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Abstract: In order to shorten detection times and improve average precision in embedded devices,
a lightweight and high-accuracy model is proposed to detect passion fruit in complex environments
(e.g., with backlighting, occlusion, overlap, sun, cloud, or rain). First, replacing the backbone
network of YOLOv5 with a lightweight GhostNet model reduces the number of parameters and
computational complexity while improving the detection speed. Second, a new feature branch is
added to the backbone network and the feature fusion layer in the neck network is reconstructed to
effectively combine the lower- and higher-level features, which improves the accuracy of the model
while maintaining its lightweight nature. Finally, a knowledge distillation method is used to transfer
knowledge from the more capable teacher model to the less capable student model, significantly
improving the detection accuracy. The improved model is denoted as G-YOLO-NK. The average
accuracy of the G-YOLO-NK network is 96.00%, which is 1.00% higher than that of the original
YOLOv5s model. Furthermore, the model size is 7.14 MB, half that of the original model, and its
real-time detection frame rate is 11.25 FPS when implemented on the Jetson Nano. The proposed
model is found to outperform state-of-the-art models in terms of average precision and detection
performance. The present work provides an effective model for real-time detection of passion fruit in
complex orchard scenes, offering valuable technical support for the development of orchard picking
robots and greatly improving the intelligence level of orchards.

Keywords: passion fruit detection; lightweight; deep learning; knowledge distillation; embedded
devices

1. Introduction

Passion fruit and its byproducts are highly nutritious and have significant commercial
value that can be exploited [1]. Passion fruit cultivation is mainly distributed in regions such
as Guangdong, Yunnan, and Fujian in China, among others. The planting area is expanding,
and the number of varieties is increasing. At present, passion fruit picking is still mainly
carried out by hand, which undoubtedly requires a great deal of labor. The development
of agricultural robotic picking is of great significance in terms of liberating labor and
leading the fruit industry towards a precision model [2]. In recent years, the use of image
technology to detect fruits has garnered research interest and emerged as a prominent topic
determining the accuracy and integrity of agricultural robotic picking efforts.

Traditional machine learning approaches are based primarily on manually designed
combinations of features and classifiers [3]. For example, the basic texture, color, and shape
features of fruits have been studied. Tu et al. [4] established an RGB color space model
to detect the maturity of passion fruit. Li et al. [5] used a region classifier to classify ripe
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and unripe tomatoes and used the Hough transform circle detection method to achieve
detection of unripe tomatoes; however, this takes a long time and does not have high
detection accuracy. Yang et al. [6] attempted to use various machine learning methods to
classify apricots based on their shape features. The above image recognition methods suffer
from poor robustness and difficulty in handling large volumes of data. Object detection
technology mainly involves identifying and classifying the positions to be detected in
images or videos. There are several algorithms for target detection, which can be generally
classified into those based on two-stage detection, such as Faster R-CNN [7], and those
based on one-stage detection, such as SSD [8] and YOLO [9]. Notably, one-stage detection
algorithms have higher detection speed, which is beneficial for mobile deployment.

The YOLO algorithm, with its simple structure and short inference time, is one of
the best choices for detection models [10]. Lawal et al. [11] combined DenseNet with the
YOLOv3 network and used the Mish activation function to detect tomatoes. Roy et al. [12]
added DenseNet and SPP blocks, and improved PANet to YOLOv4 to enhance the net-
work’s detection capability. Lin et al. [13] improved the YOLOv4 network by incorporating
attention mechanisms, with the goal of eliminating noise and enhancing the feature extrac-
tion of small targets. In addition, the reliability and accuracy of the model were enhanced
by using the point–line distance loss function [14] and optimizing the upsampling al-
gorithm [15] to improve the YOLOv5 model. Although the above study improved the
detection accuracy of the model, it increased the number of parameters and detection
time. Researchers have conducted various studies seeking to compress and accelerate
models in terms of various aspects [16], including lightweight network designs, pruning,
and knowledge distillation. Lightweight network design methods are used to design small
models and quickly recognize networks by adjusting their internal structure, with exam-
ples including MobileNet [17], GhostNet [18], ShuffleNet [19], and more. The purpose of
pruning is the same as lightweight network design, involving the removal of redundant
parameters from the network through techniques such as channel pruning [20], kernel
pruning [21,22], and weight pruning [23]. The knowledge distillation method proposes to
transfer information from one model to another, which efficiently extracts features and can
substantially improve detection accuracy [24,25].

