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Abstract: Wireless sensing is a crucial technology for building smart cities, playing a vital role in
applications such as human monitoring, route planning, and traffic management. Analyzing the
data provided by wireless sensing enables the formulation of more scientific decisions. The wireless
sensing of dynamic events is a significant branch of wireless sensing. Sensing the specific times
and durations of dynamic events is a challenging problem due to the dynamic event information
is concealed within static environments. To effectively sense the relevant information of event
occurrence, we propose a wireless sensing method for dynamic events based on RSSI, named RSSI-
WSDE. RSSI-WSDE utilizes variable-length sliding windows and statistical methods to process
original RSSI time series, amplifying the differences between dynamic events and static environments.
Subsequently, z-score normalization is employed to enhance the comparability of the sensing effects
for different dynamic events. Furthermore, by setting the adaptive threshold, the occurrence of
dynamic event is sensed and the relevant information is marked on the original RSSI time series. In
this study, the sensing performance of RSSI-WSDE was tested in indoor corridors and outdoor urban
road environments. The wireless sensing of dynamic events, including walking, running, cycling, and
driving, was conducted. The experimental results demonstrate that RSSI-WSDE can accurately sense
the occurrence of dynamic events, marking the specific time and duration with millisecond-level
precision. Moreover, RSSI-WSDE exhibits robust performance in wireless sensing of dynamic events
in both indoor and outdoor environments.

Keywords: dynamic event sensing; time series analysis; received signal strength indication

1. Introduction

In the context of building smart cities [1], wireless sensing technology has attracted
significant attention in the research community due to its extensive integration in sensor
networks and monitoring systems. Furthermore, as a critical enabling technology of the
internet of things (IoT), wireless sensing technology [2] demonstrates strong capabilities in
independent sensing, computing, and communication. Based on IoT and cloud computing,
Dong et al. utilized microseismic monitoring, image recognition technology, artificial
intelligence training, and smart sensors to locate the autonomous driverless vehicles in
mining scenarios. This extends the research scope of autonomous driving technology in
the development of smart cities [3]. Moreover, by integrating sensor networks, wireless
sensing technology can accomplish a series of complex tasks, including data collection,
data processing, data fusion [4,5], distributed computing [6], and the collaborative work
among multiple nodes in the network. Therefore, the application of wireless sensing
technology in the construction of smart cities is becoming increasingly crucial, providing
new perspectives and solutions for urban management and services.

Event sensing, as one of the core applications of wireless sensing systems [7], is
used to capture and analyze events occurring in specific environments. This technology
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has been widely applied in various fields of production and daily life, such as human
body monitoring [8], smart agriculture [9], and intelligent transportation [10]. In the
field of human body monitoring, event sensing technology enables fall monitoring for
elderly people and patients [11], self-powered monitoring of human respiration [12], and
behavior detection of intrusions into buildings [13]. In smart agriculture, this technology
not only facilitates the positioning of farm machinery in the field [14], but also monitors
the growth of crops in the field [15], significantly promoting the intelligence of agricultural
production. Applications in smart transportation include the dynamic monitoring of
reckless driving [16] and the monitoring of traffic conditions [17], effectively reducing
accident rates and optimizing road traffic flow management. These diverse application
scenarios not only highlight the widespread applicability of event sensing in practical
setting, but also promote in-depth research into various types of event sensing tasks.
Therefore, researchers are dedicated to using low-cost, low-power, and lightweight sensors
to construct wireless sensing systems. Their goal is to efficiently sense specific events and
provide services to users.

The majority of wireless sensing devices come equipped with integrated RSSI circuits
and modules, obviating the necessity for additional devices. These reduce the hardware
cost and power consumption of the wireless sensing system. Hence, RSSI is widely used in
the field of wireless sensing [18,19]. When dynamic events affect the radio frequency signal
strength of wireless sensing devices, it leads to a more dispersed histogram distribution
of RSSI, which statistically manifests as a higher standard deviation [20]. Therefore, it
is necessary to consider the fluctuation in signal strength caused by non-event-triggered
interference data, which may lead to erroneous sensing results. Furthermore, using a time
window to process the RSSI time series is a critical method for event sensing [21]. It is
necessary to set the appropriate window length according to the different sensing tasks to
enhance efficiency and accuracy. In particular, when executing wireless sensing tasks, it
is imperative to fully consider the issue of data transmission delay. Ren et al. proposed
a time-balanced scheduling data collection scheme, which minimizes data transmission
delay issues through seamless data relay and joint scheduling methods [22].

It is particularly crucial to design a lightweight wireless sensing method that performs
reliably across various types of events in indoor and outdoor settings. Therefore, we
propose a wireless sensing method for dynamic events based on RSSI (RSSI-WSDE). This
method integrates variable-length sliding window and statistical methods to process the
RSSI time series. It effectively reduces the interference from the static environment on
dynamic event sensing. Subsequently, by setting adaptive thresholds, occurrences of
dynamic events are sensed wirelessly. Furthermore, the specific times and durations of
events are accurately marked. In indoor corridor environments, RSSI-WSDE concentrates
on the sensing issues within the human domain, primarily addressing the sensing tasks
for walking dynamic events. In outdoor road settings, while continuing to focus on
the human domain, RSSI-WSDE also integrates the perception of vehicular domains,
principally addressing sensing tasks associated with walking, running, cycling, and driving
dynamic events.

Applying RSSI-WSDE to hardware devices enables the establishment of the dynamic
event wireless sensing system. The system is intended to be applied in scenarios primarily
targeting late-night periods with low traffic flow, sensing the motion trajectories of target
objects. Its primary objective is to assist public security departments in accurately deter-
mining the movements of suspects in complex nighttime environments, where surveillance
video footage may be unclear or blind spots exist. Specifically, the system employs ZigBee
devices operating in the 2.4 GHz frequency band. ZigBee devices are characterized by their
low power, low cost, and high flexibility, enabling rapid self-organization of networks to
ensure stable and reliable data transmission. Moreover, due to their long communication
range and wide coverage, ZigBee devices are capable of performing RSSI time series data
collection tasks in both indoor and outdoor environments.

The main contributions of this study can be summarized as follows:
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(1) A wireless sensing system of dynamic event is developed, consisting of multiple
collection units, each equipped with a set of transmitter and receiver units. The
transmitter units are connected to the host computer via data transmission line to
display the RSSI waveform changes and sensing outcomes caused by dynamic events.

(2) An efficient wireless sensing algorithm of dynamic event is designed. It combines a
variable-length average sliding window and variance sliding window to obtain the
sliding average sequence and the sliding variance sequence. Subsequently, the vari-
ance amplification sequence is generated via amplification processing. Furthermore,
by employing the sliding window technique along with a long-term data processing
strategy, the algorithm calculates the z-score to obtain the sequence Z that reflects the
occurrence of dynamic events. Finally, by setting adaptive thresholds, occurrences of
dynamic events are sensed, and the information of event occurrence specific time and
duration is marked.

(3) An adaptive threshold method for RSSI-WSDE is proposed. This method effec-
tively distinguishes static environments from dynamic events in the complete RSSI
time series. Furthermore, it accurately captures the specific times and durations of
dynamic events.

(4) Dynamic event data collection experiments were conducted in indoor and outdoor
environments to verify the effectiveness and practicality of RSSI-WSDE. Indoor ex-
periments primarily focused on collecting RSSI data for walking, while outdoor
experiments included collection of RSSI data for walking, running, cycling, and driv-
ing. The experimental results demonstrate that the RSSI-WSDE proposed in this study
effectively senses the occurrence of dynamic events.

