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Abstract: In complex maritime scenarios where the grayscale polarity of ships is unknown, ex-
isting infrared ship detection methods may struggle to accurately detect ships among significant
interference. To address this issue, this paper first proposes an infrared image smoothing method
composed of Grayscale Morphological Reconstruction (GMR) and a Relative Total Variation (RTV).
Additionally, a detection method considering the grayscale uniformity of ships and integrating shape
and spatiotemporal features is established for detecting bright and dark ships in complex maritime
scenarios. Initially, the input infrared images undergo opening (closing)-based GMR to preserve dark
(bright) blobs with the opposite suppressed, followed by smoothing the image with the relative total
variation model to reduce clutter and enhance the contrast of the ship. Subsequently, Maximally
Stable Extremal Regions (MSER) are extracted from the smoothed image as candidate targets, and the
results from the bright and dark channels are merged. Shape features are then utilized to eliminate
clutter interference, yielding single-frame detection results. Finally, leveraging the stability of ships
and the fluctuation of clutter, true targets are preserved through a multi-frame matching strategy. Ex-
perimental results demonstrate that the proposed method outperforms ITDBE, MRMF, and TFMSER
in seven image sequences, achieving accurate and effective detection of both bright and dark polarity
ship targets.

Keywords: infrared ship detection; bilateral polarity target; multi-feature; complex sea background

1. Introduction

In navigation, searching, and tracking tasks under marine environments, infrared
target detection technology plays a crucial role due to its unique advantages, such as
long detection range, and high concealment [1–3]. Infrared imaging systems can obtain
distance and shape information by receiving thermal radiation [4], and then produce
infrared images for different tasks through subsequent processing. However, constrained
by detector performance, complex weather conditions, and the inherent fluctuations of the
marine, infrared images typically have only a narrow grayscale range, with a low contrast
and restricted signal-to-noise ratio at long imaging distances, which significantly increases
the difficulty of target detection.

In infrared ship detection tasks, targets can be roughly divided into point targets
or small targets (having area less than 9 × 9 pixels, isotropic), area targets (typically
having certain shape and contour information, lacking texture, but having a relatively
uniform grayscale distribution), and larger targets (larger area, with rich texture and
contour information). In point target detection tasks, researchers have delved into the
isotropic shape characteristics and strong contrast of point targets, developing a series of
efficient and reliable methods such as curvature filtering [5,6] and Local Contrast Measure
(LCM) [7,8]. For larger targets, which usually occupy a significant area in the image and
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have rich contour and texture details, they are easier to detect compared to point and area
targets, but face the challenge of how to completely extract the entire ship.

Area target ships always appear as patches with uniform grayscale distribution and
regular shapes in infrared images. If the grayscale of the ship is greater (smaller) than its
local area, it is called a bright (dark) polarity target. The existing detection methods of the
area target ship can be roughly divided into histogram-based methods, background model-
ing methods, feature-based methods, and deep learning-based methods. Histogram-based
detection methods rely on the grayscale distribution of pixels in the whole image, dividing
the image into foreground and background categories under certain criteria. For different
scenarios, many researchers have developed various histogram transformation methods to
adjust the grayscale distribution of images [4,9,10], enhance the contrast of targets, and then
use methods such as the Otsu [11,12], the maximum entropy [13,14], and various improved
forms for segmentation. In addition, clustering methods [15,16] have been introduced into
infrared ship detection tasks to achieve complete extraction of larger targets. Mean shift was
utilized to smooth infrared images, enhancing the contrast of ship targets [17,18]. However,
these methods often have strict limitations on the grayscale distribution of the image and
the target, making it difficult to determine a reasonable segmentation threshold in complex
scenarios with unknown target grayscale polarity, interference similar to real targets, or
irregular histogram distribution. Background modeling methods estimate the background
in various ways to separate the target from the background. The Infrared Patch Image
(IPI) model [19] is based on the assumption that the target is sparse with the background
low-rank; thus, by dividing, re-organizing, decomposing, and reconstructing the image,
small-sized targets in a stable background can be detected. Subsequently, researchers have
improved the reconstruction and decomposition methods of sub-images to enhance the de-
tection capability of the IPI model in complex scenarios [20,21]. Apart from this, researchers
use Gaussian mixture models to model the background [22–24], achieving prediction and
reproduction of dynamic backgrounds. These methods have certain robustness in scenarios
with severe fluctuations but struggle to distinguish irregular fish scale reflections, sun-glint,
and other interferences in complex scenarios.

In infrared images, ships often have one or more features that make them distinguish-
able from the background. By quantitatively analyzing these features and segmenting
images according to certain criteria, feature analysis-based detection algorithms can be
formed. Top-Hat filtering was first introduced into infrared ship detection tasks [25], us-
ing morphological filters to suppress clutter in the image while preserving bright blobs,
achieving the detection of bright ships. On this basis, many researchers have improved
morphological operations, such as using annular structural elements to enhance the de-
tection capability for small-sized targets [26,27] or introducing multi-scale algorithms to
achieve adaptive detection of targets of different sizes [28]. In addition, features such as
contours [29,30] and gradients [31–33] have also been widely used in ship target detection,
and many researchers consider combining multiple features [15,34] to enhance the robust-
ness of algorithms in different scenarios. For dark ships, many researchers have conducted
in-depth studies. Dong et al. [35] calculated saliency maps through an inverse Gaussian
difference filter, making dark blobs outstanding in the saliency map, and then extracted
potential ships in the image by segmenting the saliency map with an adaptive threshold.
However, this method struggles to distinguish narrow dark bands on the sea surface or
small-sized fish scale patterns with clear edges.