Deploying deep learning models for agricultural detection on mobile devices is more
meaningful for practical applications [26]. Researchers have effectively improved different
models to improve detection accuracy and recognition speed. Xu et al. [27] introduced
GhostNet to replace the YOLOv4 backbone network and an effective channel attention
mechanism in the neck to detect fruit. The size of the improved model was 43.5 MB, and the
detection time for a single image was 48.2 ms. Jiang et al. [28] proposed Generalized-FPN
(GFPN), with a cross-scale connection structure integrating the features of the previous
and current layers. Subsequently, Xu et al. [29] improved GFPN and applied it to the
YOLO network, increasing its accuracy by 1.4%. Guo et al. [30] introduced a knowledge
distillation strategy using the YOLOv5s model and achieved an accuracy of 94.67% on
a self-constructed dataset, which was 4.83% higher than the original model. Yang et al. [31]
constructed a lightweight model based on the backbone replacement, sparse training,
and knowledge distillation techniques, which reduced the number of parameters and
model size; however, the AP also decreased by 2.7%. Although the above methods have
made progress in reducing model weight and enhancing accuracy compared to the original
models, the balance between accuracy and weight has not yet been fully realized. Therefore,
it is important to study detection algorithms with high generalization ability for use in
embedded devices.

For this study, we constructed a passion fruit dataset taken in a complex environment
and aimed to address the issues of parameter redundancy and poor real-time model per-
formance on embedded devices. This study presents the G-YOLO-NK model, which is
a lightweight and high-precision model based on an improved YOLOv5. The first con-
tribution of this study is that we used a lightweight GhostNet to replace the YOLOv5s
backbone in order reduce the number of parameters and computational complexity of



Sensors 2024, 24, 4942 3 of 18

the network compared to other methods that use a lightweight network as the backbone
network. Second, we reconstructed the neck of the network by combining the new branches
of the feature extraction layer with the feature fusion layer. Finally, we used the knowl-
edge distillation method to enable student models to learn useful knowledge from teacher
models, verifying the effectiveness of using the distillation method with a one-stage de-
tector. The experimental results show that the improved algorithm reduces the number of
model parameters while improving the detection speed, and has better real-time detection
performance in complex environments on embedded devices.

The remainder of this article is organized as follows. In Section 2, the materials and
methods related to preprocessing image datasets and detection algorithms are presented;
Section 3 describes the training methods and evaluation metrics; Section 4 provides the
results of the study and comparison experiments; and Section 5 presents the conclusions
and outlook for future research.

2. Materials and Methods
2.1. Image Acquisition and Preprocessing

In order to enhance the single passion fruit dataset, data collection was conducted at
the Junzhiyu Passion Fruit Base in Minhou County, Fuzhou City, Fujian Province. The image
acquisition device was a Nikon digital camera, the distance of the camera from the passion
fruit was 80–100 cm during acquisition, and the image size was 1920 × 1080 pixels, with the
images saved in JPEG format. The weather at the time of data collection included sunny,
rain, and cloudy conditions. Images of passion fruit were captured under different lighting
conditions and compositions in order to enhance the diversity of the dataset. This included
toplight, backlight, leaf shading, and fruit overlap scenarios.

There were 3269 images in total, including 837 unshaded fruits, 1124 shaded by leaves,
and 1308 overlapping fruit, of which 1732 were normally toplight and 1537 were backlight.
Examples of the collected images are shown in Figure 1.

Figure 1. Pictures of passion fruit in complex environments.

Enhancing images can emphasize the overall or local features of passion fruit images,
enhance the differences between different object features, and suppress the extraction of
irrelevant features by deep learning networks [32]. Expanding the image training set is
advantageous in improving the learning capacity of deep neural networks and reducing
overfitting caused by insufficient sample diversity [33]. As such, this approach has the
potential to greatly enhance the robustness and generalization capabilities of the trained
model. Therefore, we expanded the dataset through the use of image enhancement tech-
niques such as rotating the original data, adding Gaussian noise, and contrast adjustment.
Examples of the enhanced images are shown in Figure 2. Rotating the original image
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by 90 degrees, adding Gaussian noise, and adjusting the contrast were carried out to
increase the recognition ability of the model, as shown in Figure 2b–d. After the afore-
mentioned offline data augmentation process, 5140 images of passion fruit were finally
obtained. The above images were manually marked and bounding boxes were drawn using
LabelImg software, version 3.4.1, which eventually generated xml format files. The com-
pleted dataset was randomly divided into training and test sets [34] using an 8:2 ratio,
resulting in 4112 images allocated for training and 1028 images for testing.

Figure 2. Data augmentation.

2.2. YOLOv5 Algorithm

The YOLOv5 target detection algorithm was released by Ultralytics in 2020. It has high
accuracy and fast inference ability, making it one of the best-performing target detection
models available at present [35]. The YOLOv5 model can be separated into four parts:
Input, Backbone, Neck, and Detector. The input uses Mosaic data enhancement to randomly
scale, cut, and stitch the passion fruit images into the network, which not only enriches
the dataset but also enhances the robustness of the network model. The backbone network
adds Focus, C3, and SPP structures to the YOLOv3 network. The main role of the backbone
network is to extract the features of the image and enhance the learning ability of the
convolutional neural network. The path aggregation network (PANet) structure is applied
in the neck network, which effectively extracts comprehensive location information from
top to bottom while simultaneously capturing semantic features from bottom to top. This
integration enhances the localization of targets by leveraging both spatial and semantic
information. The detection network produces the final output by combining the probability
class of the target, the confidence score, and the location information of the target box.
The structure of the YOLOv5 algorithm is shown in Figure 3.

