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Abstract: Federated learning is an effective approach for preserving data privacy and security,
enabling machine learning to occur in a distributed environment and promoting its development.
However, an urgent problem that needs to be addressed is how to encourage active client participation
in federated learning. The Shapley value, a classical concept in cooperative game theory, has been
utilized for data valuation in machine learning services. Nevertheless, existing numerical evaluation
schemes based on the Shapley value are impractical, as they necessitate additional model training,
leading to increased communication overhead. Moreover, participants’ data may exhibit Non-IID
characteristics, posing a significant challenge to evaluating participant contributions. Non-IID
data have greatly affected the accuracy of the global model, weakened the marginal effect of the
participants, and led to the underestimated contribution measurement results of the participants.
Current work often overlooks the impact of heterogeneity on model aggregation. This paper presents
a fair federated learning contribution measurement scheme that addresses the need for additional
model computations. By introducing a novel aggregation weight, it enhances the accuracy of the
contribution measurement. Experiments on the MNIST and Fashion MNIST dataset show that the
proposed method can accurately compute the contributions of participants. Compared to existing
baseline algorithms, the model accuracy is significantly improved, with a similar time cost.

Keywords: federated learning; Shapley value; contribution measurement; Non-IID

1. Introduction

In recent years, with the rapid development of machine learning, there have been
great changes in various fields. ML, which is one of the most important areas of artificial
intelligence, makes it possible to learn a model or a pattern of behavior for a given machine
to perform tasks. ML algorithms allow us to process input data using appropriate patterns
to generate output data. That is, we can identify and extract patterns from large amounts
of data to build learning models [1], serving for predictive modeling and decision-making.
In a distributed architecture, it is possible to use consensus mechanisms to manage data
consistency [2]. Traditional machine learning methods usually require centralized collection
and storage of large-scale data, and then training on a central server or in the cloud. As the
public pays increasing attention to data privacy protection, the problem of data silos has
become more severe, making the deployment of collective intelligence technology more
challenging. Federated learning (FL), as a new training paradigm for artificial intelligence
models dealing with data silos, has gained widespread attention in the past few years [3].
FL extends the training process of machine learning from a single device to multiple devices
or compute nodes, enabling parallel processing and model synchronization through the
distributed nature of data and computation. This shift can improve training efficiency,
scalability and robustness, and provide better solutions in terms of privacy protection.
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The performance of the federated learning (FL) system is heavily reliant on sustained
participation from local users, high-quality data inputs, and authentic local training. User
recruitment is a key aspect of federated learning, which includes attracting appropriate
participants to join the FL system and effectively managing their participation behavior
and contributions [4]. Naturally, not everyone is eager to share their data truthfully without
any incentive. Hence, for a viable alliance, all participants should contribute high-quality
data and be periodically rewarded accordingly [5]. However, a critical challenge lies in
determining a fair compensation mechanism for these local data providers. Effective
incentive mechanisms are invaluable in crowdsensing to stimulate the enthusiasm of
strategic users [6]. Fairness means rewarding those who provide high-quality data and
actively engage in federated learning [7] while punishing participants for bad behavior [8].
A fair return mechanism encourages participants to contribute high-quality data and
perform local training in the long run, whereas an unfair allocation scheme may lead
to participant misbehavior or permanent withdrawal. Existing federated learning (FL)
platforms, such as the Federated AI Technology Enabler (FATE) [9], assume the system
already has a stable participant group and does not need to attract more data providers.
However, this precondition may not be satisfied in practice, especially when the participants
are business organizations. Furthermore, since servers typically have limited knowledge of
local users, the global model can be easily poisoned if the server blindly integrates all local
models without proper evaluation. Therefore, it is necessary to design a fair contribution
measurement method, which also serves as the customer evaluation plan, to quantify
the contribution of participants, achieve fair distribution more effectively, and stimulate
participants’ enthusiasm.

With the high development of information technology in the era of big data, all kinds
of devices generate data, and the generation of data increases exponentially. Mobile de-
vices are the main source of data generation, some of which have spatial characteristics,
such as regional mobility, that have a high degree of randomness [10]. However, effec-
tive implementation of federated learning often depends on the availability of broad and
diverse datasets that have traditionally been considered independent and equally dis-
tributed (IID) [11]. Assuming that the data have the same probability distribution and
are independently distributed (IID) is a classic setup for machine learning. However, this
is unrealistic: the composition and properties of things and our daily lives are heteroge-
neous, non-independent, and equally distributed [12]. The problem may be even more
pronounced in federated learning. In federated learning, the challenge of heterogeneity
often needs to be addressed, which refers to the Non-IID (non-independent and identically
distributed) challenge caused by the imbalanced data distribution related to data labels and
data quantities [13]. Existing literature suggests that compared to IID data, the Non-IID
data may lead to significantly lower accuracy in federated learning [14].

Non-IID problems exist significantly in federated learning. This issue is due to biased
labeling preferences at multiple clients and is a typical setting of data heterogeneity [15]
and can be called category distribution heterogeneity. Intra-client category distribution
heterogeneity (class imbalance) refers to the distribution of the amount of data between
classes (i.e., class distribution) in the client being different from the uniform distribution.
The greater the allocation gap, the more severe the imbalance [16]. For example, some
clients may have a large number of samples belonging to class A, but a small number of
samples belonging to class B, while other clients may have the opposite. This kind of dataset
heterogeneity is common in federated learning, because different clients usually collect
data locally, and these data may have label preferences or specific data collection methods.
However, the existing contribution measurement methods of federated learning often
ignore the impact of class distribution differences on participant contributions, resulting in
inaccurate contribution results.

This paper proposes a more accurate method to measure the contribution of partici-
pants in federated learning that alleviates the influence of data distribution heterogeneity on
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contribution measurement, thereby improving the accuracy of contribution measurement
and encouraging more participants to join federated learning.

The main contributions of this paper are as follows:

1. In the process of contribution measurement using Shapley, gradient multiplexing is
performed: we use gradient approximation to reconstruct the model, which saves a lot
of time. The reconfigurable model can be used to evaluate its performance more easily.

2. Considering the heterogeneity of data distribution, a new aggregate weight is used to
mitigate the impact of data heterogeneity on contribution measurement and improve
the accuracy of contribution measurement.

3. We propose a novel metric for measuring participant contributions in federated learn-
ing. By utilizing new aggregation weights, this method effectively mitigates the issue
of data heterogeneity and enables a fairer assessment of participants’ contribution
levels in the federated learning process.

This work is organized as follows: Section 2 describes the relevant background;
Section 3 introduces the relevant work; Section 4 describes the formula definition and
experimental method in detail; Section 5 describes the main experiments and results.
Finally, in Section 6, the conclusions and future work are summarized.

