EFisioTrack System for Monitoring Therapeutic Exercises in Patients with Shoulder Orthopedic Injuries in a Hospital Setting: A Pilot Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Study Protocol
2.4. Allocation
2.5. Intervention
2.6. eFisioTrack Platform
2.7. Outcomes
2.8. Data Collection
2.9. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucas, J.; van Doorn, P.; Hegedus, E.; Lewis, J.; van der Windt, D. A systematic review of the global prevalence and incidence of shoulder pain. BMC Musculoskelet. Disord. 2022, 23, 1073. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, D.L. Evaluation and treatment of shoulder pain. Med. Clin. N. Am. 2014, 98, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Paje, M.J.; Green, S.; McBain, B.; Surace, S.J.; Deitch, J.; Lyttle, N.; Mrocki, M.A.; Buchbinder, R. Manual therapy and exercise for rotator cuff disease. Cochrane Database Syst. Rev. 2016, 2016, CD012224. [Google Scholar] [CrossRef]
- Kromer, T.O.; Tautenhahn, U.G.; de Bie, R.A.; Staal, J.B.; Bastiaenen, C.H. Effects of physiotherapy in patients with shoulder impingement syndrome: A systematic review of the literature. J. Rehabil. Med. 2009, 41, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, O.; Ensor, J.; Littlewood, C.; Chesterton, L.; Jordan, J.L.; Corp, N.; Wynne-Jones, G.; Roddy, E.; Foster, N.E.; van der Windt, D.A. Comparative effectiveness of treatment options for subacromial shoulder conditions: A systematic review and network meta-analysis. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211037530. [Google Scholar] [CrossRef]
- Paraskevopoulos, E.; Plakoutsis, G.; Chronopoulos, E.; Maria, P. Effectiveness of Combined Program of Manual Therapy and Exercise Vs Exercise Only in Patients with Rotator Cuff-related Shoulder Pain: A Systematic Review and Meta-analysis. Sports Health 2022, 15, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Holgrem, T.; Hallgren, H.B.; Öberg, B.; Adolfsson, L.; Johansson, K. Effect of specific exercise strategy on need for surgery in patients with subacromial impingement syndrome: Randomised controlled study. BMJ 2012, 344, e787. [Google Scholar] [CrossRef]
- Burns, D.; Boyer, P.; Razmjou, H.; Richards, R.; Whyne, C. Adherence Patterns and Dose Response of Physiotherapy for Rotator Cuff Pathology: Longitudinal Cohort Study. JMIR Rehabil. Assist. Technol. 2021, 8, e21374. [Google Scholar] [CrossRef]
- Bailey, D.L.; Holden, M.A.; Foster, N.E.; Quicke, J.G.; Haywood, K.L.; Bishop, A. Defining adherence to therapeutic exercise for musculoskeletal pain: A systematic review. Br. J. Sports Med. 2020, 54, 326–331. [Google Scholar] [CrossRef]
- Bassett, S.F. The assessment of patient adherence to physiotherapy rehabilitation. NZ J. Physiother. 2003, 31, 60–66. [Google Scholar]
- Baroni, M.P.; Jacob, M.; Rios, W.R.; Fandim, J.V.; Fernandez, L.G.; Chaves, P.I.; Fioratti, I.; Saragiotto, B.T. The state of the art in telerehabilitation for musculoskeletal conditions. Arch. Physiother. 2023, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Lindström, B.; Ekenberg, L. Patients’ experiences of telerehabilitation at home after shoulder joint replacement. J. Telemed. Telecare 2011, 17, 25–30. [Google Scholar] [CrossRef]