Researchers have developed four different YOLOv5 models based on varying the
depth and width of the network, demonstrating the exceptional flexibility of this algorithm.
This indicates that the algorithm is highly adaptable and can be customized to suit different
requirements. In this study, the detection performance of the four models was tested on the
constructed passion fruit dataset. Table 1 shows the test results. In order to save memory on
embedded devices, the YOLOv5s model was chosen as the baseline in this study. The over-
all loss of YOLOv5s encompasses the classification, localization, and confidence losses.
The cross-entropy loss function was employed for the classification and confidence losses,
simplifying the computational complexity, while the CIoU Loss was used for localization
loss, which helps to ensure that the model can accurately locate the target.

2.3. Improvement of the YOLOv5s Model

With the aim of reducing the model’s size and computational complexity while im-
proving its detection accuracy, we propose various improvements to the YOLOv5s model.
The structure of the improved YOLOv5s algorithm is shown in Figure 4. As evident from
the figure, substituting the backbone network of YOLOv5 with a streamlined GhostNet
model along with the introduction of a fresh feature branch within the backbone and the
subsequent reconfiguration of the feature fusion layer in the neck network yielded remark-
able results. These enhancements not only elevate the model’s accuracy but also amplify its
detection speed, presenting a superior balance between performance and efficiency.
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Figure 3. Architectureof the Yolov5 algorithm.

Table 1. Performance comparison of different YOLOv5 models.

Model P (%) R (%) AP (%) Size (MB)

YOLOv5s 94.90 90.60 95.40 14.40
YOLOv5m 94.80 90.90 95.70 40.10
YOLOv5l 94.80 91.20 96.00 88.40
YOLOv5x 94.90 92.20 96.10 164.00

Figure 4. Structure of the G-YOLO-N algorithm.

2.3.1. Lightweight Improvements

Due to the limited storage space and computing resources of embedded devices,
deploying deep learning models can be quite challenging [36], requiring further model
compression [37]. GhostNet has been shown to outperform MobileNet and ShuffleNet
in terms of providing computational performance with a compact network design [38].
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A model with outstanding performance has sufficient complexity in the feature layer
for understanding the input information, which is an important factor in the success of
a model [39]. In lightweight network design, it is not feasible to simply remove useful
redundant features; therefore, GhostNet was specifically designed to enable fast inference
on mobile devices while maintaining important features. The Ghost module in GhostNet is
the key structure for generating feature layers, which facilitates the extraction of effective
feature layers. The Ghost module, shown in Figure 5, uses a series of inexpensive linear
operations to generate new feature layers, which may be 1 × 1 or 3 × 3 convolutions.

Figure 5. Structure diagram of the Ghost module.

Suppose that the input channel is denoted by c, the height and width of the feature
map by h and w, respectively, the height and width of the output feature map by h′

and w′, respectively, the number of convolution kernels by n, the size of the convolution
kernel by k, the size of the linear transform convolution kernel by d, and the number of
transforms by s; then, the parameter compression using Ghost convolution instead of
conventional convolution is shown in Equation (1). The acceleration ratio is derived as
shown in Equation (2).

rc =
n · c · k · k

n
s · c · k + (s − 1) · n

s · d · d
≈ s · c

s + c − 1
≈ s (1)

rc =
n × h′ × w′ × c × k × k

n
s × h′ × w′ × c × k × k + (s − 1)× h′ × w′ × d × d

≈ s × c
s + c − 1

≈ s (2)

It can be observed from the equations that the benefits of computational acceleration
and parameter compression are influenced by the number of transformations. In the Ghost
module, the total number of parameters and the computational complexity are reduced
compared to a normal convolutional neural network without changing the size of the
output feature layer. The overall structure of GhostNet as the backbone network is detailed
in Table 2.

2.3.2. Reconstructing the Neck Network

In deep learning networks, while the robustness and generalization ability of an im-
proved model depends on modifying the backbone network, modifying the neck network
can have a similar effect. In order to identify objects at different scales, Adelson et al. [40]
first proposed using the image pyramid to build a feature pyramid, which has since been ap-
plied to image analysis, data compression, and image processing. However, this approach
calculates features at each image scale slowly and inaccurately. To address this problem,
the top-down connected Feature Pyramid Network (FPN) [41] and Path Aggregation Net-
work (PANet) [42] have been proposed to boost the information flow. Jiang et al. [28]
proposed Generalized-FPN for efficient object detection, which improves FPN with a novel
queen-fusion approach. In order to achieve the goal of multiscale information exchange,
in this study we propose an adaptive feature pyramid network (AFPN) based on the
Generalized-FPN idea in order to effectively detect passion fruit targets.