2. Background

This section provides three main backgrounds: non-IID data, Shapley value, and feder-
ated learning. The federated learning approach uses an ML model shared by collaborative
learning while protecting user privacy. Non-IID data refers to heterogeneous data with ran-
dom characteristics. Heterogeneity of category distribution, one of the typical categories in
non-IID, is a common problem in federated learning, which is often seen in the inconsistent
label distribution among participants. The Shapley Value calculates the contribution of
each participant by considering all possible combinations of parties where the contribution
of a party is determined by the expected marginal gain in the value of the data when that
party joins the federation [17]. The Shapley value scheme is intuitive, easy to understand,
and ensures a fair assessment of each participant’s individual contribution, and it is widely
used in current federated contribution assessment.

2.1. IID and Non-IID DATA

By statistical definition, IID means that the random variable data have the same
probability distribution and are independent of each other. That is, the data are more
homogeneous [18]. In other words, when the samples in the dataset are independent and
drawn from the same distribution, we refer to it as IID data. In this case, each sample is
sampled independently from the same data distribution. For example, if we have a dataset
containing pictures of cats and dogs, and the labels for each sample are evenly distributed
(i.e., the same proportion of cats and dogs), then the dataset is IID. In machine learning, it
is commonly assumed that the data are independent and identically distributed.

When the samples in the dataset do not meet the conditions of independence and the
same distribution, we call it non-IID data. As the training data on each client are collected
based on the local environment and usage patterns, there can be significant variations in
the size and distribution of the local datasets among different clients [19]. Consequently,
the samples in the dataset may exhibit varying distributions or correlations. For instance,
let us consider a dataset used for handwritten digit recognition, where the distribution of
samples contributed by different clients may vary.

In federated learning, the IID or non-IID characteristics of data have a significant
impact on the performance of model aggregation and global models. IID data assume that
all clients have the same data distribution, which simplifies and enhances the reliability
of model aggregation. Non-IID data, on the other hand, pose significant challenges, as
the data distribution may vary among different clients. When the private dataset between
clients is not independent and identically distributed (non-IID), the local training objective
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is inconsistent with the global training objective, which possibly causes the convergence
speed of FL to slow down, or even not converge [20].

2.2. Shapley Value

The Shapley value (SV), named after Lloyd Shapley, is a well-established concept in
cooperative game theory that aims to distribute the total profits generated by coalitions
of players [21]. The Shapley value calculates the contribution of each participant to the
utility of all possible coalitions they can be a part of and assigns a unique value to each
participant [22]. It distributes the benefits among participants by considering all possible
ways of cooperative arrangements, ensuring that each partner receives a fair reward based
on their individual contributions. In a cooperative game, players can cooperate to generate
a payoff. These participants may be individuals, organizations, or any other entity working
together. The Shapley value is designed to address the challenge of fairly distributing
rewards in cooperative games.

In cooperative games, multiple participants collaborate to achieve a common goal or
generate value. The fundamental concept of the Shapley value is to quantify the contri-
bution of each participant to the overall outcome, taking into account the order in which
participants join the cooperative process. More specifically, the Shapley value represents
the average marginal contribution of each participant towards the final outcome.

Consider a cooperative game involving n players. For a given player i, we consider
all possible coalitions that player i can form with other players. The Shapley value is a
method to distribute the payout among the players (the features) fairly. It evaluates all
possible combinations of features, determining each feature’s contribution to the difference
in the model’s prediction when included against when excluded [23]. The Shapley value is
computed by aggregating the contributions of player i across all possible coalitions and
taking a weighted average.

2.3. Federated Learning

The concept of federated learning was first proposed by a research team at Google in
2016 as a distributed machine learning paradigm to protect privacy [24]. In their research,
the team introduced a distributed machine learning approach that enables model training
using data scattered across different participating devices while preserving data privacy.
The study aimed to address the privacy and security concerns associated with centralized
storage of large-scale datasets in traditional centralized machine learning methods. In fed-
erated learning, each participant holds their own local data and conducts model training
on their respective devices. They then transmit only the updated model parameters to
a central server for aggregation. This approach mitigates the challenges associated with
centralized storage and transmission of datasets, thereby reducing privacy risks and data
transfer costs. Federated learning is extensively employed in various scenarios, including
mobile devices, IoT devices, edge servers, etc., to accomplish tasks such as personalized
recommendations, speech recognition, image classification, and more. Federated learning,
as a novel distributed collaborative learning paradigm, has been widely applied in many
scenarios and has successfully trained better models by sharing the private data of multiple
clients without leaking privacy [25]. Due to these advantages, federated learning has
greatly facilitated data collaboration and sharing among participants, addressing people’s
concerns over data privacy.

The FL system enables multiple parties to collaborate on learning tasks while keeping
their data local to ensure security. In scenarios where strong privacy is essential, parties
may need to be isolated from one another to prevent communication [26]. Federated
learning is not merely a component of machine learning but rather a distributed machine
learning framework that focuses on a data management process for sharing data among
multiple clients while preserving privacy. Figure 1 llustrates the working principle of
generic horizontal federated learning.
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Figure 1. General federated learning structure diagram.

An illustrative example of federated learning is the word prediction task in the input
method of smart devices. While performing this task, it is essential to protect users’ privacy
and minimize communication congestion. Rather than transmitting private user data to a
central server, training the predictor in a distributed manner is more reasonable. During this
task, the smart device engages in periodic communication with the central server to acquire
the global model. In each communication epoch, the selected smart device employs its local
data for training and transmits the local model to the server. Following model aggregation,
the server disseminates the updated global model to other device subsets. The process of
continuous iterative training takes place between the server and the participating devices
in federated learning until the model converges [27].

Participants establish communication with a trusted central server to exchange rele-
vant information, including models, gradients, and more. Nonetheless, participants acquire
this information based on their local data, which may exhibit non-IID (non-independent
and identically distributed) characteristics. Moreover, due to simultaneous communication
from multiple parties, there is a potential risk of communication congestion.

3. Related Work

Federated learning is a distributed framework that enables multiple clients to collab-
orate using their local data to train a shared model while maintaining data privacy and
preventing data leakage [28]. In Ref. [29], the authors present the theoretical concepts of
federated learning and apply them to develop a machine learning model using a vehicle’s
basic safety information (BSM) dataset. The model is created through the on-board vanet
network over the Internet of Vehicles (IoV) to ensure privacy during misconduct detection.