- Carbonaro, N.; Lucchesi, I.; Lorusssi, F.; Tognetti, A. Tele-monitoring and tele-rehabilitation of the shoulder muscular-skeletal diseases through wearable systems. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 4410–4413. [Google Scholar] [CrossRef]
- Pan, J.I.; Chung, H.W.; Huang, J.J. Intelligent Frozen Shoulder Self-Home Rehabilitation Monitoring System. In Proceedings of the 2nd International Conference on Information Science and Technology, IST, Bali, Indonesia, 27–30 June 2013; Volume 23, pp. 265–270. [Google Scholar]
- Carnevale, A.; Longo, U.G.; Schena, E.; Massaroni, C.; Lo Presti, D.; Berton, A.; Candela, V.; Denaro, V. Wearable systems for shoulder kinematics assessment: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 546. [Google Scholar] [CrossRef] [PubMed]
- Sliepen, M.; Lipperts, M.; Tjur, M.; Mechlenburg, I. Use of accelerometer-based activity monitoring in orthopaedics: Benefits, impact and practical considerations. EFORT Open Rev. 2020, 4, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, J.R.; Thai, P.; Li, E.; Tung, T.; Hudson, T.E.; Herrera, J.; Raghavan, P. Structured Wii protocol for rehabilitation of shoulder impingement syndrome: A pilot study. Ann. Phys. Rehabil. Med. 2017, 60, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Anwar, N.; Karimi, H.; Ahmad, A.; Gilani, S.; Khalid, K.; Aslam, A.; Hanif, A. Virtual Reality Training Using Nintendo Wii Games for Patients with Stroke: Randomized Controlled Trial. JMIR Serious Games 2022, 10, e29830. [Google Scholar] [CrossRef] [PubMed]
- Adie, K.; Schofield, C.; Berrow, M.; Wingham, J.; Humfryes, J.; Pritchard, C.; James, M.; Allison, R. Does the use of Nintendo Wii SportsTM improve arm function? Trial of WiiTM in Stroke: A randomized controlled trial and economics analysis. Clin. Rehabil. 2017, 31, 173–185. [Google Scholar] [CrossRef]
- Ruiz-Fernández, D.; Marín-Alonso, O.; Soriano-Paya, A.; García-Pérez, J.D. eFisioTrack: A telerehabilitation environment based on motion recognition using accelerometry. Sci. World J. 2014, 12, 495391. [Google Scholar] [CrossRef] [PubMed]
- García, J.; Ruiz, D.; Soriano, A.; Marin, O.; Hernandez-Sanchez, S.; Ferrairaó, S. eFisioTrack: A Telerehabilitation Platform for Monitoring Prescribed Therapeutic Exercises in Orthopaedic Injuries. In Ambient Assisted Living and Home Care; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7657, pp. 423–430. [Google Scholar]
- Beaton, D.E.; Davis, A.M.; Hudak, P.; McConnell, S. The DASH (Disabilities of the Arm, Shoulder and Hand) outcome measure: What do we know about it now? Br. J. Hand Ther. 2001, 6, 109–118. [Google Scholar] [CrossRef]
- Hervás, M.T.; Navarro, A.; Peidró, S.; Rodrigo, J.L.; López, P.; Martínez, I. Spanish version of the DASH questionnaire. Cross-cultural adaptation, reliability, validity and responsiveness. Med. Clin. 2006, 127, 441–447. [Google Scholar]
- Tate, A.R.; McClure, P.W.; Young, I.A.; Salvatori, R.; Michener, L.A. Comprehensive impairment-based exercise and manual therapy intervention for patients with subacromial impingement syndrome: A case series. J. Orthop. Sports Phys. Ther. 2010, 40, 474–493. [Google Scholar] [CrossRef] [PubMed]