By using Grayscale Morphological Reconstruction operations to preserve and suppress
bright or dark blobs in infrared images, Li et al. [36] achieved parallel detection of bright
and dark ships. However, this method also faces difficulties in determining segmentation
thresholds in complex scenarios with “significant” interference. To address the interference
of island and reef backgrounds, Chen et al. [37] calculated the improved structural tensor
of the multi-scale grayscale morphological reconstruction results of the original infrared
image as a guide, merging the prominent regions in the Gaussian-filtered image to detect
bright polarity ships of different sizes. However, the improved structural tensor proposed
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by this method struggles to distinguish fish scale pattern interference similar in size to
ships. Ding et al. [4] proposed an improved histogram equalization combined with gradient
information (MHEEF) to preprocess infrared images with backlit scenes, enhancing the
contrast of dark ships, and then a dual-scale, dual-mode Local Contrast Measure (LCMDSM)
was utilized to extract targets. The above methods can all be summarized as using single-
frame image information to detect ships in single-frame images. Considering that ships,
as man-made objects, have temporal and spatial stability in continuously captured image
sequences, based on this feature, Wang et al. [31] proposed an improved wavelet transform
to suppress the time-varying background clutter and simultaneously track stable ships
by using pipeline filtering. Similarly, Li et al. [38] first extracted the Maximally Stable
Extremal Regions (MSER) in the infrared image, then suppressed clutter through region
matching between adjacent frames, and finally stable bright and dark polarity ships were
detected at the same time. However, when the sea surface fluctuates violently and the size
of the ship is small, it will be challenging to achieve stable matching between the MSER
regions containing ship targets directly extracted from different frames, which may lead to
frequent missed detections. Zhang et al. [39] developed a “detection-tracking-detection”
method for detecting small-sized bright ships in infrared images, first extracting regions
in single-frame images where targets may exist by using difference of Gaussian filtering
and adaptive threshold segmentation, then suppressing interference through continuous
frame matching. Apart from this, a re-detection method for potential missed targets was
designed to further improve the robustness of this method.

As a trend in many research fields, deep learning-based methods are data-driven,
that is, through data annotation, reward and punishment mechanisms, as well as iterative
training, researchers enable neural networks to mine and refine deeper, more abstract
features from a large amount of data and finally achieve efficient and accurate detection.
Early on, such methods were mainly applied to infrared image target detection tasks with
a space-based observer [40,41]. In 2018, Zhou et al. [42] proposed a one-stage network to
learn features from multi-resolution infrared images, achieving reliable detection of ships
in large infrared images. In 2022, Long et al. [43] introduced a visual attention mechanism
into the YOLOv5 network architecture and introduced dilated convolution to enhance the
receptive field, achieving the recognition of infrared ships against the background of a
gentle sea surface with island reefs. By combining a manually designed feature extractor
and deep learning methods, Yao et al. [44] designed a multi-dimensional information fusion
network to accurately identify small-sized bright ships in infrared images. In 2023, Deng
et al. [45] published an infrared ship rotating target detection algorithm, FMR-YOLO, in
which a Weighted Feature Pyramid Network Based on Extended Convolution (DWFPN)
was proposed with rotation detection technology introduced and achieved an average
accuracy of up to 92.7%. Considering the complexity of the deep learning method and the
difficulty of deployment on small devices, Gao et al. [46] proposed a lightweight model
for detecting infrared ships by replacing the backbone of YOLOv5 with the Mobilev3,
which greatly improved the computational efficiency and achieved the same detection
performance as the YOLOv5m model while reducing the parameter size by 83%. In 2024,
an improved detection model based on YOLOv5s to detect infrared ship targets in coastal
areas with high ship density and significant target scale differences was proposed by Wang
et al. [47], in which a feature fusion module was designed to enhance the feature fusion of
the network, with SPD-Conv and Soft-NMS adopted to improve the detection accuracy
of small targets in low-resolution images and deal with the missed detection in the case
of dense occlusion. In addition to improving the design of the model, Wang et al. [48]
introduced infrared multi-band fusion technology to improve detection accuracy with
fewer parameters, achieving inference speeds close to 60 frames per second on embedded
devices. Apart from this, many researchers [49–51] have been applying deep learning-
based methods into ship detection tasks in infrared remote sensing images, continuously
improving the model performance and detection effect. However, for deep learning-based
methods, a large amount of training data are needed to ensure the reliability of the neural
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network. For example, in [43], researchers mentioned using 4079 out of 4533 infrared
images for training and then testing the remaining images. On the one hand, publicly
available infrared sea surface image datasets vary greatly and are limited in number. At
the same time, manually annotating a large number of infrared images with poor contrast,
missing target details, and a low signal-to-noise ratio requires a lot of manpower and
resources, still posing challenges for deep learning-based methods [37].

In summary, we may summarize the current challenges in detecting infrared ships.
First, most existing methods are designed for relatively simple scenarios with smooth
seas, and usually a single grayscale polarity of the target is assumed, while in actual sea
surface scenarios, the polarity of ship targets in infrared images is often unknown due to
the variation in sea conditions, illumination, and detector positions, thus may result in
missing detections. Second, in complex scenarios, there may exist interferences of different
sizes, such as islands, artificial structures, bright and dark bands, fish scale patterns, and
even clouds, which may be more prominent than real targets in the saliency map of various
features. As a result, it may struggle to determine the segmentation parameters for methods
such as adaptive threshold segmentation or Otsu to achieve balance between accuracy and
completeness. Finally, in some scenarios, the temporal and spatial stability of the ships
may not be fully utilized, and these features may provide some assistance for infrared ship
detection tasks.

In this paper, we make the following assumptions regarding area target ships in
maritime scenarios:

(1) Ship Polarity: Ships can exhibit either bright polarity or dark polarity. Specifically,
their grayscale values are either relatively high (bright) or low (dark) than the lo-
cal background.

(2) Uniform Grayscale Distribution: The grayscale distribution of ships is uniform across
the infrared image sequences.

(3) Temporal and Spatial Stability: Ships demonstrate temporal and spatial stability in
infrared image sequences. In other words, their grayscale distribution and shape
remain nearly constant over time.