In current deep learning paradigms, local training or the Standalone framework tends
to result in over-fitting and thus poor generalizability. This problem can be addressed by
distributed or federated learning (FL) that leverages a parameter server to aggregate model
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updates from individual participants. However, most existing distributed or FL frameworks
have overlooked an important aspect of participation: collaborative fairness [30]. This
situation is inherently unfair. In practice, the contribution levels of participants vary for
various reasons, such as the quality and quantity of data held by different participants.
Federated learning is a collaborative machine learning framework involving multiple
participants who maintain their training datasets locally. Evaluating the data contribution
of each participant is one of the crucial challenges in federated learning [17]. Implementing
a fair measurement method for participant contributions in federated learning ensures
fairness among participants and rational resource allocation, establishes a basis for model
selection, and encourages active participation in the federated learning process. This helps
build a healthy, sustainable federal learning ecosystem. The work by Wang et al. [17]
provides a detailed description of the challenges encountered in federated learning and
presents common methods for measuring participant contributions, including leave-one-
out and Shapley value.

Leave-one-out: The leave-one-out method (LOO) is widely used in machine learning
tasks for cross-validation [31]. It is an intuitive data valuation method that measures a
data point’s contribution by how much a model’s accuracy will lose after removing it [32].
Based on the idea of LOO, we can use the marginal loss in the value of the participant
combination after excluding a certain participant as the contribution of that participant
to the federation [33]. Unlike the individual method, the LOO method fully follows the
participant combination data value measurement paradigm; that is, the contribution assess-
ment and data value measurement problems are orthogonal. However, the LOO method
only considers the marginal benefit brought to the federation by a certain participant when
all other participants are fully retained, and this way of specifying the participant to join
the federation last to evaluate the contribution also has fairness issues. For example, when
there are multiple participants holding the same but highly valuable data for the federation,
removing any one of the participants holding those data will not have a significant impact
on the federation’s test accuracy, and these participants will be assessed as low-value,
but at the same time, removing these participants will greatly reduce the performance
of the federation. By eliminating the need for model retraining, this approach improves
computation efficiency. Nevertheless, empirical experiments have demonstrated that LOO
fails to capture the relative utility between any two samples [34], leading to undervaluation
of individual contributions.

Shapley value: intuitive, easy to understand, to ensure fairness in assessing the
individual contributions of each participant, the Shapley value (SV) is widely employed
in current federal contribution assessment. Ghorbani et al. [32] introduce Data Shapley,
which applies the concept of Shapley value (SV) to the data valuation problem. The SV of a
data sample represents the average of its marginal contributions to the model considering
all possible joining orders of the samples. Under this approach [32], the authors proposed
a truncated Monte Carlo Shapley algorithm, which was implemented through random
sampling arrangement and truncation of unnecessary sub-model training and evaluation,
thereby reducing unnecessary model evaluations and significantly saving operational
resources. Song et al. [7] argue that the existing contribution measurement scheme based on
the Shapley value is not suitable for federated learning due to the additional model training
involved, which incurs high costs. In order to solve this problem, the intermediate results
of the federated learning training process are used to approximate the reconstruction of the
model and reduce the additional model training process. When calculating the Shapley
value, the challenge of O(2n) permutations is unavoidable. If the number of participants
increases significantly, implying a large value of n, it becomes impractical to enumerate all
2n data combinations and compute all marginal contributions precisely. In the literature [34],
the idea of the K-subset is adopted to address this problem. A stratified sampling method is
used to randomly select each participant subset of possible size, and the occurrence time of
size K is strictly recorded. The participant’s Shapley value is reconstructed to his expected
contribution to a K-sized subset with random cardinality. Wei et al. [35] introduced a
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truncated multi-round (TMR) method in their paper, which is an improvement over the
MR algorithm. It considers the accuracy of each round and assigns higher weights to
training rounds with higher accuracy when performing the weighted averaging. It uses a
decay factor to ignore the weights of the round-level ϕ(t) in the last few rounds and only
constructs and evaluates the models that have an effective influence on the final result.

Although federated learning (FL) offers an appealing framework for addressing the
“data silos” challenge and decomposing a machine learning task into a collaborative effort,
it faces several practical obstacles. On one hand, existing studies make the optimistic as-
sumption that all mobile devices unconditionally contribute their resources [36]. However,
this assumption is unrealistic and unfair to the parties involved. On the other hand, con-
cerning training effectiveness, data distributed among different local participants are often
non-independent and non-identically distributed (non-IID) [37]. Zhu et al. [38] believe
that the presence of non-IID data inevitably results in a decline in FL accuracy, primar-
ily due to the bias introduced by non-IID data into local model weights. The presence
of heterogeneous data affects the convergence speed and learning ability of the model.
Lyu et al. [39] introduced the federal average (FedAvg) model, a practical approach for joint
learning of deep networks based on iterative averaging. FedAvg is frequently employed as
an aggregation model, known for its robustness to non-IID data. Wang et al. [40] proposed
a FedNova framework that reweights the target system’s heterogeneity to mitigate the
non-IID problem. Hsu et al. [41] introduced the FedAvgM model, which stabilizes FL
training using momentum on the server side to suppress oscillations through the contin-
uous accumulation of gradient history. FedFTG [42] (Zhang et al.) fine-tunes the global
model using hard samples to correct model drift after aggregation. FedGen [43] (Zhu et al.)
addresses the issue of knowledge distillation requiring a proxy dataset by learning a feature
generator from the local label distributions uploaded by clients to assist local training.
This method allows the knowledge obtained from knowledge distillation to constrain local
updates, enhancing client performance on non-IID data. However, these methods demand
significant computational power from the server, resulting in much higher computational
costs. In our proposed Shapley value-based contribution measurement method, the target
data heterogeneity is reweighted based on local differences, alleviating the non-IID problem
by adjusting the aggregation weights of the participants. Our method is computationally
simple and performed locally, with participants not uploading any private information.
Therefore, our approach does not impose additional computational burdens on the server,
making the computational cost negligible.

4. Materials and Methods

Federated learning, as a distributed learning approach, can alleviate network conges-
tion, prevent privacy leaks, and reduce the consumption of computational and communica-
tion resources. However, in federated learning, the size of the model parameters updated
by training on local devices (which can reach billions) can reach tens of megabytes. There-
fore, there may be a bottleneck when aggregating the model parameters in the parameter
server [44]. In the current federated learning contribution evaluation schemes, evaluating
individual utility through changes in model outputs often requires retraining multiple ML
models, which poses a significant challenge to the aggregation server. The server must
allocate additional computational resources for model retraining, which in turn affects the
convergence speed of the models. Currently, the widely adopted algorithm for global model
updates on the server is the FedAvg algorithm [45]. FedAvg, which performs weighted
averaging based on the data volume from participants, is a common and effective method
in federated learning. However, according to the Pareto principle, especially in cases of
data heterogeneity, using only the one-dimensional data volume to obtain the aggregated
global model is often insufficient [46]. The heterogeneity in data distribution not only
affects the model’s accuracy but also impacts the evaluation of participants’ contributions.
To solve these problems, we propose a fair contribution measurement scheme based on the
Shapley value. Our proposed scheme not only avoids the need for additional sub-model
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retraining, greatly saving computational resources, but also mitigates the adverse effects of
data distribution heterogeneity.