The remainder of this paper is organized as follows. Section 2 reviews and categorizes
research works on event sensing. Section 3 introduces the network architecture and research
method of RSSI-WSDE. Section 4 presents the description of the indoor and outdoor data
collection experiments and the analysis of the experimental results. Finally, the conclusion
is given in Section 5.

2. Related Works

In this section, we review and categorize the extensive existing research works on
RSSI-based event sensing.

Event sensing can be classified into static and dynamic categories based on the state of
the sensed object. Static event sensing primarily focuses on detecting the relative stationary
state of the sensed object to capture the static characteristics of the event. Li et al. proposed
a parking occupancy detection method based on the CC1101 wireless communication
chip [23]. This method measures the impact of vehicles on the received signal strength
indicator (RSSI) of parking spaces and sets appropriate thresholds, effectively detecting
the occupancy status of parking spaces. Additionally, Wounchoum et al. explored the
impact of the human body on RSSI at different positions in single line-of-sight and multiple
line-of-sight wireless links. This research provides a theoretical and practical basis for
device-free human sensing systems based on RSSI [24]. On the other hand, the dynamic
event refers to an event that involves displacement, movement, and changes within a
specific time and space, characterized by a real-time and continuous nature. Thus, dynamic
event sensing focuses on these moving characteristics, aiming to track and capture changes
in event states, thereby supporting subsequent data analysis, prediction, and processing
tasks. Based on the environment where the event occurs, dynamic event sensing can be
further divided into indoor and outdoor dynamic event sensing.

The current research on indoor dynamic event wireless sensing primarily focuses on
the sensing of human activity events. Mrazovac et al. proposed a smart residential energy
system based on sensing a human RSSI. This system detects human activities and enables in-
telligent control of power output and light switches [25]. Additionally, Booranawong et al.
developed a device-free human sensing and tracking system using RSSI. By filtering the
RSSI and employing adaptive thresholds and region selection functions, the actual area
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of human activity was accurately sensed, thus enhancing sensing accuracy [26]. However,
the threshold setting mechanism of this system has limitations when dealing with more
complex human activity patterns. Therefore, Booranawong et al. further proposed an
adaptive RSSI filtering method that automatically filters RSSI inputs, exhibiting strong
variation levels [27]. Furthermore, Lin et al. proposed a method to sense human activities
by analyzing the wireless irregularities caused by the human movement across the signal
transmission path. This approach maps the RSSI fluctuation to a normal distribution and
uses the probability that the fluctuation falling within the [−1, 1] range as the threshold to
determine whether someone is moving along the signal transmission path [28]. Addition-
ally, Lin et al. proposed a method for sensor network formation capable of sensing RSSI
fluctuation patterns related to specific objects. By utilizing the RSSI between transceivers in
the network, the number of people passing and crossing the signal transmission path can
be sensed and counted [29].

The current research in outdoor dynamic event wireless sensing primarily focuses
on the sensing of vehicle movement events. Intelligent transportation systems represent
the forefront of global transportation research, with cooperative vehicle infrastructure
systems as a key component. These systems utilize wireless communication and sensing
technologies to enable intelligent coordination and cooperation in vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure interactions. By leveraging these technologies, it optimizes
the utilization of road network resources, alleviates traffic congestion, and enhances the
overall operation of the road network [30,31]. Zhang et al. proposed a method combining
Exponential Bloom Filter sketches and exponential histograms to effectively sense anoma-
lies such as vehicle overloads in traffic flows by querying data streams within a sliding
window [32]. Additionally, Rai et al. proposed an overtaking assistance system based on
RSSI to prevent traffic accidents in V2V environments [33]. This system employs directional
antennas and custom analog readout units to reflect the mapping relationship between
vehicle speeds and RSSI variations at signal reception points. Duan et al. presented a traffic
state sensing method based on vehicle-to-everything wireless signals [17]. This method
analyzes the propagation characteristics of wireless signals at intersections. Specifically, it
calibrates model parameters through a simulation platform that collects the RSSI between
vehicle nodes and roadside units. This process ultimately achieves measurements of traffic
flow parameters such as flow speed, flow rate, flow density at intersection entry lanes, and
queue lengths in dedicated left-turn lanes.

3. Architecture and Research Methods

The main notations used in the following sections are summarized in Table 1.

Table 1. List of main notations.

Notation Description

G The set of collection unit device groups
gi The ith collection unit device group

WN , N ∈ [X, Y, D] The sliding window
LWN , N ∈ [X, Y, D] The sliding window length

µNWN (n), N ∈ [X, Y, D] The parameter of the sliding average sequence
σ2

NWN
(n), N ∈ [X, Y, D] The parameter of the sliding variance sequence
covWD (X, Y) The covariance of the data processed through sliding window WD

sn The data sample in sequence S
µ̂SWS (n) The parameter of the sliding average sequence in sequence S
δ̂2

SWS
(n) The parameter of the sliding variance sequence in sequence S

ẑn The smoothed data sample in sequence Z
Th The dynamic event occurrence threshold
Th0 The initial dynamic event occurrence threshold

FN , N ∈ [l, n, g] The counting flag
fs The sampling frequency of the device
t0 The initial time of the wireless sensing task

ik
N , N ∈ [b, e]

The data index representingthe beginning time and the ending time of the
kth event

STk The specific time of the kth event occurrence
DUk The duration of the kth event occurrence
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3.1. Problem Definition

This study discusses the key challenges faced when using RSSI-WSDE. The primary
challenge is how to enhance the distinction between dynamic events and static environ-
ments. By significantly amplifying the differences, the completeness and reliability of
dynamic event sensing are improved. It ensures that the sensed RSSI clearly reflects the
characteristics of dynamic events.

Secondly, for the dynamic event RSSI data obtained through wireless sensing, setting
an adaptive threshold and marking the specific time and duration are technical challenges
in implementing dynamic event wireless sensing. By marking the specific times of the
dynamic events, the sequence of different events can be determined, providing a basis
for tracking and reconstructing the motion trajectory of the dynamic event execution.
Additionally, the durations of the dynamic events can serve as characteristic data for event
type classification. Specifically, this study primarily illustrates how RSSI can be utilized to
sense the occurrence of dynamic events and mark their specific times and durations in the
time domain.

Finally, this study examines how variations in device sampling frequency and sliding
window length affect the effectiveness of the dynamic event wireless sensing. Changes
in the sampling frequency are closely related to the accuracy of wireless sensing. Appro-
priate sampling frequencies should be configured for devices according to different event
scenarios to perform sensing tasks. Since devices with different sampling frequencies
collect RSSI time series data of varying magnitudes, the corresponding sliding window
length should be adjusted during data processing based on the sampling frequency. The
length of the sliding window determines the granularity of dynamic event wireless sensing.
Setting the window too short increases the computational complexity and amplifies the
noise interference, while setting the window too long extends the data processing span,
obscuring detailed information in the data.

3.2. Network Architecture

A dynamic event wireless sensing system composed of multiple collection unit device
groups is considered in this study, and is represented by the set G ≜ {g1, g2, . . . , gi}, as
shown in Figure 1.
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Figure 1 illustrates the schematic of the dynamic event wireless sensing network. The
deployment of the system takes into account geographical location information and focuses
on deploying it in critical connectivity zones within urban blocks. This measure optimally
utilizes the spatial structure of roadways, enhancing the effectiveness and rationality of
the device layout. Therefore, the system is deployed at traffic nodes such as intersections,
three-way intersections, and other multi-junction intersections. As shown in Figure 1,
five collection unit device groups (g3, g5, g6, g8, g9) are deployed at the multi-intersection
junction to monitor the occurrence of dynamic events in different directions. Additionally,
for any collection unit device group gi ∈ G, it is responsible for collecting the RSSI time
series data of various dynamic events including walking, running, cycling, and driving. As
the event execution objects move through different sensing areas, device groups can sense
the occurrence of dynamic events and plot the corresponding RSSI waveforms.