Sensors 2024, 24, 4942 7 of 18

Table 2. Overall structure of GhostNet as the backbone network.

Layer Operator Out Stride Layer Operator Out Stride

1 Conv2d 16 2 10 GhostNet 80 1
2 GhostNet 16 1 11 GhostNet 112 2
3 GhostNet 24 2 12 GhostNet 112 1
4 GhostNet 24 1 13 GhostNet 160 2
5 GhostNet 40 1 14 GhostNet 160 1
6 GhostNet 40 1 15 GhostNet 320 1
7 GhostNet 64 2 16 GhostNet 320 1
8 GhostNet 64 1 17 GhostNet 640 1
9 GhostNet 80 2

After replacing the YOLOv5 backbone with GhostNet, the information in the feature
extraction layer is reduced, resulting in a loss of information in the neck feature fusion
layer and a consequent decrease in the detection performance of the model. At the
same time, it can be seen from the images in the dataset that most passion fruits are
medium and large targets; therefore, we first connect the 80 × 80 × 64, 40 × 40 × 80, and
40 × 40 × 112 feature layers of the backbone network to the fusion layer of the neck,
enhancing the feature extraction ability for medium targets and compensating for the lost
information in the lightweight network. Second, we add a branch in the 40 × 40 × 256
feature layer of the neck and convert it to the scale of 20 × 20 × 128 through convolutional
operations to connect with the detection layer, enhancing the network’s ability to detect
large targets. Finally, we used an image for detection to verify the detection capability of
the improved network and the effectiveness of the improved method. Figure 6 shows
feature images selected from the 27th layer of the G-YOLOv5 and G-YOLOv5-N models,
from which it can be seen that G-YOLOv5 lacks semantic and positional information,
while the improved G-YOLOv5-N compensates for this drawback. With the above
modification scheme, the neck network possesses strong semantic features at a high level
and localization features at a low level. The structure of the adaptive feature pyramid
network (AFPN) is shown in Figure 7.

Figure 6. Improved neck network: before and after.
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Figure 7. Improved neck network structure.

2.3.3. Knowledge Distillation Enhancement

Knowledge distillation (KD) is an effective method for further improving a model’s
detection accuracy [43]. Distillation is not yet widely used in the YOLO series of network
improvements, especially for small single-target models. We conducted a special study for
G-YOLOv5-N and used the distillation technique to achieve a final further improvement
to the detection effect of the G-YOLOv5-N model. First, the teacher network model was
chosen rationally. We chose the YOLOv5 series of models in order to ensure that the student
and teacher models use the same scale in the output layer. Next, the YOLOv5x model was
selected as the teacher model based on its high accuracy during training on the passion
fruit dataset.

In general, the implementation of distillation involves parameter initialization, training
a teacher network, then using the rich knowledge learned by the teacher network to train
a student network. A flowchart detailing the use of the knowledge distillation algorithm is
shown in Figure 8.

Figure 8. Flowchart of the knowledge distillation algorithm.

Teacher networks can be used for predictive learning in student networks. To enhance
the information exchange between them, the predictions of the teacher network are used
as soft labels. The teacher network then trains the student network using these soft
labels, allowing the student network to learn from the teacher’s knowledge. Additionally,
the student network helps to prevent the teacher network from making mistakes through
learning from hard labels. By incorporating soft labels, the student network can acquire
more nuanced and hidden knowledge. This hidden knowledge is usually expressed as
a categorical output yi

′, while yi represents the input knowledge or information, as shown
in Equation (3):

yi
′ =

exp yi

∑ exp yi
. (3)
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From Equation (3), it can be determined that the model does not facilitate learning of the
dark knowledge in the passion fruit images. Thus, a warming process is needed, as detailed
in Equation (4), where T represents the temperature coefficient:

yi
′ =

exp(yi/T)
∑ exp(yi/T)

. (4)

The cumulative loss function utilized in the knowledge distillation algorithm com-
prises the original network model’s loss and the distillation loss. The distillation loss is
composed of the classification, bounding box, and localization losses. To promote the
model’s learning of passion fruit targets, the background region is weakened by introduc-
ing a weighting factor K. The distillation loss is detailed in Equation (5), while the total loss
equation is shown in Equation (6).

Ldloss = K(Lobj + Lcl + Lbb) (5)

Lloss = αLdloss + (1 − α)Lyolo (6)

3. Model Training and Evaluation
3.1. Experimental Environment

In order to comprehensively evaluate the effectiveness of the enhanced algorithms
proposed in this study under different experimental scenarios, two distinct platforms were
utilized: a PC development environment, and an embedded development environment.
This approach allowed for a comprehensive assessment of the performance of the proposed
algorithm across diverse computing environments. The Windows 10 × 64 operating system
was selected for the PC development platform, with an Intel® (Santa Clara, CA, USA)
Core™ i7-10700F CPU 2.90 GHz, NVidia GeForce RTX 3070 8 GB GPU, and 32.0 GB RAM
of running memory.