- Franchignoni, F.; Vercelli, S.; Giordano, A.; Sartorio, F.; Bravini, E.; Ferriero, G. Minimal clinically important difference of the disabilities of the arm, shoulder and hand outcome measure (DASH) and its shortened version (QuickDASH). J. Orthop. Sports Phys. Ther. 2014, 44, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.S.; MacDermid, J.C.; Woodhouse, L.J. A systematic review of the psychometric properties of the Constant-Murley score. J. Shoulder Elb. Surg. 2010, 19, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Bankes, M.J.; Emery, R.J. An evaluation of the Constant-Murley shoulder assessment. J. Bone Jt. Surg. Br. 1997, 79, 696. [Google Scholar] [CrossRef]
- Alonso, J.; Prieto, L.; Anto, J.M. The Spanish version of the SF-36 Health Survey (the SF-36 health questionnaire): An instrument for measuring clinical results. Med. Clin. 1995, 104, 771–776. [Google Scholar]
- Brydges, C.R. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innov. Aging 2019, 3, igz036. [Google Scholar] [CrossRef] [PubMed]
- Kitis, A.; Celik, E.; Aslan, U.B.; Zencir, M. DASH questionnaire for the analysis of musculoskeletal symptoms in industry workers: A validity and reliability study. J. Appl. Ergon. 2009, 40, 251–255. [Google Scholar] [CrossRef]
- Pastora-Bernal, J.M.; Martín-Valero, R.; Barón-López, F.J.; Moyan, N.; Estebanez-Pérez, M.J. Telerehabilitation after arthroscopic subacromial decompression is effective and not inferior to standard practice: Preliminary results. J. Telemed. Telecare 2018, 24, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Dias Correia, F.; Molinos, M.; Luis, S.; Carvalho, D.; Carvalho, C.; Costa, P.; Seabra, R.; Francisco, G.; Bento, V.; Lains, J. Digitally assisted conventional home-based rehabilitation after arthroscopic rotarot cuff repair: A randomized controlled trial. Am. J. Phys. Med. Rehabil. 2022, 101, 237–249. [Google Scholar] [CrossRef]
- Constant, C.R.; Murley, A.H. A clinical method of functional assessment of the shoulder. Clin. Orthop. Relat. Res. 1987, 214, 160–164. [Google Scholar] [CrossRef]
- Grassi, F.A.; Tajana, M.S. The normalization of data in the Constant-Murley score for the shoulder. A study conducted on 563 healthy subjects. Chir Organi Mov 2003, 88, 65–73. [Google Scholar] [PubMed]
- Kachingwe, A.F.; Philips, B.; Sletten, E.; Plunkett, S.W. Comparison of manual therapy techniques with therapeutic exercise in the treatment of shoulder impingement: A randomized controlled pilot clinical trial. J. Man. Manip. Ther. 2008, 16, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, I.; Magri, A.G.; Fleury, A.M.; Da Silva, A.C.; Natour, J. Progressive resistance training in patients with shoulder impingement syndrome: A randomized controlled trial. Arthritis Rheum. 2008, 59, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Seron, P.; Oliveros, M.J.; Gutierrz-Areias, R.; Fuentes-Aspe, R.; Torres-Castro, R.C.; Merino-Osorio, C.; Nahuelhual, P.; Inostroza, J.; Jalil, Y.; Solano, R.; et al. Effectiveness of Telerehabilitation in Physical Therapy: A Rapid Overview. Phys. Ther. 2021, 101, pzab053. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Tomás, M.T.; Burillo-Lafuente, M.; Vicente-Parra, A.; Sanz-Rubio, M.C.; Suarez-Serrano, C.; Marcén-Román, Y.; Franco-Sierra, M.A. Telerehabilitation as a Therapeutic Exercise Tool versus Face-to-Face Physiotherapy: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 4358. [Google Scholar] [CrossRef]