Addressing the issues above, this paper first proposes an infrared image smoothing
method that combines GMR and RTV to suppress noises and enhance the contrast of
ships. Subsequently, the Maximally Stable Extremal Regions in the image are extracted as
candidate targets. Finally, shape features and spatiotemporal characteristics are integrated
to discriminate between ships and interferences, achieving the detection of bright and dark
ships in complex scenarios.

2. Materials and Methods

The framework of the proposed method is illustrated in Figure 1, primarily consisting
of image smoothing based on the GMR and RTV, candidate region extraction based on
MSER and shape features, and multi-frame matching based on spatiotemporal charac-
teristics. In this section, the principles of the GMR and RTV algorithms used for image
smoothing and sea clutter suppression are introduced first. Subsequently, we extract MSER
as the candidate targets from the smoothed images. Finally, spatiotemporal features are
introduced to detect ships and suppress interferences.

2.1. Grayscale Morphological Reconstruction

Grayscale Morphological Reconstruction (GMR) is widely used as a powerful tool in
image preprocessing and segmentation due to its excellent performance in image feature
extraction and image restoration [36]. Taking the results of the opening (closing) operation
of the original image as the constraint of iterative geodesic dilation (erosion), the GMR can
be divided into opening-based (OGMR) and closing-based (CGMR), which can be used to
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extract the connected domain in the image with a uniform gray distribution that is darker
(brighter) than the surrounding pixels, respectively. The definition of OGMR is as follows:

OGMRI
(

Iopen
)
= ∨

k≥1
gdk(Iopen), (1)

gd1(Iopen) = ∧
[
Iopen ⊕ b, I

]
, (2)

gdk(Iopen) = gd1
(

gdk−1(Iopen)
)

, (3)

where Iopen is the opening result of the original image I and k and b represent the iterations
and the structure element of the geodesic dilation gd, respectively. ∨ and ∧ represent
the pixel-wise maximum operation and minimum operation, respectively. With I the
mask image, geodesic dilation is iteratively executive until stability is reached according
to Equation (3), in which the bright blobs have been suppressed while the dark blobs
persevered with their contour unchanged.
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Figure 1. The framework of the proposed method.

Replace the marker image with Iclose and perform iterative geodesic erosion gek; simi-
larly, the definition of CGMR is as follows:

CGMRI(Iclose) = ∧
k≥1

gek(Iclose), (4)

ge1(Iclose) = ∨[Iclose � b, I], (5)

gek(Iclose) = ge1
(

gek−1(Iclose)
)

, (6)

In contrast, the CGMR operation suppresses dark blobs while preserving bright blobs
with almost unchanged contours. In this paper, a disc-shaped structural element with
a radius of 15 pixels is employed in the opening and closing operation to obtain the
marker image, followed by iterative geodesic dilation/erosion using a 3 × 3 pixels square
structural element, b. The results, as shown in Figure 2, demonstrate that OGMR (CGMR)
helps preserve dark (bright) polarity targets while suppressing the opposite. Given that
ship targets in infrared images often manifest as bright or dark blobs, and with the intention
of achieving both bright and dark ships in single-frame detection, this paper applies OGMR
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and CGMR separately to the input images to extract potential bright and dark polarity
targets concurrently. However, in complex maritime scenarios, under the combined effects
of sea wind, illumination, and other factors, there is a possibility of forming interference
regions similar to real ships on one hand. And on the other hand, the uniformity of the
ship’s grayscale distribution may be compromised, affecting the regularity of the contours.
In such cases, methods like the adaptive threshold segmentation mentioned in [36] or the
improved structural tensor used in [37] may struggle to distinguish between real ships and
a large number of interferences. To address this issue, this paper introduces Relative Total
Variation into the ship target detection process, aiming to effectively suppress sea clutter in
infrared images.
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2.2. Relative Total Variation

Relative Total Variation (RTV) is an algorithm proposed by Li et al. [52], which can
achieve effectively smoothing textures within the input image while preserving and ex-
tracting the structure. The fundamental idea of RTV is to distinguish between larger-scale
structures and smaller-scale textures by using the ratio of the sum of the weighted absolute
gradient values (referred to as windowed total variations) to the absolute value of the sum
of the weighted gradients (referred to as windowed inherent variations) within a sliding
window. This ratio, that is, the relative total variation, is then used as a penalty term in the
objective function. The definition of RTV is as follows:

argmin
S

∑
p

(
Sp − Ip

)2
+ λ ·

(
Dx(p)

Lx(p) + ε
+

Dy(p)
Ly(p) + ε

)
, (7)

Dx(p) = ∑
q∈N(p)

gp,q ·
∣∣∣(∂xS)q

∣∣∣, Dy(p) = ∑
q∈N(p)

gp,q ·
∣∣∣(∂yS

)
q

∣∣∣, (8)

Lx(p) =

∣∣∣∣∣∣ ∑
q∈N(p)

gp,q · (∂xS)q

∣∣∣∣∣∣, Ly(p) =

∣∣∣∣∣∣ ∑
q∈N(p)

gp,q ·
(
∂yS
)

q

∣∣∣∣∣∣, (9)

where S and I are the input and output-smoothed image, respectively. q is the index of the
pixels in the sliding window with p as the center. λ is the parameter that controls the degree
of smoothing, and ε a constant to prevent the denominator from being 0. Dx(p), Dy(p), and
Lx(p), Ly(p) represent the windowed total variations and the windowed inherent variations
of pixel p along x and y directions. The sliding window gp,q is in fact a Gaussian filter, with
its standard deviation σ corresponding to the maximum scale of the unfiltered texture.