The embedded experimental platform used the NVidia Jetson Nano (NVIDIA: Santa
Clara, CA, USA) device for model inference and testing. The experimental environment was
Ubuntu 18.04 with Jetpack 4.5, CUDA 10.2, and cuDNN 8.0. The programming language
was Python 3.6, and the deep learning framework included Pytorch 1.8.1 and Torchvision
0.9.1. Real-time detection using the Jetson Nano is shown in Figure 9.

Figure 9. The real-time detection environment using Jetson Nano.

In the PC platform, the training-specific parameters were as follows: the input image
was 640 × 640 pixels, the batch size was 8, the initial learning rate was set to 0.001, and the
optimizer was set to Adam. The number of training iterations was set to 70 to obtain a better
model, and we applied loss and AP value change curves to the test set after 70 training
sessions, as shown in Figure 10. During the first 15 cycles of network training, the loss
value of the network decreased rapidly and the AP value increased rapidly, after which
both entered stable convergence phases. After 60 epochs, the loss value decreased gently,



Sensors 2024, 24, 4942 10 of 18

the AP value increased gently, and the loss function curve and AP value curve converged,
indicating that the model training effect was successful.

Figure 10. AP and loss curves.

3.2. Evaluation Metrics

To assess the performance of the improved YOLOv5s model based on its detection
results, we employed several evaluation metrics, including precision (P), recall (R), average
precision (AP), number of parameters, floating point operations per second (FLOPs), model
size, and frames per second (FPS). Taking passion fruit samples as an example, precision
refers to the proportion of correctly predicted passion fruit samples to all predicted passion
fruit samples by the model classifier, while recall represents the proportion of correctly
predicted passion fruit samples to the actual positive passion fruit samples. These are
shown in Equations (7) and (8), respectively. However, Precision and Recall do not allow
for direct assessment of detection accuracy. The performance of the detection network
is assessed using the average precision (AP), which represents the average accuracy in
detection, as defined in Equation (9). In these equations, TP represents actual passion
fruits predicted to be passion fruits, FP represents instances that are not actually passion
fruits predicted to be passion fruits, and FN represents actual passion fruits predicted
as not passion fruits. The number of floating point operations per second reflects the
time complexity of the model, measuring the computation involved in operations such as
convolution and pooling. On the other hand, the number of parameters describes the size
of the model and its spatial complexity in the algorithm. Finally, the frames per second is
used to measure the real-time performance of the model on the hardware platform.

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

AP =
∫ 1

0
P(R)dR (9)

4. Experimental Results and Analysis
4.1. Impact of Different Backbone Networks on the Algorithm

In order to select a network with better lightweight performance as the backbone
network for the YOLOv5s model, the first experiment compared the performance impact
of the lightweight network layers and configurations on the backbone network. For this
purpose, three types of backbone networks were selected: MobileNetv3, ShuffleNetv3,
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and GhostNet. To avoid reasonable bias, the FPN network and detection head were kept
constant. The experiment was conducted for a state-of-the-art comparison on the embedded
platform Jetson Nano, and the results are presented in Table 3.

Table 3. Comparison of different backbone networks.

Model P (%) R (%) AP (%) GFLOPs Param (M) Size (MB)

YOLOv5s 94.90 90.60 95.40 15.80 7.10 14.40
M-YOLOv5 92.50 86.60 92.50 6.30 3.54 7.08
S-YOLOv5 92.50 87.30 92.90 7.40 3.55 7.12
G-YOLOv5 92.90 87.40 93.10 6.50 3.20 7.10

Compared to the original YOLOv5s model, the improved model (G-YOLOv5) has an
average precision (AP) reduction of 2.30%. The reason for this is that the reduced number
of model parameters and convolutional layers of the G-YOLOv5 model led to a reduction
in the network’s ability to extract features compared to the M-YOLOv5 and S-YOLOv5
models, with respective AP improvements of 0.6% and 0.2%. Meanwhile, the network
model volume was 7.10 MB, a reduction by 50.69% compared to the original network.
The FLOPs and number of parameters of the improved model were significantly reduced
compared to the YOLOv5s model, with the FLOPs reduced by 58.86% and the parameters
by 54.93%. Interestingly, there was a discrepancy between the results of the three networks
after replacing the backbone and the results for the original network, which indicates that
the effectiveness of the network is influenced by its total number of parameters and the
particular network structure. Ultimately, reduced model weight was achieved through
replacement of the backbone network.

4.2. Ablation Experiments

The ablation experiment focused on analyzing the value of each of the components
in the improved method, and was conducted on the self-made dataset constructed in this
study. The experimental results for the improved model are shown in Table 4.