4.1. Contribution Measurement Method Based on the Shapley Value

As an example of horizontal federated learning, which we show in Figure 1, suppose
N = {1, 2, · · · , n} clients participating in federated learning have local private datasets
Di, i ∈ {1, 2, · · · , n}. Suppose that federated learning requires T iterations to achieve a
convergent model. In each epoch t ∈ {1, 2, · · · , T}, participant i downloads the global
model M(t) from the server. It utilizes its local data for model training, resulting in a local
model M(t+1)

i . Subsequently, participant i sends the updated sub-model to the server,

which calculates the corresponding gradient ∆(t+1)
i based on the uploaded sub-model:

∆(t+1)
i = M(t+1)

i −M(t) (1)

On the server side, it will collect each sub-model, calculate the update gradient of the
corresponding participant, store it, and then perform an aggregation operation, which is
the FedAvg algorithm in study [36] to update the global model. Its specific operations are
as follows:

M(t+1) = M(t) + ∑
i

|Di|
|DN |

∆(t+1)
i (2)

where |Di| is the size of training data Di of participant i, and |DN | is the sum of data owned
by all participants.

Data Shapley value [32], ϕ (N,U), can be used to evaluate the contribution by each
participant. It is defined as:

ϕi(N, U) = ∑
S⊆N\{i}

U
(

MS∪{i}

)
−U(MS)(

n− 1
|S|

) (3)

Here, U represents a utility evaluation function that measures the predictive perfor-
mance of the learned model on an independent test set. In this paper, model accuracy
is employed as the evaluation metric. The function is executed on the server, leveraging its
higher computing power to efficiently obtain results without impacting the model’s runtime.
The Shapley value is attractive for contribution evaluation problems because it satisfies some
desirable axiomatic properties. We summarize the following common axioms [47]:

• Group Rationality: The value of the entire dataset is completely distributed among all
users, i.e., ϕ(D) = ∑i∈D ϕ(i).

• Fairness: (1) Two users who are identical with respect to what they contribute to a
dataset’s utility should have the same value. That is, if user i and j are equivalent in
the sense that: i.e., ∀S ⊆ N \ {i, j}, if U(S ∪ {i}) = U(S ∪ {j}), then i = j; (2) Users
with zero marginal contributions to all subsets of the dataset receive zero payoff: i.e., if
U(S ∪ {i}) = U(S), then i = 0 for all ∀S ⊆ N \ {i}.

• Additivity: The values under multiple utilities sum up to the value under a utility that
is the sum of all these utilities: i.e.,∀i ∈ N, ϕ(U1 + U2, i) = ϕ(U1, i) + ϕ(U2, i), where
U1 U2 are two utility tests.

4.2. Gradient-Based Model Reconstruction

When evaluating contributions using Formula (3), additional sub-model reconstruc-
tion is often involved when evaluating U(Ms). To address this issue, we employ a gradient-
based approach to reconstruct the sub-model in federated learning (FL): Suppose that in
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epoch t, we need to reconstruct the sub-model Mt
s for performance evaluation, which can

be defined as follows:

U(Mt
s) = U

(
Mt−1 + ∑

i∈s

|Di|
|Ds|

∆(t)
i

)
(4)

where Mt−1 is the global model from the previous round, and ∆(t)
i is the gradient infor-

mation collected by the server in the current round. To evaluate the performance of the
sub-model MS, we only need to use the global model from the previous round and the
gradient information from the subset of participants S in the current round to reconstruct
the sub-model MS by Formula (4).

There is a clear difference between our approach and the current one: when calculating
the Shapley value and needing to evaluate model Ms, the common approach is to retrain
the model. The server would require all participants, except participant i, to perform
local training again, and then aggregate the relevant information to reconstitute an Ms
for evaluation. This process consumes a significant amount of computational resources
on the server. In our method, this step is replaced by reconstructing the sub-model using
the previous round’s FL model and the current gradient information. Therefore, this
method addresses the issue of needing extensive sub-model retraining to calculate SV in
federated learning, greatly saving computational resources and accelerating the efficiency of
SV computation.

4.3. Build a New Aggregate Weight

Currently, the commonly used algorithm for updating the global model on the server
is the FedAvg algorithm [36]. However, this algorithm may have certain limitations.
During the aggregate weight calculation process, the algorithm assigns weights solely based
on the dataset sizes, neglecting the impact of data distribution heterogeneity. The presence
of heterogeneous data weakens the contribution level of participants to the global model,
which makes the results of contribution measurement inaccurate. To alleviate this issue,
previous studies have mainly focused on regularization techniques for local models or
fine-tuning the global model, overlooking the adjustment of aggregation weights, often
assigning weights solely based on dataset sizes [15]. Considering the impact of data
distribution heterogeneity on the model, it may be more reasonable to incorporate it into
the calculation of aggregate weights in order to mitigate its effects.

Hence, our approach involves quantifying the issue of data distribution heterogeneity
and incorporating it into the computation of updated aggregate weights. First, we assume
a global category distribution FG on the server: A global category distribution is defined
as one where each data category is evenly distributed, and the number of categories
is consistent. This assumption promotes fairness among categories and enhances the
generalization ability of the global model. Based on this assumption, we can calculate the
local category distribution Fi for each participant. During the global model aggregation
phase, participants only upload their respective local models. For security reasons, local
class distribution information is not uploaded. Subsequently, we can readily calculate
the discrepancy between each participant’s distribution and the global distribution on the
server side, denoted as Fk. In this study, we employ the Kullback–Leibler (KL) divergence
to quantify the difference between these distributions:

F(k=i) = DKL(Fi∥FG) = ∑
i

P(Fi) log
P(Fi)

P(FG)
(5)

We studied the performance of local models on the test set for participants with
different local category distribution differences, as shown in Figure 2. From the figure, it
can be observed that participants with larger differences have poor performance in their
local models. This poorly performing model will greatly affect the global model.



Sensors 2024, 24, 4967 10 of 28

Figure 2. Impact of category distribution differences.

According to Formula (2), the weight of the size of the dataset in the formula is
defined as Nk. That is to say: Nk =

|Di |
|DN |

. Using the previously calculated data distribution
difference value Fk for each participant, we can incorporate it into Formula (2) to obtain a
new aggregate weight, denoted as Dk:

DK ∝ NK − a ∗ Fk + b (6)

Here, k = i, and a and b represent two constants. By utilizing Formula (6), we
establish a relationship between the aggregate weights and the dataset size Nk as well as
the distribution of participant categories Fk. By formulating the aggregate weights, we can
assign smaller weights to participants with higher difference levels, thereby mitigating
the impact of heterogeneous data on the model. We design the aggregation weights of
the participants reasonably to obtain an optimal weight, which can positively impact the
experiment. The aggregation weights are closely related to the hyper-parameters a and b.
By adjusting the values of a and b, we can assign an optimal aggregation weight to each
participant to achieve the best performance. We will discuss the values of a and b in detail
in the next section to obtain an optimal aggregation weight.