To analyze the variations in the data fluctuation and distribution of dynamic events
across different collection channels, the collection channels are divided into forward and
backward channels based on the direction of data transmission. By processing dual-channel
dynamic event RSSI time series data, the specific times and durations of various events
are obtained. Subsequently, the time domain sensing information will be uploaded to the
database. This provides data support and empirical evidence for reconstructing the motion
trajectories of the dynamic event execution objects. Taking the motion trajectory marked
with the red dashed line in Figure 1 as an example, the system infers the type of the event
based on its duration and reconstructs the motion trajectory of the walking event execution
object using the sequence of specific times.

For any collection unit device group gi ∈ G, it consists of a set of ZigBee transmitter
and receiver units. In order to prevent inter-group channel interference, each collection
unit device group is assigned a different personal area network identifier (PANID). This
measure not only improves the security and stability of the network, but also effectively
avoids interference from other wireless devices operating in the 2.4 GHz band. Because
PANID is able to allocate independent workspaces for different collection unit device
groups within the fixed 2.4 GHz band, multiple groups of devices can coexist without
interference in the same physical area. Only ZigBee devices with the same PANID are
able to establish communication connections. Furthermore, ZigBee operates based on the
IEEE 802.15.4 standard, employing frequency hopping strategies to mitigate interference
from other wireless devices. By dividing the 2.4 GHz band into 16 different channels,
ZigBee effectively reduces the likelihood of channel overlap and interference, ensuring the
reliability of data transmission.

3.3. RSSI-WSDE

In order to enhance the comparability of the RSSI time series of dynamic events in
different collection channels, dual-channel data collection is employed, represented by
channel X and channel Y. In this setup, the RSSI time series processed by channel X is
denoted as {x1, x2, x3, . . .}, and the RSSI time series processed by channel Y is denoted as
{y1, y2, y3, . . .}, with n representing the data points contained in each channel.

3.3.1. Average Sliding Window

In order to smooth out random fluctuations and noise in the original RSSI time series,
making the main trend and distribution characteristics more apparent, the average sliding
window method is employed to calculate the sliding average sequence of channel X and
channel Y. In each channel, the sliding window is represented by WX and WY, respectively.
The lengths of the sliding windows are represented by LWX and LWY , respectively. The
schematic of the sliding average sequence calculation in channel X is shown in Figure 2.
When the cumulative data points have not yet reached the sliding window length, the
length of the sliding window is updated using the current number of data points to avoid
computation delays caused by insufficient data within the window. Once the number of
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data points reaches the length of the sliding window, a fixed window length is used to
maintain the consistency in data processing.
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Each time the window slides by one data point, the RSSI data in the channel are
divided into different sliding windows. The processing method depends on the relationship
between the number of data points and the length of the sliding window. Specifically, the
variable-length sliding window adapts well to changes in data length within the RSSI time
series, allowing for flexible extraction of feature variations across different data segments.
Utilizing smaller sliding windows enhances processing efficiency when the RSSI time series
contains fewer data points. As the data in the RSSI time series continue to accumulate,
adjusting the window length accurately captures distributional features within the data
segments. This approach not only improves the efficiency and accuracy of data processing,
but also enables flexible application across various scenarios, ensuring a timely response to
data changes and precise analysis.

The sliding average sequences of channels X and Y are denoted as
{

µXWX (1), µXWX (2),
µXWX (3), ...

}
and

{
µYWY (1), µYWY (2), µYWY (3), ...

}
, respectively.

In channel X, the original data sample is represented by xi, and the calculation method
of the parameter value µXWX (n) of the sliding average sequence in channel X is as follows:

µXWX (n) =


1
n ∑n

i=1 xi, 0 < n < LWX

1
LWX

∑n
n−LWX+1 xi, n ≥ LWX

(1)

In channel Y, the original data sample is represented by yi, and the calculation method
of the parameter value µYWY (n) of the sliding average sequence in channel Y is as follows:

µYWY (n) =


1
n ∑n

i=1 yi, 0 < n < LWY

1
LWY

∑n
n−LWY

+1 yi, n ≥ LWY

(2)

To analyze the difference between data in channel X and channel Y, channel Y is
used as the reference channel. The difference between the corresponding data points
of the two channels is calculated to obtain the difference channel, denoted channel D.
The data parameter di is represented by xi − yi in channel D. Furthermore, the sliding
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average sequence is denoted
{

µDWD (1), µDWD (2), µDWD (3), ...
}

. The calculation method of
the parameter value µDWD (n) of the sliding average sequence is as follows:

µDWD(n) =


1
n ∑n

i=1 (xi − yi), 0 < n < LWD

1
LWD

∑n
n−LWD+1 (xi − yi), n ≥ LWD

(3)

where n represents the number of data points,WD represents the sliding window, and LWD
represents the length of the sliding window.

Referring to the calculation methods of the sliding average sequence parameter value
µXWX (n) of channel X and µYWY (n) of channel Y, the RSSI data in channels X and Y are
processed using the sliding window WD. The obtained sliding average sequence parameter
values are represented as µXWD (n) and µYWD (n), respectively. The sliding average sequence
parameter value µDWD (n) of channel D is as follows:

µDWD (n) = µXWD (n)− µYWD (n) (4)

3.3.2. Variance Sliding Window

As the window slides, new data are added while old data are removed; thus, the
variance within the window is continuously updated. This dynamic updating is particu-
larly effective for monitoring the dispersion and trend changes in RSSI time series data.
Using the data processing method of the variance sliding window, the sliding variance
sequences of channels X and Y are calculated, denoted

{
σ2

XWX
(2), σ2

XWX
(3), σ2

XWX
(4), ...

}
and

{
σ2

YWY
(2), σ2

YWY
(3), σ2

YWY
(4), ...

}
, respectively.

In channel X, the parameter value of the sliding variance sequence is represented by
σ2

XWX
(n). Combined with the calculation result of the sliding average sequence parameter

value µXWX (n), the calculation method of σ2
XWX

(n) is as follows:

σ2
XWX

(n) =


1
n ∑n

i=1
(
xi − µXWX (n)

)2, 1 < n < LWX

1
LWX

∑n
i=n−LWX+1

(
xi − µXWX (n)

)2, n ≥ LWX

(5)

In channel Y, the parameter value of the sliding variance sequence is represented by
σ2

YWY
(n). Combined with the calculation result of the sliding average sequence parameter

value µYWY (n), the calculation method of σ2
YWY

(n) is as follows:

σ2
YWY

(n) =


1
n

n
∑

i=1

(
yi − µYWY (n)

)2, 1 < n < LWY

1
LWY

∑n
i=n−LWY

+1
(
yi − µYWY (n)

)2, n ≥ LWY

(6)

To analyze the differences in the dispersion of data between channels X and Y, the
sliding variance sequence of channel D is obtained using the variance sliding window. This
sliding variance sequence is denoted by

{
σ2

DWD
(2), σ2

DWD
(3), σ2

DWD
(4), ...

}
.