- Muscillo, R.; Schmid, M.; Conforto, S.; D’Alessio, T. Early recognition of upper limb motor tasks through accelerometers: Real-time implementation of a DTW-based algorithm. Comput. Biol. Med. 2011, 41, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Sparto, P.J.; Kiesler, S.; Siewiorek, D.P.; Smailagic, A. iPod-based in-home system for monitoring gaze-stabilization exercise compliance of individuals with vestibular hypofunction. J. Neuroeng. Rehab. 2014, 11, 69. [Google Scholar] [CrossRef]
- Tao, G.; Miller, W.C.; Eng, J.J.; Esfandiari, E.; Imam, B.; Lindstrom, H.; Payne, M.W. Group-based telerehabilitation intervention using Wii Fit to improve walking in older adults with lower limb amputation (WiiNWalk): A randomized control trial. Clin. Rehabil. 2022, 36, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Yuen, H.K.; Lowman, J.D.; Oster, R.A.; de Andrade, J.A. Home-Based Pulmonary Rehabilitation for Patients with Idiopathic Pulmonary Fibrosis: A pilot study. J. Cardiopulm. Rehabil. Prev. 2019, 39, 281–284. [Google Scholar] [CrossRef]
- Essery, R.; Geraghthy, A.; Kirby, S.; Yardley, L. Predictors of adherence to home-based physical therapies: A systematic review. Disabil. Rehabil. 2017, 39, 519–534. [Google Scholar] [CrossRef]
- Himler, P.; Lee, G.T.; Rhon, D.I.; Young, J.L.; Cook, C.; Rentmeester, C. Understanding barriers to adherence to home exercise programs in patients with musculoskeletal neck pain. Musculoskelet. Sci. Pract. 2023, 63, 102722. [Google Scholar] [CrossRef]
- Palazzo, C.; Klinger, E.; Dorner, V.; Kadri, A.; Thierry, O.; Boumenir, Y.; Martin, W.; Poiraudeau, S.; Ville, I. Barriers to home-based exercise program adherence with chronic low back pain: Patient expectations regarding new technologies. Ann. Phys. Rehabil. Med. 2016, 59, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Jirasakulsuk, N.; Saengpromma, P.; Khruakhorn, S. Real-Time Telerehabilitation in Older Adults with Musculoskeletal Conditions: Systematic Review and Meta-analysis. JMIR Rehabil. Assist. Technol. 2022, 9, e36028. [Google Scholar] [CrossRef]
- Belotti, N.; Bonfantil, S.; Locatelli, A.; Rota, L.; Ghidotti, A.; Vitali, A. A Tele-Rehabilitation Platform for Shoulder Motor Function Recovery Using Serious Games and an Azure Kinect Device. Stud. Health Technol. Inform. 2022, 293, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Gava, V.; Ribeiro, L.P.; Barreto, R.; Rezende, C. Effectiveness of physical therapy given by telerehabilitation on pain and disability of individuals with shoulder pain: A systematic review. Clin. Rehabil. 2022, 36, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Lindström, B.; Gard, G.; Gard, G.; Lysholm, J. Physiotherapy at a distance: A controlled study of rehabilitation at home after a shoulder joint operation. J. Telemed. Telecare 2009, 15, 215–220. [Google Scholar] [CrossRef]