4.4. New Aggregate Function

Based on the preceding research, we can redefine Formula (2) by incorporating
Formula (6) with the new aggregate weights, thus determining our final aggregate function.

Mt+1 = M(t) + ∑
i

Dk=i∆
(t+1)
i (7)

For participants with large differences in local category distribution, the performance
of the local model trained with local data is poor compared to participants with smaller
differences in local category distribution. If the server directly uses this poor gradient
information to aggregate the global model, it will inevitably affect the performance of the
global model, leading to inaccurate SV measurement results. Our method calculates the
local category distribution difference Fk for each participant in the early stages of federated
learning. In the federated aggregation stage, the server no longer uses only the proportion
of the participants’ data as the aggregation weight, but also considers incorporating Fk into
the aggregation weight to mitigate the impact of the differences in the category distribution
of the participants. Specifically, in the aggregation function of Formula (7), the aggregation
weight for each participant can be dynamically adjusted: we can assign larger aggregation
weights to participants with more data and smaller local category distribution differences,
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as the gradient information they upload is beneficial to the global model being trained; for
participants with large local category distribution differences and small data volumes, we
assign a smaller aggregation weight to reduce their impact on the global model, thereby
improving the performance of the global model. Through Formula (3), we can also find
that, with other metrics unchanged, the performance of the global model is significantly
improved due to the greatly reduced impact of heterogeneous participants on the global
model, which further increases the SV of the participant.

Based on the aforementioned modifications, we have established the model structure
of this paper, which is illustrated in Figure 3.

Figure 3. Modified federated learning structure diagram.

During the model aggregation process, participants only upload their local models
and their respective class distribution differences Fk. To protect privacy, the local category
distribution Fi is still saved locally and is not uploaded. Participants can easily calculate
the difference between the local distribution and the global distribution based on FG.
The trusted server can then compute new aggregation weights Dk based on Fk and use
them to update the global model, which is subsequently distributed to all participants.

4.5. Contribution Measurement Algorithm Based on the Shapley Value

The core idea of our algorithm is that, in each epoch, the server collects local mod-
els from different participants, uses them to calculate the relevant gradient information,
and uses the gradient information to approximately reconstruct the model on different
dataset combinations, avoiding additional training. Next, we use Formula (3) to evaluate
the performance of these reconstructed models and further evaluate the contribution level
ϕi of each participant. Ultimately, we obtain the final result by taking a weighted average
of ϕi values from different training epochs. See the pseudo-code description for details.
Algorithm 1 is divided into two parts. Lines 1–22 depict the server-side execution. More
specifically, lines 1–13 illustrate the calculation process for the global model: The server
first initializes a global model and sends it to each participant. Participants use their local
data to perform local training on the initial model sent by the server and upload the trained
local model and local class distribution differences to the server. Upon receiving this
information, the server calculates each participant’s gradient information ∆(t + 1)i and
stores this gradient information along with the cycle information for subsequent global
model updates. Then, using Fk, it calculates the aggregation weights with distribution
differences and updates the global model. In lines 14–19, leveraging Formula (3) and the
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reconstructed model from each epochs, we estimate ϕ
(t+1)
i , representing the contribution

index of participant i in epoch t + 1. In line 21, we use the attenuation factor ω ∈ (0,1) to
regulate the calculation of the final SV. The purpose is that, when calculating the global SV,
it is gradually affected by the common influence of all datasets due to increasing iteration
epochs. Therefore, earlier epochs are given a higher weight. Lines 23–32, the second
segment, is executed by the client: In the first epoch of model training, participants first
calculate the local class distribution information Fi. They can then calculate the local class
distribution difference Fk (only in the first epoch of computation). Subsequently, the client
receives the global model sent from the server and trains the local model using the gradient
descent algorithm with local data. The trained local model and the local class distribution
difference Fk are then uploaded to the trusted server.

Algorithm 1 FL participant contribution evaluation.
Input: B is the local minibatch size, E is the number of local epochs, and η is the learning
rate; FG is the global distribution we set.
Server executes:

1: N←−{1, 2, ··· , n};
2: Initialize M(0), {M(0)

s |S ⊆ N};
3: Fi ←− CalculateLocal(i, Di) for client i ∈ N;
4: for each epoch t←− 0, 1, 2· · · , T−1 do
5: /* Calculate the Global Model */
6: M(t+1)

i ←− LocalUpdate(i, M(t+1)) for client i ∈ N;

7: ∆(t+1)
i ←− M(t+1)

i −M(t) for client i ∈ N;
8: /* Calculate aggregation weight*/
9: Dk = Nk − a ∗ Fk + b Where Nk =

|Di |
|DN |

;

10: M(t+1) ←− M(t) + ∑i∈N D(k=i)∆
(t+1)
i ;

11: for each subset S ∈ N do
12: ∆(t+1)

S ←− ∑i∈S Dk∆(t+1)
i ;

13: M(t+1)
S ←− M(t) + ∆(t+1)

S ;
14: end for
15: /* Calculate the epoch-ϕi */
16: for i←− {1, 2, ··· , n} do

17: ϕ
(t+1)
i = C ·∑S⊆N\i

U(M(t+1)
S∪i )−U(M(t+1)

S )

(
n− 1
|S| )

;

18: end for
19: end for
20: /* Calculate the final ϕi */

21: ϕi = ∑R
t=1 ωt · ϕ

(t)
i

∑n
i=1 ϕ

(t)
i

for client i ∈ N;

22: return M(R) and ϕ1, ϕ2, ..., ϕn;
Client executes:
23: Fk ←− CalculateDistributionDifferences (Fi, FG) for client (i = k) ∈ N (Only counted in

the first epoch) ;
24: LocalUpdate(i, M):
25: /* Calculate the Local Model */
26: B←−(split Di into batches of size B);
27: for each local epoch e←− 1, 2, ..., E do
28: for batch b ∈ B do
29: M←− M− η∇L(M; b);
30: end for
31: end for
32: return M and Fk to server
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5. Experiment and Results

In this section, we perform experiments on the aforementioned algorithms under
various data distributions to assess their performance and compare them against existing
mainstream methods.

5.1. Dataset

This experiment was conducted on the MNIST [48] and Fashion MNIST [49] datasets.
The MNIST dataset consists of a collection of over 60,000 training images and more than
10,000 test images of handwritten digits. We randomly sampled 5421 images for each digit
category, totaling 54,210 samples for the experiment. Additionally, we randomly selected
8920 images for each digit as a separate test dataset, resulting in a total of 89,200 samples
for testing. The Fashion MNIST dataset is a clothing classification dataset containing
10 categories, with the same amount of training and test data as the MNIST dataset.
Compared to MNIST, Fashion MNIST presents higher challenges in terms of image quality
and diversity, as it includes more backgrounds and different perspectives. We performed
the same data sampling process on the Fashion MNIST dataset to form the training and
test sets used in our experiments to meet our requirements.