Table 4. Results of the ablation experiment.

Baseline Light Neck KD P (%) R (%) AP (%) Size (MB)

YOLOv5s

94.90 90.60 95.40 14.40
✓ 92.90 87.40 93.10 7.10

✓ 95.10 90.50 95.50 14.46
✓ 93.70 92.90 96.10 14.40

✓ ✓ 93.70 87.40 93.60 7.14
✓ ✓ 93.50 90.70 95.80 7.10
✓ ✓ ✓ 93.00 92.10 96.40 7.14

By replacing the lightweight model, reconstructing the neck, and introducing knowl-
edge distillation enhancement in the YOLOv5s baseline network, the AP of the improved
network was able to meet the detection requirements. At the same time, the precision,
recall, and AP values of the model all declined. To compensate for the loss of accuracy
caused by replacing the backbone network, we reconstructed the neck network to pass
useful information from the redundant feature layer to the neck network for fusion,
where the size of the passion fruit targets in the dataset was also taken into account.
This approach fuses the low-level semantic information of passion fruit targets with
the high-level location information to obtain more useful feature layers, leading to an
increase in AP from 93.10% to 93.60%, an improvement of about 0.5%. Finally, using
the knowledge distillation learning approach, in which the teacher model passes rich
information about the passion fruit features on to the student model, led to a substantial
improvement in the average accuracy of the model. Compared to the original YOLOv5s
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model, the improved model had a mean average precision improvement of 1.00% and
a size reduction of 50.42%.

4.3. Effect of Different Temperatures on the Algorithm

In our distillation experiments, we found that the temperature coefficient has
a significant effect on the distillation effect. Therefore, the effect of different tempera-
ture coefficients on knowledge distillation results was explored on the basis of the student
model (G-YOLOv5-N) and the teacher model (YOLOv5x). The specific approach that we
employed was to select different temperature coefficients sequentially during the distilla-
tion experiments while maintaining a weighting factor of 0.5 in order to achieve a balance
between the knowledge distillation loss and the losses of the original network. The knowl-
edge distillation results at different temperatures are shown in Figure 11.

Figure 11. Indicators at different temperatures.

When the temperature coefficient was 20, the distilled model G-YOLO-NK had high
recall and average precision results of 92.10% and 96.40%, respectively. With different
distillation temperature coefficients, the accuracy and recall curves fluctuated up and
down, indicating that different temperature coefficients cause the model to focus on
different characteristics of the passion fruit targets. The average precision tended to be
higher, indicating that the distilled model performs well at identifying passion fruits in
complex environments.

4.4. Comparison with State-of-the-Art Models

To compare the performance of the improved model with current mainstream
target detection models, we tested SSD, Faster R-CNN, RetinaNet, YOLOv5s, YOLOv5x,
YOLOv6, YOLOv7-tiny, and YOLOv8s on the Jetson Nano. The comparison involved
indicators such as floating point operations per second (FLOPs), number of parameters,
frames per second (FPS), precision, recall, average precision (AP), and model size, all
on the same self-made dataset. Additionally, we compared the method proposed in this
article with recent research focused on passion fruit detection. It is important to note
that focusing solely on a single evaluation indicator on different datasets and platforms
is unfair; thus, we discuss similar research methods with the same research targets.
The relevant performance indicators are presented in Table 5, which is incomplete,
as some data were not provided.

Due to the instability of the frame rate during real-time detection with the Jetson Nano
platform, the frame rate in this experiment was the average of 100 detected frame rates.
The improved AP for the G-YOLO-NK model was 96.40%, which was higher by 15.41%,
6.50%, 1.51%, 1.00%, 0.30%, 7.13%, 6.20%, and 1.00%, respectively, compared to the SSD,
Faster R-CNN, RetinaNet, YOLOv5s, YOLOv5x, YOLOv6s, YOLOv7-tiny, and YOLOv8s
models. Obviously, the G-YOLO-NK model had better Average Precision (AP), indicating
that the model is capable of detecting passion fruits in complex environments. In terms
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of real-time detection speed, the G-YOLO-NK model had better real-time detection rate
on both the PC and Jetson Nano, with 125.00 f/s and 11.23 f/s, respectively. Compared to
the various YOLOv5, YOLOv6, YOLOv7-tiny, and YOLOv8s models, it achieved average
frame rate improvements ranging from 3.30 to 10.95 f/s on the Jetson Nano. The size,
FLOPs, and number of parameters of improved model were 7.14 MB, 6.60 G, and 3.51 M,
respectively, representing reductions of 50.42%, 59.51%, and 50.56% with respect to the
YOLOv5s model, further proving the effectiveness and superiority of the improved network.
In summary, the G-YOLO-NK model outperformed the extant models for detecting passion
fruit in all metrics and presented good overall performance, making it the most promising
model for high-performance real-time passion fruit detection.

Table 5. Comparison with different models in recent works.