By transforming the original objective function into linear equations, the output image
S can be obtained by iteratively solving those equations. In this paper, we set the parameters
λ, σ, and the number of iterations t to 0.015, 3, and 3, respectively, in most cases. Figure 3
shows the RTV results obtained directly from the original image and the image performed
by OGMR. It can be observed that in the results of windowed total variation, smaller-scale
textures such as fish-scale patterns are quite prominent, whereas in the results of windowed
inherent variation, larger-scale structures with consistent gradient orientations within the
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sliding window, such as ships, edges of reefs, and boundaries of bright and dark bands,
are more notable. In the results of the reciprocal relative total variation, by taking the ratio
of the former two, the differences between small-scale clutter and large-scale structures,
that is, the differences between textures and structures, are further amplified. The more
prominent parts reflect large-scale structures such as reefs, dark bands, and ships. Based on
the aforementioned analysis, using the relative total variation model for iterative processing
of infrared images can effectively suppress small-scale clutter in the background while
enhancing the grayscale uniformity across different regions of the image. After performing
OGMR (CGMR), connected domains of a single polarity are preserved, while those of the
opposite polarity are suppressed, and the magnitude and directional characteristics of
image gradient changes are restrained to some extent. Subsequent smoothing with the
RTV model, on this basis, can achieve the desired smoothing effect with fewer iterations.
At the same time, small-scale connected domains of the same polarity preserved in the
reconstructed image are suppressed after smoothing, reducing the potential interference.
The smoothed infrared image and its grayscale distribution are shown in Figure 4. This
paper processes the input infrared images with two types of GMR as the input for detecting
bright and dark ships, followed by RTV smoothing as the input for candidate extraction.
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Apart from this, the smoothed results of infrared images in diverse scenarios are
displayed in Figure 5, and the numerical indicators of the corresponding image sequences
are also displayed in Table 1. Here, the input images were set as references to evaluate the
effect of the smoothing method in this paper, and we adopted the peak signal-to-noise ratio
(PSNR) and the mean Structural SIMilarity (SSIM) index [53] as numerical indicators. The
definitions of the PSNR and mean SSIM are as follows:

PSNR = 10 · log10

(
2552

MSE

)
, (10)

mSSIM =
1

M× N

M

∑
i=1

N

∑
j=1

SSIM(xi, yj), (11)

where MSE is the mean-square error between input images and smoothed images, and
SSIM is the Structural SIMilarity index of image patches calculated by using a Gaussian
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window with a size of 11 × 11 pixels and a standard deviation of 1.5, in which M × N is
the number of image patches. As shown in Figure 5 and Table 1, the proposed smoothing
method can effectively suppress interferences like the fish scale pattern and improve the
signal-to-noise ratio, while inevitably resulting in the loss of image structure information.
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Table 1. Quantitative evaluation of the proposed smoothing method.

Sequences PSNR (dB) mSSIM

Seq1 20.7134 0.7257
Seq2 22.2995 0.7258
Seq3 18.9157 0.3616
Seq4 20.0236 0.6681
Seq5 22.5759 0.6064
Seq6 20.4198 0.5993
Seq7 24.0667 0.4799

2.3. Maximum Stable Extreme Region

In the results of the abovementioned smoothed images, the contrast between the ship
and its local background is further enhanced, resulting in a more uniform gray distribution
of whole images. Given the grayscale uniformity inherent to the ships, the Maximally
Stable Extreme Region (MSER) algorithm can be adept at extracting the isolating connected
domains ranging between [81, 1500] pixels as potential targets. The principle of extracting
the MSER is to binarize the image by increasing (decreasing) the segmentation threshold
step by step, and find out regions with minimal area variation, that is, the so-called
maximum stable extreme region. Regions with more uniform grayscale distribution are
more likely to maintain stability in area size under different thresholds, indicating a lower
area change rate. The area change rate is defined as follows:

p(i) =

∣∣Qj+∆ −Qj−∆
∣∣

Qj
, (12)

in which Q1, Q2, . . ., Qj, . . . represent a series of nested regions obtained as the threshold
increases from 0 to 255 (or decreases from 255 to 0) in steps of ∆; |·| is the area of a region,
that is, the number of pixels. If one particular region Q(j) has an area change rate ρ(j) less
than a predefined threshold Tρ, it is considered maximally stable. In this paper, the area
change rate threshold Tρ is consistently maintained at 0.25. Research [38] suggests that
typically, a smaller step size ∆ results in a greater number of MSERs extracted per frame,
while a larger step size will only extract those with a higher uniform grayscale distribution.
On the one hand, based on the characteristic of ships having a more uniform grayscale
distribution compared to their background, the range of step size ∆ can be appropriately
amplified to reduce the number of clutter regions mistakenly extracted. On the other
hand, in complex maritime scenarios, there may exist situations where ships have rather
low contrast against their background, in which smaller ships can easily blend into the
background. If a smaller step size ∆ is chosen in such scenarios, large areas containing
ships are more likely to be extracted rather than the ships themselves, leading to potential
misjudgments in subsequent analysis.

Figure 6 illustrates the pixel grayscale distribution within the local background of the
ship before and post-smoothing. The results indicate that after smoothing, the grayscale
within the actual ship target zone is markedly uniform, exhibiting a significant contrast
with the background. This contrast facilitates the selection of a larger step size ∆, which
not only accurately extracts the ship target but also minimizes the extraction of extraneous
clutter. However, it has to be mentioned that while the smoothing process effectively
suppresses smaller clutters, it may inadvertently homogenize certain regions of the sea
surface background, previously contained clutters, before smoothing, rendering them as
potential candidate targets. In this paper, the outputs from the two aforementioned channels
are independently processed and subsequently combined to form the final candidate targets.
Taking into account the relative spatiotemporal stability of the ship against the dynamic
sea surface background and the inherent variability of the background clutter, we employ
both shape features and a pipe filtering approach to further exploit the difference between
the ship and the clutter. Interference is screened out during single-frame detection with
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a manually designed shape feature range, while concurrently eliminate false positives
through the aggregation of single-frame detection results and inter-frame matching, thereby
ensuring the retention of genuine ships.
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Figure 6. Grayscale distribution of dark (light) ships and surroundings before and after smoothing.
(a,c) are the grayscale distribution and corresponding 3D views of the dark ship and local background
in the original infrared image and smoothed result by OGMR and RTV, respectively. (b,d) are the
grayscale distribution and corresponding 3D views of the bright ship and local background in the
original infrared image and smoothed result by CGMR and RTV, respectively.