For the FL experiment, we established five clients; this is a relatively common setup.
In fact, our algorithm remains applicable and even has greater advantages when there
are more participants involved. In scenarios with a large number of participants, existing
methods to evaluate the SV (Shapley value) of the participants often rely on sub-model
retraining. If there are many participants, the reconstruction of the model involves extensive
training, which requires a lot of participants to retrain a sub-model, consuming significant
computational resources and increasing the model’s runtime. Our model reconstructs
the model based on gradients, eliminating the need for sub-model retraining. The more
participants there are, the greater the advantage for our model, as our runtime will be
significantly reduced. For servers with limited computational resources, our method can
greatly alleviate the computational burden on the server compared to other methods in
scenarios with a large number of participants. To evaluate the performance of the proposed
algorithm under different FL settings, we set up five different federated scenarios for testing:

• Same Distribution and Same Size: In this setup, we randomly partitioned the dataset
into five equally sized subsets, each containing the same number of images and
maintaining the same label distribution.

• Same Distribution and Different Size: We extracted the data we intended to use
from the training set and divided them into 20 portions to create a local dataset for
each participant. The proportion for participant 1 is 2/20; for participant 2, it is 3/20;
for participant 3, it is 4/20; for participant 4, it is 5/20; and for participant 5, it is 6/20.
We ensured that the amount of data varied between participants, and within each
participant’s dataset, each numerical category had the same quantity.

• Different Distributions and Same Size: In this setup, we divide the dataset into
five equal parts, with each part having a distinct distribution of feature data. To be
specific, the dataset for participant 1 comprises 80% of the samples labeled as “1” and
“2”, while the remaining 20% of the samples are equally distributed among the other
numbers. This distribution strategy also applies to participants 2, 3, and 4. The final
client exclusively contains handwritten numeric samples labeled as “8” and “9”.

• Biased and unbiased: This method builds upon the “Different Distributions and
Same Size” method by aiming to enhance the heterogeneity of data distributions
among clients. Under the condition that each participant possesses an equal number
of samples, the method employs a more heterogeneous setup. It includes four biased
clients, each containing two categories of non-overlapping data, and one unbiased
client with an equal number of samples from all ten categories.

• Noisy Labels and Same Size: The data partitioning in this setting is identical to that
in the “Same Distribution and Same Size” method. Subsequently, varying proportions
of Gaussian noise are introduced to the input images. The specific configuration is as
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follows: participant 1 has 0% Gaussian noise; participant 2 has 5%; participant 3 has
10%; participant 4 has 15%; and participant 5 has 20%.

5.2. Baseline Algorithm

Although there are many federated learning contribution measurement schemes based
on the Shapley value, they often involve additional model evaluation and affect model
convergence. Therefore, we selected the widely used and classic contribution measurement
scheme as the baseline algorithm. These schemes employ measures to reduce the need for
additional model evaluation, and our work is more appropriate in comparison with these
schemes. Here are the algorithms we used to make the comparison:

• Exact Shapley: This is the exact computation method proposed in the literature [32].
This method calculates the original Shapley values according to Formula (3), which
involves a large amount of sub-model reconstruction. It evaluates all possible combi-
nations of participants, and each sub-model is trained using their respective datasets.

• TMC Shapley: The method mentioned in the literature [32] is the truncated Monte
Carlo Shapley algorithm, which uses local datasets and the initial FL model to train
models for a subset of FL participants. To reduce unnecessary computational re-
sources, the Monte Carlo Shapley value estimation is achieved by randomly sampling
permutations and truncating unnecessary sub-model training and evaluation. Specif-
ically, during model training, in each iteration, the algorithm generates a random
sequence of training data points. The performance of the model trained with the
first j datasets of the current random permutation is compared to the performance of
the model obtained using all training datasets. If the difference is less than a prede-
fined performance tolerance, it indicates that the addition of subsequent datasets will
not produce new marginal contributions, and further model training is not required.
Otherwise, the model needs to be retrained with the first j datasets to obtain new
model performance.

• K-subset Shapley: This method [34] randomly takes every possible size subset of
a participant, strictly records the occurrence time of size K, and reconstructs the
participant’s Shapley value to his expected contribution to a K-size subset with a
random base. The way retains the hierarchical structure of the Shapley value, and it
has high approximation precision.

• SOR Shapley: Similar to the OR method in the literature [7], this method uses gradi-
ents to reconstruct sub-models, thereby avoiding the need for local users to retrain
and thus saving computational resources. The Shapley value for each participant
is calculated at each training epoch, and the results are recorded. These contribu-
tion results are then aggregated to reflect the overall performance of each client in
federated learning.

• TMR Shapley: This method is the truncated multi-round (TMR) construction intro-
duced in [35], which is an improvement of the MR algorithm. It uses a decay factor λ
and the accuracy of each round to control the weights of the round-level ϕ(t) in the
final result. Once the round-level ϕ(t) become negligible for the final result, the model
is no longer constructed or evaluated. Specifically, during the iterative process of feder-
ated learning, when calculating each participant’s round-level ϕ(t), we check whether
λt is less than the threshold we set (at this point, round-level ϕ(t) can be considered
negligible for the final result). If it is, the contribution assessment is truncated, and its
result is not included in the final calculation of the participant’s contribution. This
approach saves computation time and improves efficiency.

At the same time, we analyzed the baseline algorithm used in the experiment and
the algorithm proposed by us, including the technology adopted by the algorithm, time
complexity, advantages and disadvantages, etc. The specific details can be seen in Table 1.
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Table 1. Data evaluation approaches based on Shapley value.

Name Time Complexity Approach Characteristics

Exact Shapley [32] O(N2 log N) Submodel reconstruction Low computation complexity,
time-consuming

TMC Shapley [32] O(N2 log N) Truncation, model approximation Reduced computation,
high error risk

K-sub Shapley [34] O(N2 log N) Stratified sampling Reduced computation,
Loss of some precision

SOR Shapley [7] O(N2 log N) Model approximation Reduced computation,
unnecessary estimation

TMR Shapley [35] O(N2 log N) Truncation, model approximation Truncation reduces computation,
high error risk

Ours O(N2 log N) Reconstructed model based on gradient Reduced computation, mitigate the effects of Non-IID,
lack of noise data sensitivity

5.3. Performance Evaluation Metrics

The performance of the comparison approaches is evaluated with the following metrics:

• Time: We compared the training time of the model with the time required to calculate
the contribution index.