Model Input GFLOPs Param FPS PC FPS P (%) R (%) AP (%) Size Literature Number of
Images

SSD 512 × 512 61.20 100.10 0.79 5.60 85.48 80.26 80.99 90.60 \ 5140
Faster R-CNN 600 × 600 273.40 118.20 0.28 2.96 90.54 87.80 89.90 521.00 \ 5140

RetinaNet 512 × 512 145.51 36.39 0.58 4.94 75.49 96.00 94.89 138.00 \ 5140
YOLOv5s 640 × 640 16.30 7.10 6.19 78.74 94.90 90.60 95.40 14.40 \ 5140
YOLOv5x 640 × 640 203.80 86.17 0.63 50.00 94.90 92.20 96.10 173.21 \ 5140
YOLOv6s 640 × 640 45.17 18.50 3.10 76.00 75.40 81.20 89.27 38.70 \ 5140

YOLOv7-tiny 640 × 640 13.00 6.01 7.93 90.14 92.30 89.90 90.20 11.60 \ 5140
YOLOv8s 640 × 640 28.40 11.13 3.98 83.33 95.70 92.30 95.40 21.40 \ 5140

G-YOLO-NK 640 × 640 6.60 3.51 11.23 125.00 93.00 92.10 96.40 7.14 \ 5140
YOLOv3 640 × 640 \ \ \ 36.00 \ \ 86.70 \ Wu et al. 2020 [44] 1000
YOLOv3 640 × 640 \ \ \ 38.00 97.60 96.50 97.50 \ Tang et al.2020 [45] 4000

Faster R-CNN 600 × 600 \ \ \ 5.71 96.20 93.10 \ \ Tu et al. 2020 [46] 8651
Faster R-CNN 600 × 600 \ \ \ 5.62 90.79 90.47 \ \ Tu et al. 2021 [47] 2275

YOLOv5 640 × 640 6.60 \ 10.92 124.70 95.30 88.10 88.30 6.41 Luo et al. 2022 [48] 2000
YOLOv7 640 × 640 \ \ \ 58.20 91.20 \ 90.45 29.20 Ou et al. 2023 [49] 3962

Comparing the existing methods presented in Table 5, Wu et al. [44] and Tang et al. [45]
improved the detection accuracy of YOLOv3 by integrating DenseNet and reducing
multiscale prediction. Tu et al. [46] enhanced the network’s extraction ability by incor-
porating an FPN into Faster R-CNN. Furthermore, Tu et al. [47] fused RGB and depth
color spaces in an improved Faster R-CNN to improve the model’s recognition rate.
However, these studies did not address the need for light model weight and compre-
hensive deployment capability on mobile devices. Luo et al. [48] replaced the backbone
network with MobileNet and integrated an attention mechanism to make the YOLOv5s
network lighter; however, the average accuracy was low. Ou et al. [49] used ShuffleOne
as the backbone network of YOLOv7 to reduce the number of network parameters and
added a SimSPPF network at the neck to enhance the model’s fusion ability; however,
the approach required a significant amount of time. Comparing the results of the above
methods, G-YOLO-NK achieves higher AP and FPS than YOLOv3 proposed by Wu et al.
(2020) [44]. The improved model proposed by Tang et al. (2020) [45] had an average
accuracy 1.1% higher than that of G-YOLO-NK, but the detection speed of G-YOLO-NK
was more than three times that of YOLOv3. Overall, G-YOLO-NK is a smaller model than
the Faster R-CNN models proposed by Tu et al. (2020) [46] and Tu et al. (2020) [47]. Fur-
thermore, when comparing detection frame rates on the PC, G-YOLO-NK demonstrated
higher detection speeds than the other recent models.

To compare the generalization ability of the proposed model, we evaluated its per-
formance on the COCO128 and VOC2012 datasets. Both datasets were randomly divided
into training and testing sets using an 8:2 ratio. The results on the testing sets are shown
in Table 6. On the COCO128 dataset, G-YOLO-NK improved the precision by 0.2%, recall
by 0.9%, and average precision by 0.8% compared to YOLOv5. On the VOC2012 dataset,
it improved recall by 0.8% and average precision by 0.5%, compared to YOLOv5 while
reducing precision by 0.2%. This lower precision may be due to the lack of an accurate
learning rate setting; however, this does not affect the overall model evaluation. In sum-
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mary, the comparison between the two datasets demonstrates that G-YOLO-NK has high
generalization ability and strong robustness.

Table 6. Comparison of models on different datasets.