2.4. Shape Feature-Based Target Extraction

Following the smoothing and extraction processes above, candidate targets are sep-
arated from the local background and rendered into binary form to establish distinct
candidate target regions. Because their shape and contour features are largely preserved,
they provide a reliable foundation for verifying real ships and interferences. Shape features
play a pivotal role in infrared ship detection tasks, offering an effective means to identify
ships amidst sea clutter, islands, reefs, clouds, and other forms of interference. Typically,
ship targets exhibit a narrow form, with the upper portion being smaller than the lower,
coupled with a relatively uniform contour. Leveraging these shape features, metrics such
as aspect ratio, rectangularity, compactness, and the ratio of the upper to lower area are
employed as shape features to authenticate targets. The definitions of these features are
as follows:

Ratiowidth&height =
width
height

, (13)

Compactness =
(perimeter)2

area
, (14)

Rectangularity =
area

areaRec
, (15)

Ratioup&down =
areaup

areadown
, (16)

where width and height are the size of the minimum external rectangular box of the candidate
target. perimeter and area are the perimeter and area of the candidate target, respectively.
areaRec is the area of the minimum external rectangular box, and areaup and areadown are the
areas of the upper and lower parts of the vertically equally divided bounding box.

The aspect ratio serves as a criterion to filter out interferences that manifest as ex-
cessively narrow strips. Compactness and rectangularity are utilized to eliminate clutter
with relatively irregular contours. Furthermore, this study focuses on ships with an area
ranging from 81 to 1500 pixels. Consequently, an area threshold is established to eliminate
any interference falling outside this range. We selected 264 different ships from the VAIS
dataset [54], 200 ships from the IRay dataset, and 100 infrared ship images from the self-
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collection dataset for analysis and summarization and obtained the statistical parameters
of shape features as presented in Table 2. The IRay dataset is an open-source infrared
maritime ship dataset provided by Yantai Raytron Technology Co., Ltd. (Yantai, China),
which consists of thousands of infrared images containing various types of ships and can
be accessed at http://openai.iraytek.com/apply/Sea_shipping.html/ (accessed on 9 June
2021). Additionally, the self-collection dataset in this paper comprises image sequences of
infrared ships with different polarities captured from multiple coastal viewpoints.

Table 2. Ranges of shape features.

Feature Minimum Maximum

Ratioheight&width 1.6 11
Compactness 12.9445 317.1574

Rectangularity 0.3008 0.9788
Ratioup&down <1

Area 81 1500

Figure 7 illustrates the results of further screening candidate targets by employing
the previously defined shape feature parameters. These shape features can be used to
eliminate a portion of the interference; however, in complex environments, certain clutter
with intricate shapes may still conform to the specified criteria. Therefore, the differ-
ences in spatiotemporal stability between targets and interference are introduced to make
further distinctions.

2.5. Spatiotemporal Stability-Based Multi-Frame Matching Strategy

Apart from the utilization of shape features, many researchers have developed multi-
frame detection methods for small targets, capitalizing on target stability, as referenced
in [6,55]. The constancy of area targets within image sequences, particularly for larger ships,
has been thoroughly investigated as well [31,39], culminating in the development of vari-
ous algorithms. Pipeline filtering, a “tracking before detection” (TBD) strategy, is widely
employed in infrared image target detection tasks. This technique begins with each prospec-
tive target in the reference frame, determining an optimal pipeline radius—corresponding
to the detection scope in adjacent frames—based on the target’s size. Concurrently, an
appropriate pipeline length threshold is established, representing the requisite number of
detections and matching occurrences for a potential target within the image sequence. A
potential target is deemed to be a real target only if its detection frequency surpasses the
threshold; otherwise, it is classified as a false target.

Inspired by the idea of pipeline filtering, this paper designs a simple multi-frame
detection approach to further utilize the spatiotemporal stability of ship targets. This
method significantly diminishes false alarm interference by accumulating the results of
single-frame detections across image sequences. The conceptual framework of this method
is depicted in the subsequent Figure 8, utilizing the outcomes of shape feature analysis
as inputs and employing a sequence of 5 adjacent frames for multi-frame detection and
matching. The process commences with the designation of the initial frame from the five-
frame sequence as the reference frame, labeled as i = 1. The coordinates, width, and height
of all potential targets Ci,1, . . ., Ci,t1, . . ., Ci,n1 are recorded, with each target’s detection
number recorded as one. The subsequent frame is then utilized as the matching image,
denoted as j = 2, where all potential targets Cj,1, . . ., Cj,t2, . . ., Cj,n2 are identified and their
respective parameters recorded. For every potential target in the reference frame, the
distance Dis(Ci,t1, Cj,t2), area change rate Ratioarea(Ci,t1, Cj,t2), and the variation of aspect
ratio Ratiowidth&height(Ci,t1, Cj,t2) are calculated in relation to all potential targets in the
matching frame. A successful match updates only if the distance, area change rate, and
variation of aspect ratio meet the corresponding thresholds; as a result, the position and
size information are updated, and detection numbers of Ci,t1 are increased by one. The
information about these confirmed targets is then fed into the matching process for the

http://openai.iraytek.com/apply/Sea_shipping.html/
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subsequent five-frame unit. As the matching progresses, the threshold for match count
is elevated, ensuring the continuous identification and output of authentic targets. Dis(,),
Ratioarea(,), and Ratiowidth&height(,) are defined as follows:

Dis(Ci,t1, Cj,t2) =
√(

xi,t1 − xj,t2
)2

+
(
yi,t1 − yj,t2

)2, (17)

Ratioarea(Ci,t1, Cj,t2) =
√(

ai,t1 − aj,t2
)2/
(
ai,t1 × aj,t2

)
, (18)