In channel D, the parameter value of the sliding variance sequence is represented by
σ2

DWD
(n). Combined with the calculation result of the sliding average sequence parameter

value µDWD (n), the calculation method of σ2
DWD

(n) is as follows:

σ2
DWD

(n) =
1

LWD
∑n

i=n−LWD+1

(
di − µDWD (n)

)2 (7)
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When the current number of data points in channel D reaches the sliding window
length, the calculation method of σ2

DWD
(n) is as follows:

σ2
DWD

(n) =
1

LWD

∑n
i=n−LWD+1

(
xi − µXWD (n)

)2

+
1

LWD

∑n
i=n−LWD+1

(
yi − µYWD (n)

)2

− 2
LWD

∑n
i=n−LWD+1

(
xiyi − xiµYWD (n)− yiµXWD (n) + µYWD (n)µXWD (n)

) (8)

When the current number of data points is less than the sliding window length, the
calculation method of σ2

DWD
(n) is as follows:

σ2
DWD

(n) =
1
n ∑n

i=1
(
xi − µXWD (n)

)2

+
1
n ∑n

i=1
(
yi − µYWD (n)

)2

− 2
n ∑n

i=1
(

xiyi − xiµYWD (n)− yiµXWD (n) + µYWD (n)µXWD (n)
) (9)

Referencing Equation (5) for calculating the sliding variance sequence parameter value
σ2

XWX
(n) of channel X and Equation (6) for the sliding variance sequence parameter value

σ2
YWY

(n) of channel Y, and using the sliding window WD to process data in channels X
and Y, the obtained sliding variance sequence parameters are represented by σ2

XWD
(n) and

σ2
YWD

(n), respectively. The sliding variance sequence parameter value σ2
DWD

(n) of channel
D is as follows:

σ2
DWD

(n) = σ2
XWD

(n) + σ2
YWD

(n)− 2covWD (X, Y), n > 1 (10)

where covWD (X, Y) represents the covariance of the data in channels X and Y processed by
sliding window WD.

In order to effectively enhance data utilization and analytical precision while reducing
the loss of dynamic event information and capturing richer context data features, this
study employs the overlapping sliding window method to calculate the sliding average
sequence and sliding variance sequence of each channel. Through this method, individual
data points are repeatedly utilized across multiple windows, enhancing the analysis of the
associations between adjacent data points, thus more accurately reflecting the dynamic
changes of the data.

3.3.3. Variance Amplification Sequence

In order to significantly enhance the difference between dynamic events and static
environmental data, the sliding variance sequences of channels X, Y, and D have been am-
plified to obtain the variance amplification sequence S. The three-channel sliding variance
sequence amplification model is shown in Figure 3.

In the three-channel sliding variance sequence amplification model, the parameters
of the sliding variance sequences from three channels are sequentially added to obtain
the variance amplification sequence, denoted sequence S, which can be expanded as
{s2, s3, s4, . . .}. The calculation method of data sample sn in sequence S is as follows:

sn = σ2
XWX

(n) + σ2
YWY

(n) + σ2
DWD

(n), n > 1 (11)

In channels X, Y, and D, the variance of data segments during dynamic events is
significantly higher than that in a static environment. Specifically, the locations of the data
segments corresponding to dynamic events are almost identical across the three channels.
By cumulatively summing the parameters of the sliding variance sequence at corresponding
positions, the distinctions between dynamic events and static environments are further
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amplified. Therefore, this approach not only enables more precise separation of dynamic
event data segments from the complete RSSI time series, but also enhances the system’s
sensitivity to sensing dynamic events.
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3.3.4. Z-Score

In order to normalize the data from different dimensions to the quantitative scale
and effectively reduce the uncertainty and error due to varying collection conditions and
equipment differences, the sequence S is processed using z-score calculations to obtain the
sequence Z. During real-time processing, the length of sequence S continuously changes,
making fixed values impractical for computing average and variance parameters in z-score
calculations. To address this issue, this study combines sliding window and long-term data
processing methods for obtaining z-score average and variance parameters. By utilizing
data segments strongly correlated with the currently processed data point, we compute
the sliding average and sliding variance sequences for sequence S. The sliding window
of sequence S is represented by WS. Furthermore, the method to determine the sliding
window length LWS is as follows:

LWS = max
{

LWX , LWY , LWD

}
(12)

Using the average sliding window and long-term processing method, the sliding
average sequence of the sequence S is calculated, as shown in Figure 4.
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In sequence S, when the data point being processed by the average sliding window
precedes the 2LWS + 1th data point, the parameter value of the sliding average sequence
is computed using all preceding parameters in sequence S. Once the data point being
processed reaches or exceeds the 2LWS + 1th data point, the long-term data analysis method
is used. Centering on the data point being processed in the average sliding window, the
method extends 2LWS data points both forward and backward to calculate the parameter
value of the sliding average sequence. The sliding average sequence of sequence S is
denoted by

{
µ̂SWS(1), µ̂SWS(2), µ̂SWS(3), ...

}
. Taking Figure 4 as an example, with a sliding

window length set to 9, the calculation of µ̂SWS(19) involves 37 data points, including its
own position and 18 data points extended both forward and backward.

In sequence S, the calculation method of the sliding average sequence parameter value
µ̂SWS(n) is as follows:

µ̂SWS(n) =


1
n ∑n

i=1 si, 0 < n ≤ 2LWS

1
4LWS + 1 ∑

n+2LWS
i=n−2LWS

si, n > 2LWS

(13)

Furthermore, the sliding variance sequence of sequence S is denoted by
{

δ̂2
SWS

(2), δ̂2
SWS

(3),

δ̂2
SWS

(4), ...
}

. The parameter value of the sliding variance sequence is represented by

δ̂2
SWS

(n). Combined with the calculation result of the sliding average sequence parameter
value µ̂SWS(n), the calculation method of δ̂2

SWS
(n) is as follows:

δ̂2
SWS

(n) =


1
n ∑n

i=1
(
si − µ̂SWS(n)

)2, 1 < n ≤ 2LWs

1
4LWS + 1 ∑

n+2LWS
i=n−2LWS

(
si − µ̂SWS(n)

)2, n > 2LWS

(14)

In processing the average and variance sliding windows of sequence S, the non-
overlapping sliding approach is used in conjunction with the long-term processing method
to enhance the execution efficiency of RSSI-WSDE. By combining the parameter value
of sequence S, the z-score sequence is obtained, denoted as sequence Z, which can be
expanded as {z2, z3, z4, ...}. The calculation method of data sample zn in sequence Z is
as follows:

zn =
sn − µ̂SWS(n)√

δ̂2
SWS

(n)
, n > 1 (15)

Applying the z-score method during the data processing of the sequence S does
not alter the form of the data distribution. This means that sequence Z still retains the
distribution information of the data in sequence S.

3.3.5. Threshold of Dynamic Event Occurrence

To sense the occurrence of dynamic events, it is essential to extract the data fluctuation
pattern and distribution from the sensed time series data over the certain period. Therefore,
we design and apply an adaptive event occurrence threshold for event sensing tailored to
different scenarios, environments, and types of events. The threshold of dynamic event
occurrence is denoted by Th. In order to ensure the reasonableness and stability of the
threshold settings, sequence Z needs to be further processed to achieve data cleaning and
smoothing effects. The processed data in sequence Z not only meet the analysis requirement,
but also retain the original characteristics and overall distribution trend of the data. After
smoothing, the sequence Z of the collection unit device group gi is represented by set
Ẑgi ≜ {ẑ2, ẑ3, . . . , ẑn}. The data in the smoothed sequence are processed to one-decimal-
place precision by rounding. Furthermore, the initial dynamic event occurrence threshold
is represented by Th0 , with its default value set as ẑ2. Since ẑ2 is the first data point in the
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smoothed sequence Z, it typically represents the static environment data collected by the
collection unit device group. As new data points are continuously collected, they will be
compared with Th0 to obtain the counting flags for three different situations.

