of environmental sound from recorded AM sound. In
all, the technique enhanced the quality of printer sounds while reducing background in-
terference. In Figure 8 below, the amplitude of a sample raw AM audio signal is plotted
visually against cleaned signals using direct subtraction of manually recorded environment
noise (AM printer in non-operational mode) and applying the HPSS method described in
Section 3.3 on the actual raw AM sound. It can be seen from the plot that the amplitude
envelope of the denoised signal was significantly lower compared to the raw AM sound.
Additionally, the amplitude of the denoised audio signals showed consistently similar
patterns in the audio spectrum.



Sensors 2024, 24, 4864 11 of 19

Sensors 2024, 24, x FOR PEER REVIEW 11 of 20 
 

 

denoising technique called Harmonic–Percussive Source Separation (HPSS), a technique 
that separates audio signal into stable printer sounds (harmonics) and transient envi-
ronmental noises (percussives). The time-dependent audio signal is first converted into a 
time-frequency component using a technique called short-time Fourier transform. The 
resulting time–frequency-domain signal is then smoothened in the horizontal and verti-
cal direction using defined median filters. Soft masks are created based on the filtered 
vertical and horizontal spectrograms which determine what proportion of each fre-
quency bin belongs to either the harmonic or percussive segment. This HPSS algorithm 
we employed was executed in Python using the librosa.effects.hpss module, and a sam-
ple result has been presented in Figure 5. We validated the effectiveness of HPSS by 
comparing its outcome with the resulting sound data obtained when we discounted en-
vironmental sound from recorded raw AM sound just by mere spectral subtraction of 
environmental sound from recorded AM sound. In all, the technique enhanced the qual-
ity of printer sounds while reducing background interference. In Figure 8 below, the 
amplitude of a sample raw AM audio signal is plotted visually against cleaned signals 
using direct subtraction of manually recorded environment noise (AM printer in 
non-operational mode) and applying the HPSS method described in Section 3.3 on the 
actual raw AM sound. It can be seen from the plot that the amplitude envelope of the 
denoised signal was significantly lower compared to the raw AM sound. Additionally, 
the amplitude of the denoised audio signals showed consistently similar patterns in the 
audio spectrum. 

 
Figure 8. Amplitude vs time comparison of raw audio and denoised audio (spectral subtraction 
and HPSS). 

Precision measures the proportion of correctly predicted good print segments (true 
positives) out of all the prints predicted as good (true positives + false positives). Recall, 
also known as sensitivity or true positive rate, measures the proportion of actual good 
prints (true positives) that are correctly predicted as good by the model. Accuracy 
measures the overall correctness of the model�s predictions, considering both good and 
bad print segments. The F-1 score is a performance metric that considers the weighted 
average of precision and recall. Additionally, the area-under-the-curve (AUC) was 
measured using the ROC curves and precision–recall curves of all the eight classifier al-
gorithms to further understand the classification performance of the machine learning 
algorithms. The ROC curve plots the recall versus the false positive rate (bad audio seg-
ments wrongly classified as good audio segments), while the precision–recall curve 
graphically shows the trade-off between precision and recall.  

Figure 8. Amplitude vs time comparison of raw audio and denoised audio (spectral subtraction and
HPSS).

Precision measures the proportion of correctly predicted good print segments (true
positives) out of all the prints predicted as good (true positives + false positives). Recall,
also known as sensitivity or true positive rate, measures the proportion of actual good
prints (true positives) that are correctly predicted as good by the model. Accuracy measures
the overall correctness of the model’s predictions, considering both good and bad print
segments. The F-1 score is a performance metric that considers the weighted average of
precision and recall. Additionally, the area-under-the-curve (AUC) was measured using
the ROC curves and precision–recall curves of all the eight classifier algorithms to further
understand the classification performance of the machine learning algorithms. The ROC
curve plots the recall versus the false positive rate (bad audio segments wrongly classified
as good audio segments), while the precision–recall curve graphically shows the trade-off
between precision and recall.

Preliminary analysis was initially carried out to determine the optimal number of fea-
tures to be used for training the ML algorithms as presented in Table 4. It is evident that all
features need to be considered for higher accuracy. The corresponding highest-performing
algorithm was noted for different feature considerations. The removal of highly corre-
lated features resulted in lower accuracy indicating that considering all features provided
better discriminating power. Furthermore, the parameters of the models were optimized
to obtain the best results. This includes Logistic Regression (penalty= ‘l2′, max_iter = 100,
random_state = None), Gaussian Naïve Bayes (var_smoothing = 0.000000001), K-Nearest
Neighbors (n_neighbors = 5), Support Vector Machine (C = 1, gamma = scale), Deci-
sion Trees (criterion = gini, min_samples_split = 2), Random Forest (n_estimators = 100,
bootstrap = True), XGBoost (learning rate = 0.3, n_estimators = 100), and LightGBM
(n_estimators = 100, learning rate = 0.1).

Figure 9 depicts the feature importance analysis based on all the features extracted
from the audio samples. It can be deduced that the mean of the spectral flatness, spectral
centroid, power spectral density, and root mean square energy were the most relevant
features of the audio samples. Figure 10 shows the correlation matrix with high correlations
between the mean of the spectral centroid and that of the spectral roll-off, and the same is
shown for the average power spectral density and that of the RMS energy. The variance of
the power spectral density was the least important feature based on the feature ranking.
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Table 4. Feature importance analysis.