Ratiowidth&height(Ci,t1, Cj,t2) =
√(

Ri,t1 − Rj,t2
)2/
(

Ri,t1 × Rj,t2
)

, (19)

where (x, y) is the upper-left coordinate of the minimum external bounding box and a and
R are the area and aspect ratio of the bounding box, respectively. The threshold of distance
Tdis is set to 20 pixels, and the area change threshold TRarea and the threshold of variation of
aspect ratio TRwh are set to 0.5.
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of the screening by shape features, with the step size ∆ = 3.5 in the dark ship image and the step ∆ = 8
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the results of the merging of two channels of dark ship image and bright ship image, respectively.
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3. Results

In this section, a series of comparative experiments were performed on infrared
image sequences across seven diverse scenarios to test the effectiveness of the proposed
method in identifying both bright and dark ships. As for comparison, we chose the several
algorithms that are commonly utilized in infrared ship detection tasks, to be specific, a
method proficient in detecting dark targets within intricate scenarios [35], as well as two
methods capable of simultaneously detecting both bright and dark targets [36,38]. The
comparative experiments were executed using MATLAB2018a.

3.1. Test Dataset

The test dataset consists of seven sequences of infrared images, labeled Seq1–7. Each
sequence features a resolution of 640 × 512 pixels and contains 1 or 2 bright/dark ships, as
depicted in Figure 9a. The sea surface background in sequences Seq2, Seq5, and Seq6 is
rather gentle, whereas Seq3 and Seq4 are full of fish scale patterns of varying sizes. There
are large-scale dark bands in Seq1–Seq3, and all the sequences contain islands and reefs of
diverse shapes. The Table 3 lists the specific details of the seven sequence sets. Notably, a
median filter with a 3 × 3 template size was employed in images from Seq3 and Seq4 to
achieve preliminary noise reduction. Moreover, taking into account the diversity of ship
target size, shape, and background complexity, the Intersection over Union (IOU) threshold
has been consistently established at 0.4 to ensure a standardized assessment across all
scenarios. In addition to Seq4, the smoothing parameters λ, σ, and the number of iterations
were set to 0.015, 3, and 3, respectively. To avoid incorrectly eliminating the narrow ship
in Seq4, the σ was set to 1. Apart from this, the step size ∆ range of MSER extraction was
experimentally set to [3.5, 8].
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Table 3. Details of the test sequences.

Sequences Frames Target Background

Seq1 300 1 dark ship moving to the left Complex, with a large-scale dark band
Seq2 300 1 dark ship moving to the left Rather gentle, with a large-scale dark band
Seq3 300 1 stationary dark ship Rather complex, with a dark band and islands
Seq4 300 1 dark ship moving to the right Complex, with a dark band and small islands
Seq5 300 1 stationary bright ship Gentle, with artificial buildings and a mountain
Seq6 300 2 stationary bright ships Gentle, with artificial buildings and a mountain

Seq7 300 2 bright targets: one stationary and one
moving to the left

Rather complex, with artificial buildings, an
island, and reefs
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Figure 9. Detection results of different methods. (a) The original images of Seq1–Seq9. (b) The
detection results of the ITDBE. (c) The detection results of the MRMF. (d) The detection results of
the TFMSER. (e) The single-frame detection results of the proposed method. (f) The multi-frame
matching results of the proposed method. The red rectangles represent the positions of targets, and
the yellow rectangles represent the false alarm.
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3.2. Qualitative Comparison

In this section, ITDBE [35], which is adept at detecting dark targets within multi-
faceted scenes, alongside MRMF [36] and TFMSER [38], both capable of discerning light
and dark polar targets, was chosen to test the infrared sequences. The ITDBE approach
commences with Gaussian differential processing to enhance target contrast, followed by
the identification of candidate targets using a multi-scale central difference method inspired
by the human visual attention model. The process culminates with adaptive threshold
segmentation, with extra grayscale inversion applied to Seq5–7 to align with the algorith-
mic prerequisite. As shown in Figure 9b, ITDBE demonstrates proficiency in detecting
ships when there is obvious contrast with the background and the target’s area is small.
However, numerous small but prominent interferences were also inadvertently detected,
and they performed worse when dealing with larger targets. Moreover, in more complex
scenes, adaptive threshold segmentation struggles to achieve an optimal balance between
completely extracting the target and minimizing interference. The MRMF innovatively
incorporates grayscale morphological reconstruction into the task of infrared ship detection,
which generates a saliency map for potential bright and dark targets by executing dual
reconstruction operations on the input image, followed by repeated adaptive threshold
segmentation. The results are further refined by considering the shape features and the
maximal eigenvalue of the structural tensor for final discernment. As observed in Figure 9c,
MRMF generally succeeds in detecting ship targets with pronounced contrast. Neverthe-
less, it falters when the numerical “salience” of the target is comparable to or less than
the interference, leading to missing. The challenge is exacerbated in sequences Seq6 and
Seq7, where targets with intermediate grayscale values may be overlooked. The TFMSER
leverages the grayscale uniformity and spatiotemporal stability of ships, which begins
by extracting MSERs in adjacent frames, then employs spatiotemporal features to extract
stable candidate regions while suppressing clutter, and ultimately utilizes shape features to
identify the real ships. The results shown in Figure 9d indicate that this method typically
incurs the fewest false alarms and exhibits robust detection capabilities for stable targets
in simple scenarios, which are determined by the strict spatiotemporal limits. However,
detection may fail when the ship is small or set against a complex background; even a
relatively stable ship target may experience significant alterations in the extracted MSERs
from frame to frame, leading to mismatches and missing. Figure 9e show the single-frame
detection results of the proposed method, illustrating its capacity to detect ships across all
sequences with the utmost precision.