Model Input Dataset P (%) R (%) AP (%) Size (MB)

YOLOv5 640 × 640 COCO128 88.30 83.00 89.90 14.40
G-YOLO-NK 640 × 640 COCO128 88.50 83.90 90.70 7.14

YOLOv5 640 × 640 VOC2012 69.60 62.70 67.10 14.40
G-YOLO-NK 640 × 640 VOC2012 69.40 63.50 67.60 7.14

AI approaches require efficient computing power to process large amounts of data.
GPUs play a crucial role in this process due to their numerous cores, high-speed memory,
and parallel computing capabilities, which significantly alleviate computational bottlenecks
and make deep learning algorithms practical. GPU utilization serves as an indicator of
resource utilization on the GPU. Excessive GPU usage can lead to freezing and crashes
during real-time target detection on devices such as the Jetson Nano. Prolonged high GPU
usage can also impact the performance and lifespan of the system. Therefore, visualizing
GPU occupancy is essential. When running the YOLOv5s and G-YOLO-NK models on the
Jetson Nano for real-time passion fruit detection, we observed how GPU usage changed
over time to ensure optimal performance and longevity of the device. The visualization
results for the two models are shown in Figure 12.

As can be seen from Figure 12, the GPU occupancy rates of the two models running
on the Jetson Nano differ. Greater network complexityis indicated by a denser blue color
in the bar graph, indicating higher demand for GPU resources on the embedded device.
The G-YOLO-NK model requires the least computation for real-time detection on the Jetson
Nano, underscoring the importance of lightweight model design and improved efficiency.

Figure 12. Visualization of GPU utilization.

4.5. Comparison of Recognition Effect before and after Improvement

To verify the detection performance of the G-YOLO-NK model, passion fruit images
captured in complex environments, including dense, shaded, sunny, and rainy conditions,
were selected for comparison testing against the original model. A confidence threshold
of 0.7 and an IoU threshold of 0.5 were chosen. The detection results of the YOLOv5s and
G-YOLO-NK models on embedded devices are shown in Figure 13.

In the figure, the blue rectangular boxes are predicted target boxes and the red rect-
angular boxes are missed targets. Both types of models correctly detected the passion
fruit targets in backlit, overcast, and rainy weather scenes. The YOLOv5s model missed
passion fruit detections in both dense and shaded situations, while the G-YOLO-NK model
correctly plotted the predicted boxes. The YOLOv5s model missed two passion fruits in the
sunny image, while G-YOLO-NK missed one passion fruit, as the targets were too small.
In terms of confidence, G-YOLO-NK had a higher confidence level than the YOLOv5s
model, indicating the good detection effect of the improved model and the effectiveness
of the improved method. In summary, it can be concluded from the recognition results
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that the G-YOLO-NK model provides improved detection performance under complex
environmental conditions, showing good robustness and generalization ability.

Figure 13. Comparison of detection results between the YOLOv5s and G-YOLO-NK models.

Visualizing the feature layer illustrates the performance of model feature extraction
and the distribution of contributions to the predicted output, providing a more represen-
tative analysis. Using the shaded passion fruit image as an example, the overall feature
maps for the deep convolutional layers of YOLOv5s, YOLOv7 tiny, and YOLOv8s were
compared against that of the proposed model, with the results shown in Figure 14. It can
be seen that the feature maps of YOLOv5s, YOLOv7 tiny, and YOLOv8s each include six
highlighted areas, while that of G-YOLO-NK has eight highlighted areas. Each highlight
corresponds to a passion fruit in the original image. This indicates that the G-YOLO-NK
model has superior feature extraction ability and more accurate prediction ability.

Figure 14. Comparison of feature detection layers.
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5. Conclusions

In this study, a lightweight and high-precision target detection model based on
G-YOLO-NK is proposed for identification of passion fruits. The YOLOv5s network model
was optimized by replacing the backbone network, reconstructing the neck feature fusion
network, and introducing knowledge distillation, resulting in greatly improved detection
accuracy and speed in complex environments. The model’s size and number of parameters
were drastically reduced, which is conducive to deploying the detection model on con-
strained mobile terminals with limited computing power. The proposed model achieved
a frame rate of 11.23 FPS for passion fruit detection on the Jetson Nano, as well as a preci-
sion of 93.00%, recall of 92.1%, and average precision of 96.4%. Compared with the original
YOLOv5, the proposed network was found to have improved accuracy (by 1.0%) and
reduced model size (by 50.4%). The proposed model significantly outperformed state-of-
the-art models in terms of detection performance and accuracy in scenes characterized by
complex conditions. For this study, a passion fruit dataset was collected under different
location, lighting, and weather conditions and expanded through the use of several data
augmentation methods, resulting in improved robustness on the part of the model. It
should be noted that the G-YOLO-NK model has a number of limitations; for example,
missed detections can occur when leaves or fruits occlude more than 90% of the passion
fruit area. In the future, we will use segmentation technology and RGB-D fusion technology
to improve the missed detection rate. In addition, we plan to collect additional passion
fruit datasets that include varying ripening stages and different colors to enable multi-class
detection of passion fruits. Finally, the model proposed in this study could be applied
to estimate the yield of passion fruit and provide assistance for predicting other fruits in
the field.
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