- Jordan, J.L.; Holden, M.A.; Mason, E.E.; Foster, N.E. Interventions to improve adherence to exercise for chronic musculoskeletal pain in adults. Cochrane Database Syst. Rev. 2010, 20, CD005956. [Google Scholar] [CrossRef] [PubMed]
- Pastora-Bernal, J.M.; Martín-Valero, R.; Barón-López, F.J. Cost analysis of telerehabilitation after arthroscopic subacromial decompression. J. Telemed. Telecare 2018, 24, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Kloek, C.; van Dongen, J.; de Baker, D.; Bossen, D.; Dekker, J.; Veenhof, C. Cost-effectiveness of a blended physiotherapy intervention compared to usual physiotherapy in patients with hip and/or knee osteoarthritis: A cluster randomized controlled trial. BMC Public Health 2018, 18, 1082. [Google Scholar] [CrossRef]
- Nelson, M.; Russell, T.; Crossley, K.; Bourke, M.; McPhail, S. Cost-effectiveness of telerehabilitation versus traditional care after total hip replacement: A trial-based economic evaluation. J. Telemed. Telecare 2019, 27, 359–366. [Google Scholar] [CrossRef]
- Fatoye, F.; Gebrye, T.; Fatoye, C.; Mbada, C.E.; Olaoye, M.I.; Odolr, A.C.; Dada, O. The Clinical and Cost-Effectiveness of Telerehabilitation for People with Nonspecific Chronic Low Back Pain: Randomized Controlled Trial. JMIR mHealth uHealth 2020, 8, e15375. [Google Scholar] [CrossRef] [PubMed]
- Torpil, B.; Kaya, Ö. The Effectiveness of Client-Centered Intervention with Telerehabilitation Method After Total Knee Arthroplasty. Occup. Ther. J. Res. 2022, 42, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Suso-Martí, L.; La Touche, R.; Herranz-Gómez, A.; Díaz-Parreño, S.A.; París-Alemnay, A.; Cuenca-Martínez, F. Effectiveness of Telerehabilitation in Physical Therapist Practice: An Umbrella and Mapping Review with Meta-Meta-Analysis. Phys. Ther. 2021, 101, 5. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, L.; Aguilar-Rodríguez, M.; Voogt, L.; Lluch, E.; Struyf, F.; Mertens, M.; De Meulemeester, K.; Meeus, M. Specific versus Non-Specific Exercises for Chronic Neck or Shoulder Pain: A Systematic Review. J. Clin. Med. 2021, 10, 5946. [Google Scholar] [CrossRef]
Experimental (n = 12) | Control (n = 11) | p Values | |
---|---|---|---|
Age, years | 56.5 ± 1.7 | 57.8 ± 5.6 | 0.222 |
Gender, male/female | 6/6 | 4/7 | |
Height, m | 1.6 ± 0.1 | 1.6 ± 0.1 | 0.264 |
Weight, kg | 62.5 ± 4.8 | 66.8 ± 7.3 | 0.093 |
Body Mass Index (kg/m2) | 24.0 ± 1.1 | 24.8 ± 1.9 | 0.070 |
Constant score | 38.4 ± 4.9 | 38.0 ± 6.4 | 0.446 |
DASH | 44.2 ± 3.7 | 41.2 ± 5.8 | 0.080 |
SF-36 Physical | 40.7 ± 15.4 | 38.5 ± 5.8 | 0.458 |
SF-36 Mental | 51.7 ± 6.6 | 49.7 ± 10.5 | 0.389 |
Dominant side | 0.764 | ||
Right | 8 | 7 | |
Left | 4 | 4 | |
Affected side | 0.764 | ||
Right | 7 | 6 | |
Left | 5 | 5 |
Diagnosis | Number of Patients |
---|---|
Experimental group (n = 12) | |
Proximal humeral fracture | 3 |
Adhesive capsulitis | 2 |
Head humerus fracture | 1 |
Subacromial syndrome | 6 |
Control group (n = 11) | |
Proximal humeral fracture | 2 |
Adhesive capsulitis | 1 |
Head humerus fracture | 1 |