Moreover, it should be noted that, due to the influence of factors such as the per-
formance of the infrared detectors and the complexity of the maritime environment, it is
difficult for the existing methods to reasonably infer the potential bright and dark polarity
and shape features of the target in the absence of sufficient prior knowledge. In order to
ensure the detection rate, current methods (including those discussed in this paper and
the proposed method) that simultaneously process bright and dark targets through dual
channels often yield a substantial number of false alarms in the channel opposite to the
actual target’s polarity. To address this, we augment the single-frame detection result with
a multi-frame matching technique to more effectively extract true targets. As illustrated in
Figure 10, the integration of the multi-frame matching strategy with the single-frame detec-
tion method notably eliminates fluctuation interferences. When evaluated across various
sequences, the proposed algorithm demonstrates superior performance in comparison to
existing methods.



Sensors 2024, 24, 4906 17 of 26

Sensors 2024, 24, x FOR PEER REVIEW 17 of 26 
 

 

 

 
(a) 

 
(a1) 

 
(a2) 

 
(a3) 

 
(a4) 

 
(a5) 

 
(a6) 

 
(a7) 

 
(a8) 

Figure 10. Cont.



Sensors 2024, 24, 4906 18 of 26
Sensors 2024, 24, x FOR PEER REVIEW 18 of 26 
 

 

 
(a9) 

 
(a10) 

 
(a11) 

 
(a12) 

(a13) 

Figure 10. Multi-frame matching result. (a) The first frame of each set of sequences. (a1–a12) are the 
results of multi-frame matching of the 25th, 50th, …, 25 × ith, …, and 300th (i = 1, 2, ... , 12) frames of 
the seven sequences, respectively. (a13) The last frame of each set of sequences. 

3.3. Quantitative Comparison 
To facilitate a more objective assessment of the methods, four key performance met-

rics for quantitative comparison were employed: the detection rate Dp, false alarm rate 
FAR, misclassification error ME, and relative foreground area error RAE. Specifically, Dp 
and FAR reflect precision in ship detection and resilience to interference, respectively. ME 
quantifies the proportion of background pixels misclassified as foreground, while RAE 
represents the area-based proximity of the detection results to the real ships. According 
to the above analysis, the higher the Dp, the stronger the detection ability of the algorithm. 
Conversely, a lower FAR indicates better resistance to interference. Additionally, lower 
ME and RAE values denote a more precise and comprehensive segmentation effect of the 
ship. The four metrics are defined as follows: 

1 ,O T O T

O O

B B F F
ME

B F
∩ + ∩

= −
+

 (20) 

,
,

,

O T
O T

T

T O

T

A A
A A

A
RAE

A A
others

A

 −
>

=  −


 (21) 

Figure 10. Multi-frame matching result. (a) The first frame of each set of sequences. (a1–a12) are the
results of multi-frame matching of the 25th, 50th, . . ., 25 × ith, . . ., and 300th (i = 1, 2, ... , 12) frames
of the seven sequences, respectively. (a13) The last frame of each set of sequences.

3.3. Quantitative Comparison

To facilitate a more objective assessment of the methods, four key performance metrics
for quantitative comparison were employed: the detection rate Dp, false alarm rate FAR,
misclassification error ME, and relative foreground area error RAE. Specifically, Dp and FAR
reflect precision in ship detection and resilience to interference, respectively. ME quantifies
the proportion of background pixels misclassified as foreground, while RAE represents
the area-based proximity of the detection results to the real ships. According to the above
analysis, the higher the Dp, the stronger the detection ability of the algorithm. Conversely,
a lower FAR indicates better resistance to interference. Additionally, lower ME and RAE
values denote a more precise and comprehensive segmentation effect of the ship. The four
metrics are defined as follows:

ME = 1− |BO ∩ BT |+ |FO ∩ FT |
|BO|+ |FO|

, (20)

RAE =

{
AO−AT

AT
, AO > AT

AT−AO
AT

, others
, (21)

Dp =
TP
GT

, (22)

FAR =
FP

FP + TP
, (23)

where BO and FO denote the number of pixels of the background and the number of pixels
of the ship target in the ground truth images, respectively. BT and FT represent the number
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of pixels of the background and the ship target in the detection results, respectively. AT
and AO are the areas of the ship determined by the ground truths and the detection results,
respectively. TP quantifies the numbers where a ship target is accurately detected, while
FP includes the occurrences where non-target elements are identified as ships, and GT
indicates the total number of real ships that have been manually annotated.

The results of the metrics of the selected methods are shown in the following Tables 4–7.
The results reveal that with the IOU set to 0.4, the proposed method outperforms others
in Dp, and the ME and RAE indicate that the proposed method can extract the ships
accurately and completely across most scenarios while maintaining a relatively reasonable
FAR. Additionally, although the TFMSER maintains the lowest FAR in all scenarios, its
strict inter-frame matching mechanism also seriously curtails its detection capability in
complex scenarios. In contrast, the ITDBE exhibits relatively robust detection ability but
is prone to generating an excessive number of false alarms that far exceed the number
of targets detected. In complex scenarios, adaptive threshold segmentation may struggle
to distinguish between “significant” interference and real targets, resulting in the limited
detection and anti-interference capabilities of MRMF in complex scenes such as Seq3–4.
Figure 11 exhibits the ROC curves of the selected methods in seven sequences. It can be seen
that the ITDBE method shows excellent detection performance in scenarios with simple
backgrounds and small ship sizes, while in certain situations, such as Seq1 and Seq4, the
entire ship may be detected partially, resulting in a fairly high Dp at low IOU levels, which
demonstrates that this method lacks the ability to suppress minor background clutter.
The MRMF falls short in detecting small ships and those with intermediate grayscale
values. Owing to the strict spatiotemporal feature constraints, the TFMSER exhibits the
strongest interference suppression ability, but in turn, this also constrains its detection
performances at the edge of the image (such as Seq6 and Seq7) and small ships in complex
scenarios. The proposed single-frame detection method showcases the best detection
performance in all scenarios. Despite this, the processing method based on dual types
of grayscale reconstruction and RTV model smoothing also contributes to the increase in
FAR. Nevertheless, as previously discussed, a spatiotemporal feature-based multi-frame
matching strategy can effectively mitigate fluctuating false alarms.