• SV: We compare the Shapley value of the participants obtained using different algo-
rithms in various scenarios.

• Accuracy: We evaluated the model accuracy using different algorithms in vari-
ous scenarios.

5.4. Hyper-Parameters Setting

Through experiments, we studied the effect of different values of a and b on the
performance of the model to determine the ideal weights for our experiment. We stud-
ied the performance of the model with a and b on different datasets in the same fed-
erated scenario. As shown in Tables 2 and 3, when a = 0.6 and b = 0.1, our model
achieves the best gain, which means the optimal aggregation weight for the participants can
be obtained.

Table 2. MNIST, different distributions and same size, exact Shapley (FedAVG). The optimal results
have been shown in bold in the table.

a\b 0.05 0.1 0.2 0.3 0.4

0.2 0.56 0.03 0.20 0.32 0.63
0.3 0.43 0.74 0.39 0.31 0.12
0.4 0.21 1.09 0.14 0.22 0.16
0.5 0.72 1.29 0.57 0.20 0.89
0.6 0.17 2.54 0.77 0.66 1.39
0.7 0.61 0.76 0.71 1.19 0.06

Table 3. Fashion-MNIST, different distributions and same size, exact Shapley (FedAVG). The optimal
results have been shown in bold in the table.

a\b 0.05 0.1 0.2 0.3 0.4

0.2 0.74 0.27 0.06 0.79 0.19
0.3 0.39 0.89 0.24 0.89 0.27
0.4 0.53 0.49 0.52 0.35 0.59
0.5 0.49 0.19 0.69 0.45 0.69
0.6 0.77 1.97 0.71 0.58 0.56
0.7 0.89 0.54 0.83 0.83 0.19
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5.5. Experimental Result

In this section, we conduct experiments on several federated scenarios with different
datasets and analyze the experimental results.

5.5.1. Experimental Result on MNIST

Same distribution and same size: In this case, each participant is assigned to the same
data category and quantity. Thus, the expected outcome is for each participant to have
the same SV. Figure 4 illustrates the variations of different algorithms with respect to the
number of training epochs in this scenario. As observed in Figure 4a,c,d, the performance of
“Exact Shapley”, “K-subset Shapley”, and “SOR Shapley” methods is not optimal, resulting
in significant variation in SV among the five participants. Figure 4b,e,f demonstrate that,
although the “TMC Shapley” and “TMR Shapley” algorithms achieved the desired outcome
with relatively close SV among multiple participants, their performance is still inferior to
our algorithm. The results obtained from our algorithm indicate that the SV of the five
participants are very close to one another. Regarding time and accuracy, Table 4 reveals that
the “Exact Shapley” method exhibits low efficiency, requires substantial time, and yields
subpar model accuracy. The “TMR Shapley” algorithm takes the least time, but its model
accuracy is lower than ours. Our method attains favorable outcomes while maintaining
comparable runtime to other baseline algorithms.

Table 4. Time and accuracy.

Name Time Accuracy

Exact Shapley [32] 10,840.24 s 84.93%
TMC Shapley [32] 720.56 s 86.95%

K-subset Shapley [34] 601.76 s 86.87%
SOR Shapley [7] 636.94 s 86.70%

TMR Shapley [35] 574.05 s 86.69%
Ours 646.35 s 90.64%

Same distribution and different size: In this setting, we make the feature distribution
of the participants consistent and change the number of their features. From Formula (2),
we can see that the more characteristic data the player has, the greater the weight, and theo-
retically the greater SV. However, as can be seen from Figure 5a–e, the baseline algorithms
are ill-suited for this non-IID scenario, resulting in unsatisfactory experimental outcomes.
When the last participant possesses the most feature data, their contribution should far
exceed that of other participants. Furthermore, the SV of the first four participants ex-
hibit a decreasing trend, contrary to the actual results. Figure 5f demonstrates that our
algorithm effectively captures this characteristic, yielding precise measurement results.
Our algorithm accurately determines that the participant (Participant 5) with the highest
number of feature data has a positive and maximum SV. In addition, it correctly captures
the increasing trend of the SV among the first four participants, unlike the unreasonable
measurement results of the baseline algorithm. In terms of time and accuracy, we can see
from Table 5 that, although our time cost is not optimal, it is still within the acceptable
range, but compared with other baseline algorithms, we have higher accuracy. Compared
with the “Exact Shapley” algorithm, the algorithm time is greatly reduced.
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(a) Exact Shapley (b) TMC Shapley

(c) K-subset Shapley (d) SOR Shapley

(e) TMR Shapley (f) Ours

Figure 4. Same distribution and same size.

Table 5. Time and accuracy.

Name Time Accuracy

Exact Shapley [32] 11,570.86 s 85.43%
TMC Shapley [32] 737.58 s 86.71%

K-subset Shapley [34] 630.42 s 86.32%
SOR Shapley [7] 600.94 s 86.83%

TMR Shapley [35] 587.43 s 86.72%
Ours 729.98s 88.38%
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(a) Exact Shapley (b) TMC Shapley

(c) K-subset Shapley (d) SOR Shapley

(e) TMR Shapley (f) Ours

Figure 5. Same distribution and different size.

Different distributions and same size: In this setting, each participant is allocated the
same data quantity, but their feature distributions are heterogeneous. First, let us look at
the SV measurement. As depicted in Figure 6a–e, the following observations can be made:
Among the compared baseline algorithms, none of them exhibit robustness against the
heterogeneity of the data distribution. Specifically, when participant 5’s data exhibits high
heterogeneity, the baseline method yields a negative SV for that participant. However,
this result contradicts the definition of SV. Participants who contribute high-quality data
through realistic training should be assigned larger SV, whereas those providing random
data should receive smaller SV [50]. The presence of heterogeneous data adversely affects
the accuracy of SV measurements. Our algorithm alleviates the impact of heterogeneous
data and accurately assigns a positive SV to participant 5, as evident from Figure 6f.
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In contrast to the baseline algorithm, our algorithm achieves accurate measurement of the
SV for each participant. As evident from Table 6, the “Exact Shapley” method remains
computationally expensive. Although the time of “TMR Shapley” algorithm is shorter,
the model accuracy is not as good as ours. Our algorithm achieves better results when the
time overhead is similar to other baseline algorithms.

(a) Exact Shapley (b) TMC Shapley

(c) K-subset Shapley (d) SOR Shapley

(e) TMR Shapley (f) Ours

Figure 6. Different distributions and same size.

Table 6. Time and accuracy.