Fl , Fn, and Fg are used to denote the counting flags for below threshold, normal count,
and above threshold, respectively. Their values depend on the data ẑn from the smoothed
sequence Z. Specifically, when ẑn is within the range of [0.8Th0 , Th0), Fl is incremented;
when ẑn is equal to Th0 , Fn is incremented; and when ẑn is within the range of (Th0 , 1.2Th0 ],
Fg is incremented. Therefore, we can obtain the following:

Fl = Fl ++, 0.8Th0 ≤ ẑn < Th0 (16)

Fn = Fn ++, Th0 = ẑn (17)

Fg = Fg ++, Th0 ≤ ẑn < 1.2Th0 (18)

Therefore, based on the conditions set forth, the adaptive dynamic event occurrence
threshold Th can be obtained, denoted as follows:

Th =


1.1Th0 , Fg > Fn&&Fg > Fl
Th0 , Fn ≥ Fg&&Fn ≥ Fl
0.9Th0 , Fl ≥ Fg&&Fl ≥ Fn

(19)

The dynamic event occurrence threshold Th can be adaptively updated based on the
changes in the quantitative relationship of the counting flag, so as to effectively sense
dynamic event in various scenarios and environments.

3.3.6. Dynamic Event Information Marking

Based on Equation (19), the threshold value Th of the dynamic event occurrence is
obtained. Combined with sequence Z, it enables the marking of dynamic event occurrence.

During dynamic event wireless sensing, the sampling frequency of the device is
represented by fs. Additionally, the initial time of the wireless sensing task is recorded
as t0. Combined with Th, the data index set representing the beginning time of the event
is denoted by Ib ≜

{
i1b , i2b , . . . ik

b

}
, and the data index set representing the ending time of

the event is denoted by Ie ≜
{

i1e , i2e , . . . ik
e

}
. By using the data index of the event beginning

time, the specific time STk of the kth event occurrence can be calculated. The method for
calculating the specific time STk of the kth event occurrence is as follows:

STk = t0 +
ik
b
fs

(20)

The list of specific times can be denoted as {ST1, ST2, ST3, ...}. Furthermore, the
duration of the kth event occurrence is represented by DUk. The calculation method for the
duration DUk of the kth event occurrence is as follows:

DUk =

(
ik
e − ik

b

)
fs

(21)

The list of durations can be denoted {DU1, DU2, DU3, ...}. By combining the specific
time and duration of the dynamic event, this study implements the marking function of
dynamic event-related information within the waveform sequence Z, thereby achieving the
purpose of dynamic event wireless sensing.

The algorithm flow of RSSI-WSDE is shown in Algorithm 1.
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Algorithm 1: RSSI-WSDE

Input: initial time t0, sampling frequency fs, and RSSI data in channels X and Y
Output: specific time list STk_list, duration list DUk_list

1. n = 0
2. Aligns the amount of RSSI data in both channels by padding zero at the end
3. while (n < channel Y.size)
4. Using channel Y as the reference channel, calculate the difference between the RSSI data of the two

channels and populate it into Channel D.
5. Calculate the sliding average sequence parameter values of three channels
6. Calculate the sliding variance sequence parameter values of three channels
7. Calculate the variance amplification sequence parameter values sn

8. Using long-term and sliding windows, calculate µ̂SWS (n) and δ̂2
SWS

(n)
9. Calculate sequence Z parameter values zn
10. Calculate the threshold for dynamic event occurrence Th
11. Obtain the indices ik

b and ik
e of the event occurrence related data

12. Calculate STk and DUk by combining t0, fs, ik
b and ik

e
13. STk_list.append(STk), DUk_list.append(DUk)
14. n + 1
15. Return STk_list and DUk_list

First, the RSSI data amounts of channel X and channel Y are aligned by padding
zeros at the end. Using channel Y as the reference channel, the difference between the
RSSI data of the two channels is calculated and populated into channel D. Subsequently,
the sliding average sequence and sliding variance sequence parameter values of all three
channels are calculated. By accumulating the slider variance sequence parameter values
from corresponding data points across the channels, the variance amplification sequence S is
constructed. Furthermore, using sliding window techniques combined with the long-term
data processing strategy, the sliding average sequence and the sliding variance sequence
of sequence S are calculated. Moreover, by performing z-score calculation, sequence Z
is obtained. Using sequence Z, the threshold is determined for sensing dynamic event
occurrence and identifying the associated data indices. Ultimately, by utilizing the initial
time, sampling frequency, and data indices for beginning and ending time of events, specific
times and durations of dynamic events are determined and added to the corresponding list.

4. Experimental Testing
4.1. Experimental Setup

For dynamic event data collection, both indoor and outdoor environments are consid-
ered. The indoor data collection environment is shown in Figure 5.
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The transmitter and the receiver units were placed on both sides of the corridor to
collect the RSSI time series data of human activities occurring within the coverage area of
the wireless sensing device. Under the condition of ensuring the normal operation of the
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devices, the distance between the transmitter and receiver unit was set to 1.5 m, with the
placement height of 1.2 m.

During operation, the transmitter unit periodically sends data to the receiver unit,
which utilizes the integrated RSSI module to calculate the forward channel RSSI. Then, the
receiver unit transmits it back to the transmitter unit. Upon receiving the forward channel
RSSI, the transmitter unit also utilizes the integrated RSSI module to calculate the backward
channel RSSI.

Additionally, a host computer is connected to the transmitter device via a data trans-
mission line and uses the serial port debugging assistant to view the RSSI dual-channel
time series. In order to avoid the presence of the host computer affecting the experimental
results, it is placed more than 1.5 m away from the transmitter unit. Moreover, during the
device initialization phase, the connectivity of the channel between the transmitter and
receiver unit can be verified using the serial port debugging assistant. The main parameters
of serial port debugging assistant are configured as shown in Table 2.

Table 2. Main parameters of serial port debugging assistant.

Parameter Value

serial port driver matching port
baud rate 115,200
start bit 1
data bit 8
stop bit 1

acceptance area display format hexadecimal number

The serial port parameters serve as the interface for serial communication between the
host computer and external devices. During the experiment, it needs to be matched with
the serial port that the driver operates. The baud rate measures the transmission speed of
the serial data. In order to meet the requirements for high-speed data transmission, the
experimental baud rate is set to 115,200 bps. The data bit is set to 8, allowing a complete
byte to be transmitted in each data packet. Additionally, the start and stop bits are set to
1, ensuring sufficient intervals between data frames for the host computer to synchronize
and parse the data correctly. The display mode of the reception area is set to hexadecimal,
which facilitates quick data checking and error location. Specifically, hexadecimal display
allows for more compact representation of transmitted data.

The outdoor data collection environment is shown in Figure 6.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 24 
 

 

are set to 1, ensuring sufficient intervals between data frames for the host computer to 
synchronize and parse the data correctly. The display mode of the reception area is set to 
hexadecimal, which facilitates quick data checking and error location. Specifically, hexa-
decimal display allows for more compact representation of transmitted data. 

The outdoor data collection environment is shown in Figure 6. 

 
Figure 6. Outdoor dynamic event data collection environment. 

The transmitter unit and the receiver unit were placed on both sides of the road to 
collect the RSSI time series data of dynamic events such as walking, running, cycling, and 
driving. To ensure that all dynamic events can be performed within the experimental area, 
the distance between the transmitter and receiver unit was set to 4 m. Additionally, the 
placement heights of the devices were set at 1.2 m to ensure the normal collection of RSSI 
time series data of dynamic events. Similar to the indoor experiment, the RSSI for both the 
forward and backward channels is calculated using integrated RSSI module. Subse-
quently, the transmitter unit transmits the RSSI of dual-channel to the host computer via 
a data transmission line. The RSSI time series data are viewed on the host computer using 
the serial port debugging assistant. Specifically, for outdoor dynamic event data collection, 
two sets of collection unit device groups were used simultaneously to improve experi-
mental efficiency. This approach helps to collect more dynamic event RSSI data in a short 
period of time. 