Accuracy Precision Recall F1 Score Best Algorithm

All features 91.2 88.8 92.9 90.8 XGB
Top six features 84.3 81.4 85.7 84.2 LightGBM
Top eight features 86.1 84.2 86.4 85.3 LightGBM
Removing two highly correlated 87 86.1 84.4 85.2 Random Forest
Removing four highly correlated 88.9 87.7 88.3 88 LightGBM
PCA- 8 82.5 83.3 77.9 80.5 KNN
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Figures 11 and 12 below show the confusion matrix for the eight classification algo-
rithms. The XGB classifier, a boosting algorithm, gave the highest prediction accuracy of
91.3% and the lowest accuracy for the Gaussian Naïve Bayes (GNB) at 59.0%. The precision,
recall, and F-1 scores for the XGB were 88.8%, 92.9%, and 90.8%, respectively. From the
confusion matrix of the best model, 303 audio segments were correctly classified, while
29 instances were misclassified by the model based on the 332 audio segments used for
model validation. Of the 161 good print predictions, 143 audio segments were correctly
classified. In addition, out of the actual 154 good audio segments, 11 were wrongly classi-
fied. In the GNB algorithm (the least effective model), it misclassified 136 audio instances
and correctly predicted 196 instances. However, the recall was as high as 84.4% because
there were only 18 actual good audio segments wrongly classified by the model. Ensemble
and boosting algorithms outperformed all the other models.

Figure 13 shows the performance of all eight models. All the classification algorithms
produced prediction accuracies above 80% except for DT and GNB. The ensemble models
(LightGBM, RF, and XGBoost) produced high values across all the performance metrics.
Additionally, the boosting algorithms (XGB and LightGBM) produced very similar results.

Figure 14 presents the AUC of the ROC and the precision–recall for all the machine
learning models. The AUC-ROC and AUPRC of 96.3% and 95.0% were obtained for the
XGB, respectively. This shows consistently high values as compared with the model’s
accuracy. AUC-ROC and AUPRC offer aggregate measures of the model’s performance
across different thresholds.
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The training time for each of the classification algorithms is presented in Table 5. The
Gaussian Naïve Bayes had the lowest average training time of 2.2 ms. The relatively short
training duration for all the models can be attributed to the parallel processing capability of
the A100 GPU hardware accelerator utilized on Google Colab, the environment on which
the Python code was run. The scaling or standardization of the spectral features before
training also helped in speeding up model convergence. These faster training times provide
the ability of the algorithms to be implemented on real-time acoustic datasets for practical
applications in 3D printing.
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Table 5. Average training time of the classification algorithms.

Algorithm Avg. Training Time (ms)

Logistic Regression 25.7
Gaussian Naïve Bayes 2.2
K-Nearest Neighbors 3.7
Support Vector Machines 324.2
Decision Tree 17.1
Random Forest 448.5
XGBoost 194.4
LightGBM 167.1

HPSS effectiveness is highlighted by its ability to specifically target and separate
percussive noise components from harmonic printer operation sounds. By focusing on
this separation through STFT and reconstruction through ISFT. This denoising technique
has proven to be effective based on experimental observations, as denoised audio signals
closely matched the resulting sound signals obtained when environmental noise around the
3D printer was recorded separately for some audio samples and the derived spectrograms
were subtracted from those of the raw sound signals. Experimental validation supports
HPSS’s effectiveness by demonstrating significant noise reduction and improvement in
SNR, ensuring that the cleaned audio signals better reflect the operational state of the 3D
printer without the interference of environmental noise. This makes HPSS a tailored and
effective solution for cleaning audio data in the specific application context of 3D printing.

The methodology adopted in the research for the machine learning predictive models
holds significant promise for advancing quality assurance in Fused Deposition Modeling
and other 3D-printing processes. The outcome of variation in layer thicknesses provides an
important marker to predict the integrity and dimensional stability of the 3D-printed parts.
This research showed that by exploring the time and frequency features of audio signatures
using advanced DAQ systems for data collection and analysis, ML models can accurately
classify the quality of 3D-printed parts based on process parameters. In this study, it was
validated experimentally that 3D-printed samples of 10 mm × 10 mm × 5 mm cubes of
layer thicknesses of 0.2 mm and 0.3 mm gave high-quality outputs and were labeled as
good samples. However, samples with layer thicknesses of 0.7 mm, 1.0 mm, and 1.3 mm
gave unacceptable structures and were labeled bad samples. The best-performing model,
XGBoost (XGB), achieved a 91% prediction accuracy, demonstrating its effectiveness in
discriminating audio samples based on observed layer thicknesses and subsequent print
quality.

By integrating these models into the quality control framework of FDM and other 3D-
printing processes, manufacturers can monitor and detect anomalies in process parameters
such as layer thickness in real time. Thereby, it enables them to make informed decisions
about print quality and take corrective action when necessary. This real-time feedback can
help optimize printing parameters, reduce material waste, and improve the overall quality
and consistency of 3D-printed parts. Furthermore, the application of these predictive
models can pave the way for the development of closed-loop control systems and digital
twins for additive manufacturing processes.

5. Conclusions

This research demonstrates the feasibility of using acoustic data for quality prediction
and control in 3D printing, specifically in Fused Deposition Modeling (FDM). This study
analyzed seven audio features in time and frequency space and presented a framework
for print quality prediction by combining machine learning with advanced digital signal
processing. Feature importance analysis showed that the mean of the spectral flatness
was the most prominent feature. Furthermore, the findings suggest that acoustic sensing
can be valuable for real-time monitoring and quality control in additive manufacturing
processes. Ensemble models (XGB, RF, and LightGBM) showed high accuracy in classifying
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the audio segments of varying print quality. Future research can expand this approach to
other additive manufacturing techniques and further refine the ML models for improved
prediction accuracy. In addition to this, the scope of the research should extend beyond
binary classification, and multi-class classification should be employed to accurately predict
different bad print scenarios. Acoustic-based quality prediction has the potential to enhance
manufacturing efficiency and product quality across various industries and should be
widely embraced.
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