Table 4. Average Dp of the selected methods on the test dataset. The bold emphasis represents the
best results.

Sequence ITDBE MRMF TFMSER Proposed

Seq1 0.9500 0.9833 0.4643 0.9833
Seq2 1.0000 0.6833 1.0000 1.0000
Seq3 0.4333 0.8167 0.4821 1.0000
Seq4 0.9167 0.1500 0.1607 0.9500
Seq5 1.0000 1.0000 0.7857 1.0000
Seq6 0.9672 0.8524 0.6518 1.0000
Seq7 0.6000 0.4916 0.7500 1.0000

Table 5. Average FAR of the selected methods on the test dataset. The bold emphasis represents the
best results.

Sequence ITDBE MRMF TFMSER Proposed

Seq1 0.8933 0.0000 0.0000 0.0000
Seq2 0.2500 0.2264 0.0000 0.0000
Seq3 0.9948 0.7832 0.0357 0.6296
Seq4 0.9171 0.5500 0.0000 0.7635
Seq5 0.9518 0.4741 0.2787 0.0000
Seq6 0.9210 0.7969 0.0000 0.5000
Seq7 0.8278 0.6704 0.2075 0.3064



Sensors 2024, 24, 4906 20 of 26

Table 6. Average ME of the selected methods on the test dataset. The bold emphasis represents the
best results.

Sequence ITDBE MRMF TFMSER Proposed

Seq1 0.1687 0.1240 0.6114 0.1812
Seq2 0.3962 0.6087 0.0855 0.0910
Seq3 0.1199 0.3405 0.5944 0.1575
Seq4 0.1226 0.8994 0.8426 0.2176
Seq5 0.1277 0.0540 0.2446 0.0402
Seq6 0.4869 0.3684 0.4984 0.2466
Seq7 0.4730 0.5912 0.3252 0.1276

Table 7. Average RAE of the selected methods on the test dataset. The bold emphasis represents the
best results.

Sequence ITDBE MRMF TFMSER Proposed

Seq1 0.9335 0.1575 0.6114 0.1487
Seq2 0.2436 0.6690 0.0978 0.0977
Seq3 0.9939 0.3739 0.5560 0.4281
Seq4 0.9342 0.7863 0.8940 0.6206
Seq5 0.9496 0.2454 0.3726 0.2011
Seq6 0.8402 0.4964 0.3502 0.3056
Seq7 0.9342 0.7863 0.9207 0.5939
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Figure 11. The ROC curves of 7 sequences, with IOUs ranging from 0.1 to 1. (a1–g1) and (a2–g2) are 
the curves of Dp and FAR for selected methods in 7 sequences, respectively. The green triangle, blue Figure 11. The ROC curves of 7 sequences, with IOUs ranging from 0.1 to 1. (a1–g1) and (a2–g2) are

the curves of Dp and FAR for selected methods in 7 sequences, respectively. The green triangle, blue
triangle, yellow “x”, and red dots in the figures denote the results of ITDBE, MRMF, TFMSER, and
the proposed single-frame detection method, respectively.
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4. Conclusions

In this paper, we introduce a novel infrared image smoothing technique composed of
GMR and RTV. Additionally, a detection method considering the grayscale uniformity of
ships and integrating shape and spatiotemporal features is established for detecting bright
and dark ships in complex maritime scenarios. Initially, the input infrared images undergo
OGMR(CGMR) to preserve dark (bright) blobs with the opposite suppressed, followed
by smoothing the image with the RTV to reduce clutter and enhance the contrast of the
ship. Subsequently, Maximally Stable Extremal Regions (MSERs) are extracted from the
smoothed image as candidate targets, and the results from the bright and dark channels
are merged. Shape features are then utilized to eliminate clutter interference, yielding
single-frame detection results. Finally, utilizing the spatiotemporal stability of ships and the
fluctuation of clutter, true targets are identified through a multi-frame matching strategy.
Experimental results demonstrate that the proposed method outperforms ITDBE, MRMF,
and TFMSER in seven image sequences, achieving accurate and effective detection of
bright and dark polarity ship targets. Our method avoids the use of adaptive threshold
segmentation, which may struggle in complex maritime scenes. Instead, the RTV method
is introduced into the preprocessing process of infrared images to enhance the suppression
effect of fish scale plates, improve the detection effect of ships, and combine underutilized
features such as gray uniformity and spatiotemporal stability, hoping to provide new ideas
for infrared ship detection tasks.

Despite the excellent detection results of the proposed method, there are still some
shortcomings. Primarily, the proposed method is aimed at ships with distinct polarities—
bright and dark—and may exhibit unsatisfactory preformation when encountering ships
with an uneven grayscale distribution, potentially leading to incomplete or missed detec-
tions. Future amendments could incorporate methods like watershed segmentation [56]
and region growth [57] to refine the detection of unevenly distributed ships. Addition-
ally, the proposed method avoids the use of adaptive threshold segmentation due to its
limited adaptability in complex scenarios. A simple and effective evaluation mechanism
for describing the scenarios and adjusting the parameters of the methods still remains
necessary. For example, an evaluation method based on the statistical results of the image
blocks in [18] could adaptively guide mean drift filters. Therefore, we will also focus on
the evaluation mechanism of the scenario as a key direction for future studies. Lastly,
with the rapid advancements in deep learning, there is an aspiration to integrate deep
learning-based methods into infrared ship target detection tasks. This may involve using
deep learning to refine and summarize the shape features of targets, potentially replacing
traditional manual designed features to achieve more effective and robust ship detection.
Furthermore, leveraging deep learning methods to explore image features at a deeper
and more abstract level enables the extraction of richer semantic information, which can
facilitate distinguishing different components within complex maritime scenarios (such as
separating sea surfaces, islands, and the sky) and constructing image models and field data
that can accurately describe such scenarios. These insights may provide novel ideas for
achieving more effective and robust detection.
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