Subacromial syndrome | 7 |
Baseline | Follow-Up | Within-Group Change Scores | Between-Groups Change Scores | |
---|---|---|---|---|
Constant total score | 3.2 (−1.1; 7.5) | |||
Control | 38.0 ± 6.4 | 42.9 ± 5.5 | 4.9 (2.8; 7.0) * (ES = 3.364) | |
Experimental | 38.4 ± 4.9 | 46.21 ± 4.4 | 7.7 (6.4; 9.1) * (ES = 2.309) | |
DASH score | 2.5 (−1.8; 6.8) | |||
Control | 41.2 ± 5.8 | 30.5 ± 5.1 | −10.7 (−11.6; −9.8) * (ES = 1.394) | |
Experimental | 44.2 ± 3.7 | 32.9 ± 4.8 | −11.3 (−12.5; −10.1) * (ES = 2.053) | |
SF-36 Physical | 2.2 (−1.3; 5.9) | |||
Control | 38.5 ± 5.8 | 36.5 ± 3.5 | −2.0 (−3.9; −1.2) | |
Experimental | 40.7 ± 15.4 | 38.7 ± 12.7 | −2.0 (−6.8; −0.3) | |
SF-36 Mental | 4.3 (−1.2; 7.5) | |||
Control | 49.7 ± 10.5 | 46.4 ± 11.8 | −3.3 (−4.5; −0.2) | |
Experimental | 51.7 ± 6.6 | 50.7 ± 10.1 | −1.0 (−3.1; −0.3) |
Baseline | Follow-Up | Within-Group Change Scores | Between-Group Change Scores | |
---|---|---|---|---|
Pain | 0.4 (−0.57; 1.4) | |||
Control | 4.7 ± 1.3 | 6.2 ± 1.2 | 1.5 (1.2; 1.9) * ES = 0.615 | |
Experimental | 4.6 ± 0.8 | 6.6 ± 1.0 | 2.0 (1.5; 2.5) * ES = 0.826 | |
ADL | 0.7 (−0.4; 1.7) | |||
Control | 8.9 ± 1.8 | 10.8 ± 1.5 | 1.9 (1.1; 2.7) * ES = 1.231 | |
Experimental | 8.7 ± 1.1 | 11.5 ± 1.0 | 2.8 (2.4; 3.3) * ES = 0.771 | |
Movement | 1.5 (−1.6; 4.5) | |||
Control | 20.6 ± 3.9 | 22.5 ± 4.0 | 1.5 (0.5; 3.3) | |
Experimental | 21.2 ± 3.3 | 24.0 ± 3.0 | 2.8 (1.9; 3.8) | |
Strength | ||||
Control | 3.8 ± 0.7 | 3.4 ± 0.8 | −0.4 (−0.8; −0.1) | 0.6 (−0.2; 1.6) |
Experimental | 3.9 ± 1.0 | 4.0 ± 1.1 | 0.1 (−0.1; 0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Sanchez, S.; Roses-Conde, J.; Martinez-Llorens, N.; Ruiz, D.; Espejo-Antúnez, L.; Tomás-Rodríguez, I.; Toledo-Marhuenda, J.-V.; Albornoz-Cabello, M. EFisioTrack System for Monitoring Therapeutic Exercises in Patients with Shoulder Orthopedic Injuries in a Hospital Setting: A Pilot Feasibility Study. Sensors 2024, 24, 4898. https://doi.org/10.3390/s24154898
Hernandez-Sanchez S, Roses-Conde J, Martinez-Llorens N, Ruiz D, Espejo-Antúnez L, Tomás-Rodríguez I, Toledo-Marhuenda J-V, Albornoz-Cabello M. EFisioTrack System for Monitoring Therapeutic Exercises in Patients with Shoulder Orthopedic Injuries in a Hospital Setting: A Pilot Feasibility Study. Sensors. 2024; 24(15):4898. https://doi.org/10.3390/s24154898
Chicago/Turabian StyleHernandez-Sanchez, Sergio, Jorge Roses-Conde, Neus Martinez-Llorens, Daniel Ruiz, Luis Espejo-Antúnez, Isabel Tomás-Rodríguez, Jose-Vicente Toledo-Marhuenda, and Manuel Albornoz-Cabello. 2024. "EFisioTrack System for Monitoring Therapeutic Exercises in Patients with Shoulder Orthopedic Injuries in a Hospital Setting: A Pilot Feasibility Study" Sensors 24, no. 15: 4898. https://doi.org/10.3390/s24154898
APA StyleHernandez-Sanchez, S., Roses-Conde, J., Martinez-Llorens, N., Ruiz, D., Espejo-Antúnez, L., Tomás-Rodríguez, I., Toledo-Marhuenda, J. -V., & Albornoz-Cabello, M. (2024). EFisioTrack System for Monitoring Therapeutic Exercises in Patients with Shoulder Orthopedic Injuries in a Hospital Setting: A Pilot Feasibility Study. Sensors, 24(15), 4898. https://doi.org/10.3390/s24154898