4.2. Experimental Results of RSSI-WSDE 
4.2.1. Indoor Experimental Results 

In order to amplify the difference between the data of dynamic events and static en-
vironments in the original RSSI time series, the sequence S is obtained through variance 
amplification operation. The variance amplification effect of sequence S for an indoor 
back-and-forth walking dynamic event is shown in Figure 7. 

 
Figure 7. Variance amplification effect of sequence S. 

Figure 6. Outdoor dynamic event data collection environment.

The transmitter unit and the receiver unit were placed on both sides of the road to
collect the RSSI time series data of dynamic events such as walking, running, cycling, and
driving. To ensure that all dynamic events can be performed within the experimental area,
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the distance between the transmitter and receiver unit was set to 4 m. Additionally, the
placement heights of the devices were set at 1.2 m to ensure the normal collection of RSSI
time series data of dynamic events. Similar to the indoor experiment, the RSSI for both the
forward and backward channels is calculated using integrated RSSI module. Subsequently,
the transmitter unit transmits the RSSI of dual-channel to the host computer via a data
transmission line. The RSSI time series data are viewed on the host computer using the
serial port debugging assistant. Specifically, for outdoor dynamic event data collection, two
sets of collection unit device groups were used simultaneously to improve experimental
efficiency. This approach helps to collect more dynamic event RSSI data in a short period
of time.

4.2. Experimental Results of RSSI-WSDE
4.2.1. Indoor Experimental Results

In order to amplify the difference between the data of dynamic events and static
environments in the original RSSI time series, the sequence S is obtained through variance
amplification operation. The variance amplification effect of sequence S for an indoor
back-and-forth walking dynamic event is shown in Figure 7.
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Sequence S integrates the fluctuations in the sliding variance sequences of each chan-
nel and further amplifies the amplitude differences. Consequently, this effectively reduces
the interference from static environment data on the determination of dynamic event occur-
rence. Moreover, it enhances the robustness and accuracy of the system in sensing dynamic
events. Within sequence S, the waveform of static environment data exhibits a smooth trend,
while the waveform of dynamic event data displays significant amplitude fluctuations.

In order to enhance the comparability of data across different dimensions or amplitude
fluctuation ranges, sequence Z is obtained through z-score calculation. This approach
enables the extraction of potential dynamic event information from the RSSI time series
data under a unified quantitative scale. A comparison of the waveform of the sequence Z for
indoor back-and-forth walking dynamic events with the original data of the two channels
at a sampling frequency of 100 Hz is shown in Figure 8.

When walking through the dynamic event wireless sensing area, the data amplitude
significantly increases. In Figure 8, the horizontal axis represents the total time taken to
collect two rounds of back-and-forth walking dynamic event RSSI time series data. Figure 8
shows four instances of amplitude increase, corresponding to four phases of two rounds of
back-and-forth walking. The first and third amplitude increases indicate forward walking
through the sensing area, while the second and fourth increases signify walking in the
opposite direction through the sensing area. When walking reaches the line-of-sight path
of the collection units, a peak amplitude occurs. Additionally, the starting and ending
points of each walking phase are outside the effective range of the wireless sensing area.
Therefore, once walking passes through the sensing area, the phenomenon of amplitude
increase disappears. The system continues to collect RSSI data from the static environment.
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(a) Original data waveform of channel X; (b) original data waveform of channel Y; (c) data waveform
of sequence Z.

Sequence Z retains the differences between dynamic events and static environmental
data as reflected in sequence S. This effectively addresses the issue in the original RSSI
time series of channels X and Y, where the specific times and durations of dynamic events
cannot be accurately sensed due to the influence of static environment and noise. Further-
more, through z-score processing, the measurement scale of the waveform amplitudes is
normalized, enabling the system to compare the sensing effects of different dynamic events.

When the sliding window length LW varies, the waveforms of the sequence Z obtained
by dynamic event sensing exhibit differences, as shown in Figure 9.

During dynamic event wireless sensing, the default length of the sliding window is set
to 9 data points. Figure 9 compares the sensing results of indoor back-and-forth walking
dynamic events under four different sliding window lengths at a 100 Hz sampling frequency.
When the window length is set to 0.5LW , the smoothing effect on static environmental data
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is poor. There are many abnormal fluctuations in the waveform of sequence Z, reducing the
accuracy of dynamic event wireless sensing. When the window lengths are set to 1.5LW and
2.5LW , an over-smoothing phenomenon occurs for dynamic event data, reducing the ability
to sense detailed information about dynamic events. When the window length is set to LW ,
it can moderately smooth static environmental data while ensuring the effective sensing of
dynamic event details. RSSI-WSDE is capable of matching the appropriate sliding window
length according to different sampling frequencies.
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The RSSI time series data for indoor back-and-forth walking dynamic events were
collected using devices with sampling frequencies of 10 Hz, 20 Hz, 50 Hz, and 100 Hz. The
waveforms of sequence Z are shown in Figure 10.

Figure 10 shows the waveforms of sequence Z for back-and-forth walking dynamic
events at four sampling frequencies of 10 Hz, 20 Hz, 50 Hz, and 100 Hz. The horizontal axis
of the coordinate system represents the sampling time, while the vertical axis represents
the amplitude of the sequence Z data. Sub-event 1 and sub-event 3 display the sequence Z
waveforms of forward walking, while sub-event 2 and sub-event 4 display the sequence Z
waveforms of backward walking.

For dynamic events occurring in different orders, single dynamic events are marked
using bounding boxes with different colors and line styles. The positions of the four
vertices of each bounding box are jointly determined by the beginning time, ending time,
peak value, and trough value of the sequence Z amplitude changes during a single event
occurrence. For the bottom-left vertex of the bounding box, its coordinates are determined
with the beginning time of the single event as the abscissa and the trough value of the
sequence Z amplitude changes as the ordinate. Additionally, above the bounding boxes
of the dynamic event occurrences, the specific times STk and durations DUk of each event
are marked.

Furthermore, with the increase in the sampling frequency, the complexity of sequence
Z is enhanced, enabling the system to sense more detailed information of dynamic events,
manifested specifically in the clearer presentation of directional information. The sequence
Z values of forward walking sub-events 1 and 3 exhibit strong similarity, with an overall
waveform pattern showing an initial rise followed by a decline. In contrast, the sequence
Z values of backward walking sub-events 2 and 4 demonstrate an overall pattern of an
initial decline followed by an increase. However, due to the varying walking speeds of the
experimenters, differences in the amplitudes and fluctuations of the waveforms have arisen,
thereby reducing the clarity of directional information. As shown in Figure 10d, during sub-
event 2, the experimenter walked at a relatively slow pace, causing significant oscillations
in the sequence Z waveform data. Nonetheless, the overall trend of the waveform still
remains similar to that of sub-event 4.
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The wireless sensing results of indoor back-and-forth walking dynamic events by
RSSI-WSDE at four different sampling frequencies fs are shown in Table 3.

Table 3. Comparison of wireless sensing results of indoor back-and-forth walking events.

fs Th ST1 DU1 ST2 DU2 ST3 DU3 ST4 DU4

10 Hz −0.49 10:17:23.0 3.0 s 10:17:29.6 3.1 s 10:17:36.2 3.0 s 10:17:42.4 3.4 s
20 Hz −0.39 10:23:18.2 2.1 s 10:23:24.9 1.9 s 10:23:31.5 2.5 s 10:23:18.2 2.6 s
50 Hz −0.39 10:25:39.48 3.040 s 10:25:45.8 2.959 s 10:25:53.36 2.842 s 10:26:01.4 2.240 s

100 Hz −0.39 10:31:05.7 2.213 s 10:31:11.679 2.321 s 10:31:17.139 2.060 s 10:31:23.08 1.820 s

Table 3 shows the performance of RSSI-WSDE for processing the dynamic events of
back-and-forth walking in an indoor corridor environment under device conditions with
sampling frequencies fs of 10 Hz, 20 Hz, 50 Hz, and 100 Hz. When fs is 10 Hz, the event
occurrence threshold Th is set to −0.49, while in the other three sampling frequencies, Th is
set to −0.39. The threshold Th can be fine-tuned based on the distribution characteristics
of sequence Z to accurately determine the specific times STk of each event. Additionally,
compared with low sampling frequencies, high sampling frequencies demonstrate higher
accuracy in sensing the durations of dynamic events. Specifically, at the sampling fre-
quencies of 50 Hz and 100 Hz, the system achieves millisecond-level accuracy in sensing
dynamic events.

Furthermore, the durations DUk of dynamic events at different sampling frequencies
can reflect the speed changes of walking events. Taking the device with fs of 50 Hz as
an example, the values of DU1, DU2, and DU3 are relatively long and close to each other,
indicating relatively steady walking speeds in the first three events. In contrast to the
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durations of the first three walking events, the value of DU4 for the fourth walking event
exhibits a significant decrease, reflecting the relatively fast walking speed on that occasion.

After obtaining the specific times and durations of the dynamic events, the detailed
information is marked on the complete original RSSI time series to achieve the final effect
of sensing the occurrence of dynamic events. Due to the processing time required by the
algorithm, there is inevitably some delay in real-time sensing, as shown in Figure 11.
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Figure 11 illustrates the sensing effect on the complete original RSSI time series of
indoor back-and-forth walking dynamic events at a sampling frequency of 100 Hz. After
RSSI-WSDE processing, the specific times and durations of dynamic events can be clearly
marked in the original RSSI time series. Determining the specific time of event occurrence
allows for precise localization of the event’s temporal point, thereby accomplishing the
fundamental sensing task of dynamic events. Furthermore, the duration information allows
for inference of differences in walking speeds. For instance, in Figure 11, DU4 is 1.820 s,
indicating the fastest walking speed. DU2 is 2.321 s, indicating the slowest walking speed.
The sensing result of RSSI-WSDE is closely aligned with the amplitude fluctuations in the
original RSSI time series, thereby sensitively sensing the occurrence of dynamic events.
The four vertices of the bounding box are jointly determined by the beginning time, ending
time, peak, and trough of amplitude variations in a single event. Additionally, by setting an
efficient threshold for dynamic event occurrence, abnormal amplitude fluctuations caused
by static environments and noise can be filtered out to prevent the erroneous sensing of
dynamic events.

4.2.2. Outdoor Experimental Results

In outdoor environment, the RSSI time series data of dynamic events such as walking,
running, cycling, and driving were collected. Each dynamic event followed a trajectory
of two rounds of back-and-forth movements within the sensing area. The waveforms of
sequence Z for various outdoor dynamic events collected using a device group with a
sampling frequency of 100 Hz are shown in Figure 12.

In Figure 12, sub-event 1 and sub-event 3 represent forward movement for each type
of dynamic event, while sub-event 2 and sub-event 4 indicate movement in the opposite
direction. Due to the varying speed and volume of each outdoor dynamic event, there
are differences in the clarity of the event occurrence detailed information. Compared with
other dynamic events, walking is slower in execution and has a longer duration within
the sensing area. Therefore, the direction information related to event occurrence is more
pronounced in the walking event sequence Z. However, due to the smaller volume of
walking events, it is not sufficient to accurately determine their directional information. As
illustrated in Figure 12a, sub-events 2 and 4 exhibit pronounced directionality, whereas
sub-events 1 and 3 display weaker directionality.
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In dynamic events such as running and cycling, differences in execution speeds and
volumes are relatively minimal. Furthermore, their impact durations within the sensing
area are comparatively brief, leading to less pronounced directional information in the
sequence Z of running and cycling events. However, the occurrence of the corresponding
event can still be sensed.

The dynamic event of driving is characterized by high speed and large volume,
resulting in relatively long event duration. Moreover, the directional information the of
driving event is more pronounced. In the case of forward vehicle movement, the waveform
of the driving dynamic event in sequence Z demonstrates a trend of initially high values
followed by lower values. Conversely, for backward vehicle motion, the waveform shows
the inverse trend.

The wireless sensing results of four outdoor dynamic event types Et at the sampling
frequency of 100 Hz are shown in Table 4.

Table 4. Comparison of wireless sensing results for four outdoor dynamic events.

Et Th ST1 DU1 ST2 DU2 ST3 DU3 ST4 DU4

walking −0.29 14:01:30.16 2.199 s 14:01:38.179 1.901 s 14:01:49.42 2.040 s 14:01:56.4 2.120 s
running −0.19 14:09:07.819 0.601 s 14:09:13.28 0.992 s 14:09:19.66 0.640 s 14:09:26.5 0.584 s
cycling −0.19 14:16:15.299 1.081 s 14:16:26.94 0.880 s 14:16:38.88 0.801 s 14:16:48.96 1.043 s
driving −0.19 14:19:07.78 0.960 s 14:19:19.22 0.922 s 14:19:29.78 0.939 s 14:19:41.42 0.941 s

Table 4 shows the performance of RSSI-WSDE in sensing four outdoor dynamic event
types Et for walking, running, cycling, and driving. In the same outdoor environment,
RSSI-WSDE sets similar event occurrence thresholds Th. When sensing the walking event,
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Th is set to −0.29. For sensing the other three dynamic event types, Th is set to −0.19.
Specifically, RSSI-WSDE demonstrates robustness and adaptability in sensing different
types of dynamic events. It can determine the specific times STk of each dynamic event
based on the threshold Th.

Furthermore, analyzing the duration DUk can reflect the differences in the speeds and
volumes among different events. The durations of the walking remain within the range
of 1.9 s to 2.2 s, which is significantly longer than the other three types of events. These
reflect the slower-speed characteristic of walking. Running events exhibit higher speeds
compared to walking events, resulting in shorter durations. The speed of cycling is similar
to that of running, but the volume of the cycling event is slightly larger than that of running,
thus the duration is slightly longer. The volume of the driving event is significantly larger
than the other three types of events, resulting in a longer duration of event occurrence.

5. Conclusions

In this study, we propose a novel wireless sensing method for dynamic events: RSSI-
WSDE. In indoor corridor and outdoor urban road scenarios, RSSI-WSDE combines statis-
tics methods with sliding window processing to achieve the wireless sensing of dynamic
events. RSSI-WSDE calculates the sliding average sequence, sliding variance sequence,
and variance amplification sequence to enhance the difference between dynamic events
and static environment RSSI data. Subsequently, using the z-score, data are normalized
to a unified quantitative scale, resulting in sequence Z. Moreover, adaptive event occur-
rence thresholds are set to sensing the dynamic events, and mark their specific times and
durations on the original RSSI time series.

Specifically, by using RSSI-WSDE, it is possible to separate dynamic events from
the complete RSSI time series that includes static environment data, thereby accurately
sensing the occurrence of dynamic events. Furthermore, RSSI-WSDE provides a new
perspective for building smart cities. By deploying it in auxiliary devices for dynamic
event sensing, the real-time sensing of dynamic events at various traffic nodes is enabled.
This enhances the effectiveness of public security departments in criminal investigation
operations. Additionally, it supplements the capabilities for rapid monitoring and tracking
of suspects or vehicles in a dark environment.

In future work, we will focus on studying the directionality of dynamic event occur-
rence. This will enable the algorithm to sense the directionality of different dynamic events
at various sampling frequencies. Furthermore, it is crucial to integrate the characteristic
information extracted from this study, such as the durations of dynamic event occurrences
and changes in waveform data amplitude. This integration will facilitate the design of dy-
namic event classification algorithms suitable for indoor and outdoor scenarios, enhancing
the granularity of dynamic event sensing. Additionally, based on the directionality and
classification results of dynamic events, it is practicable to further design a novel method
for reconstructing the motion trajectories of target objects. This approach can enhance the
diversity of functionalities and response capabilities of the dynamic event sensing system.
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13. Anthi, E.; Williams, L.; Słowińska, M.; Theodorakopoulos, G.; Burnap, P. A supervised intrusion detection system for smart home
IoT devices. IEEE Internet Things J. 2019, 6, 9042–9053. [CrossRef]

14. Drenjanac, D.; Tomic, S.; Agüera, J.; Perez-Ruiz, M. Wi-fi and satellite-based location techniques for intelligent agricultural
machinery controlled by a human operator. Sensors 2014, 14, 19767–19784. [CrossRef] [PubMed]

15. Li, G.; Li, D.; Chen, W.; Zhang, Y.; Xu, S. Design and application of special sensors and internet of things (IoT)-based wireless
system for agricultural information monitor. J. Phys. Conf. Ser. 2020, 1646, 012130. [CrossRef]

16. Wang, H. Inertial Detection of Unusual Driving Events for Self-Driving. Master’s Thesis, Rutgers The State University of New
Jersey, School of Graduate Studies, New Brunswick, NJ, USA, 2019.

17. Duan, X.; Jiang, H.; Tian, D.; Zhou, J.; Zhou, G.; Wenjuan, E.; Sun, Y.; Xia, S. Traffic Flow Sensing Using Wireless Signals. KSII
Trans. Internet Inf. Syst. 2021, 15, 3858–3874. [CrossRef]

18. Kaltiokallio, O.; Bocca, M. Real-time intrusion detection and tracking in indoor environment through distributed RSSI processing.
In Proceedings of the 2011 IEEE 17th International Conference on Embedded and Real-Time Computing Systems and Applications,
Toyama, Japan, 28–31 August 2011; pp. 61–70.

19. Patwari, N.; Wilson, J. RF sensor networks for device-free localization: Measurements, models, and algorithms. Proc. IEEE 2010,
98, 1961–1973. [CrossRef]

20. Lee, P.W.; Seah, W.K.; Tan, H.-P.; Yao, Z. Wireless sensing without sensors—An experimental approach. In Proceedings of the 2009
IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 13–16 September
2009; pp. 62–66.

21. Soldovieri, F.; Gennarelli, G. Exploitation of ubiquitous Wi-Fi devices as building blocks for improvised motion detection systems.
Sensors 2016, 16, 307. [CrossRef] [PubMed]

22. Ren, M.; Fu, X.; Pace, P.; Aloi, G.; Fortino, G. Collaborative Data Acquisition for UAV-Aided IoTs Based on Time-Balancing
Scheduling. IEEE Internet Things J. 2023, 11, 13660–13676. [CrossRef]

23. Li, X.; Wu, J. A new method and verification of vehicles detection based on RSSI variation. In Proceedings of the 2016 10th
International Conference on Sensing Technology (ICST), Nanjing, China, 11–13 November 2016; pp. 1–6.

https://doi.org/10.1016/j.comnet.2018.08.001
https://doi.org/10.1007/s11277-020-07748-7
https://doi.org/10.1109/TVT.2020.2970842
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3f7051424e4d16e438ec077cdecf261921d1a634
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3f7051424e4d16e438ec077cdecf261921d1a634
https://doi.org/10.5120/21648-4755
https://doi.org/10.3390/s20185204
https://doi.org/10.1108/SR-05-2018-0111
https://doi.org/10.1016/j.compag.2020.105682
https://doi.org/10.3390/s17112588
https://doi.org/10.1016/j.eng.2023.05.026
https://doi.org/10.1109/JIOT.2019.2926365
https://doi.org/10.3390/s141019767
https://www.ncbi.nlm.nih.gov/pubmed/25340450
https://doi.org/10.1088/1742-6596/1646/1/012130
https://doi.org/10.3837/tiis.2021.10.020
https://doi.org/10.1109/JPROC.2010.2052010
https://doi.org/10.3390/s16030307
https://www.ncbi.nlm.nih.gov/pubmed/26927126
https://doi.org/10.1109/JIOT.2023.3339136


Sensors 2024, 24, 4952 23 of 23

24. Wounchoum, P.; Vanichpattarakul, T.; Dumumpai, K.; Chaoboworn, V.; Saito, H.; Booranawong, A. Effects of Human Presence
and Movement on Received Signal Strength Levels in a 2.4 GHz Wireless Link: An Experimental Study. J. Electr. Eng. Technol.
2022, 17, 2419–2431. [CrossRef]

25. Mrazovac, B.; Bjelica, M.Z.; Kukolj, D.; Todorovic, B.M.; Samardzija, D. A human detection method for residential smart energy
systems based on ZigBee RSSI changes. IEEE Trans. Consum. Electron. 2012, 58, 819–824. [CrossRef]

26. Booranawong, A.; Jindapetch, N.; Saito, H. A system for detection and tracking of human movements using RSSI signals. IEEE
Sens. J. 2018, 18, 2531–2544. [CrossRef]

27. Booranawong, A.; Jindapetch, N.; Saito, H. Adaptive filtering methods for RSSI signals in a device-free human detection and
tracking system. IEEE Syst. J. 2019, 13, 2998–3009. [CrossRef]

28. Lin, W.-C.; Seah, W.K.; Li, W. Exploiting radio irregularity in the Internet of Things for automated people counting. In Proceedings
of the 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, ON, Canada,
11–14 September 2011; pp. 1015–1019.

29. Lin, W.-C.; Seah, W.K.; Li, W. People Counting using Radio Irregularity in Wireless Sensor Networks—An Experimental Study.
arXiv 2021, arXiv:2106.16143.

30. Swathi, G. A Frame Work for Categorise the Innumerable Vulnerable Nodes in Mobile Adhoc Network. Comput. Syst. Sci. Eng.
2020, 35, 335–345. [CrossRef]

31. Li, C.; Wu, G.; Xing, L.; Zhu, F.; Zhao, L. An efficient certificateless aggregate signature scheme designed for VANET. Comput.
Mater. Contin. 2020, 63, 725–742.

32. Zhang, S.; Luo, H.; Wu, Z.; Sun, Y.; Wang, Y.; Yuan, T. Efficient heavy hitters identification over speed traffic streams. Comput.
Mater. Contin. 2020, 63, 213–222. [CrossRef]

33. Rai, L.; Rodrigo, A.; Samadhi, C.; Abeysekara, D.M. Overtaking Assistance System based on Signal Strength to Prevent Accidents
in V2V Communication Environment. ECS J. Solid State Sci. Technol. 2023, 12, 067008. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s42835-022-01070-x
https://doi.org/10.1109/TCE.2012.6311323
https://doi.org/10.1109/JSEN.2018.2795747
https://doi.org/10.1109/JSYST.2019.2919642
https://doi.org/10.32604/csse.2020.35.335
https://doi.org/10.32604/cmc.2020.07496
https://doi.org/10.1149/2162-8777/acdf7f

	Introduction 
	Related Works 
	Architecture and Research Methods 
	Problem Definition 
	Network Architecture 
	RSSI-WSDE 
	Average Sliding Window 
	Variance Sliding Window 
	Variance Amplification Sequence 
	Z-Score 
	Threshold of Dynamic Event Occurrence 
	Dynamic Event Information Marking 


	Experimental Testing 
	Experimental Setup 
	Experimental Results of RSSI-WSDE 
	Indoor Experimental Results 
	Outdoor Experimental Results 


	Conclusions 
	References