Name Time Accuracy

Exact Shapley [32] 10,865.56 s 84.42%
TMC Shapley [32] 659.58 s 85.53%

K-subset Shapley [34] 679.24 s 85.72%
SOR Shapley [7] 695.14 s 85.83%

TMR Shapley [35] 564.35 s 85.68%
Ours 655.78 s 86.96%
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Biased and unbiased: This setting is similar to the “Different Distributions and Same
Size” scenario, but it exhibits a greater degree of heterogeneity in feature distribution.
Figure 7 provides additional evidence of our algorithm’s robustness in handling data
distribution heterogeneity. Although all the algorithms measured a higher contribution
from the last unbiased participant, the outcomes for the remaining four biased participants
were unsatisfactory. Figure 7b–e demonstrate that the SV of the four biased participants,
as measured by the “TMC Shapley”, “K-subset Shapley”, “SOR Shapley”, and “TMR Shap-
ley” methods, are negative. Figure 7a,f illustrate that the “Exact Shapley” method assigns a
positive SV to participant 5, but it exhibits significant discrepancies in SV measurements
for the four biased participants. Our algorithm accurately captures the larger SV of the
unbiased participant while assigning the smaller positive SV to the remaining four biased
participants who have no harmful data and achieves subtle numerical differences between
the biased participants. This is consistent with expectations and improves accuracy com-
pared to the baseline algorithm. Table 7 highlights that the “Exact Shapley” method incurs
the highest time overhead, and the “TMR Shapley” algorithm still has the best time over-
head. Our algorithm exhibits comparable time requirements to other baseline algorithms,
while achieving superior accuracy in this scenario.

Table 7. Time and accuracy.

Name Time Accuracy

Exact Shapley [32] 10,961.56 s 83.25%
TMC Shapley [32] 650.53 s 82.98%

K-subset Shapley [34] 662.89 s 83.32%
SOR Shapley [7] 637.49 s 82.83%

TMR Shapley [35] 587.93 s 82.51%
Ours 655.78 s 84.39%

Noise labels and same size: Next, we investigate the impact of noise labels, as illus-
trated in Figure 8. Figure 8b–f demonstrate the robustness of our algorithm and the baseline
algorithms (“TMC Shapley”, “K-subset Shapley”, “SOR Shapley”, and “TMR Shapley”)
to noisy data. Specifically, the SV of the last four participants with noisy data exhibits the
expected decreasing trend, distinctly differing from the SV of the first participants with
noiseless data. The SV of the last four noisy players is much smaller than the SV of the
first noiseless player. However, in the case of the “Exact Shapley” algorithm, Figure 8a
reveals that the SV of the last four participants with noisy data do not show the expected
decreasing trend, and the SV of Participant 1 without noise is smaller than that of partici-
pants with noisy data. Consequently, the results are evidently inaccurate. Regarding time
and accuracy, Table 8 indicates that the “Exact Shapley” algorithm incurs significant time
overhead without achieving high model accuracy. Our algorithm achieves model accuracy
comparable to other baselines, and, although the time overhead is not optimal, it is still
within the acceptable range.

Table 8. Time and accuracy.

Name Time Accuracy

Exact Shapley [32] 143,196.81 s 78.85%
TMC Shapley [32] 784.17 s 79.12%

K-subset Shapley [34] 630.42 s 79.26%
SOR Shapley [7] 625.95 s 78.90%

TMR Shapley [35] 565.53 s 78.94%
Ours 716.84 s 80.86%
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(a) Exact Shapley (b) TMC Shapley

(c) K-subset Shapley (d) SOR Shapley

(e) TMR Shapley (f) Ours

Figure 7. Biased and unbiased.
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(a) Exact Shapley (b) TMC Shapley

(c) K-subset Shapley (d) SOR Shapley

(e) TMR Shapley (f) Ours

Figure 8. Noise labels and same size.

5.5.2. Experimental Result on Fashion-MNIST

We selected the three most common scenarios from the previously set federated
scenarios to conduct experiments, in order to validate the performance of our algorithm on
the Fashion-MNIST dataset and analyze the experimental results.

Same distribution and different size: From Figure 9, it can be seen that in this federated
scenario, due to the proportionality of the data among the five participants, according to
the definition in Formula (2), participants with larger amounts of data are allocated greater
weights and theoretically have higher SV. However, due to the issue of data heterogeneity,
the experimental results did not meet expectations. From Figure 9a–e we can observe that
the participant with the most feature data, Participant 5, received the lowest SV in the
baseline algorithm. As shown in Figure 9f, our algorithm achieves better results by adjusting
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the aggregate weights of the participants: the SV of the last participant is larger than the SV
of the first four participants. As shown in Table 9, although our algorithm does not have
the optimal runtime, it achieves higher accuracy compared to the baseline algorithm.

Table 9. Time and accuracy.

Name Time Accuracy

Exact Shapley [32] 32,517.0 s 78.29%
TMC Shapley [32] 1546.66 s 78.69%

K-subset Shapley [34] 1286.26 s 79.37%
SOR Shapley [7] 1185.95 s 79.51%

TMR Shapley [35] 1424.55 s 79.78%
Ours 2118.53 s 81.45%

(a) Exact Shapley (b) TMC Shapley

(c) K-subset Shapley (d) SOR Shapley

(e) TMR Shapley (f) Ours

Figure 9. Same distribution and different size.
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Different distributions and same size: From Figure 10a–e, it can be seen that in this
federated scenario, when the last participant has highly heterogeneous data, the gradient
information it uploads affects the performance of the global model, causing participant
5 to show poor performance on the baseline algorithm or even have a negative impact
(negative SV). From Figure 10f, it can be seen that the performance of our algorithm remains
consistent with its performance on MNIST. Our algorithm adjusts its aggregation weight to
mitigate the impact of the heterogeneous data, thereby measuring its SV more accurately.
As shown in Table 10, our algorithm achieves higher accuracy compared to the baseline
algorithm, and the runtime of the algorithm is also reasonable.

(a) Exact Shapley (b) TMC Shapley

(c) K-subset Shapley (d) SOR Shapley

(e) TMR Shapley (f) Ours

Figure 10. Different distributions and same size.

Biased and unbiased: From Figure 11, it can be seen that in this federated scenario,
both our algorithm and the baseline algorithm demonstrate a certain level of robustness:
the first four participants have high data heterogeneity and thus have lower SV, whereas
the last participant has uniformly distributed data and, consequently, a much higher SV.
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However, since there is no significant difference in the degree of heterogeneity among
the first four participants, their SV should be approximately similar. However, in the
baseline algorithm, the SV of the first four participants vary greatly, and the results are
not as accurate as those measured by our algorithm in Figure 11f. As shown in Table 11,
the Exact-Shapley algorithm takes the most time and is less efficient. Our algorithm, with a
reasonable runtime, achieves the highest accuracy compared to all baseline algorithms.

Table 10. Time and accuracy.

Name Time Accuracy

Exact Shapley [32] 22,376.16 s 77.18%
TMC Shapley [32] 1267.93 s 78.23%

K-subset Shapley [34] 1228.16 s 77.95%
SOR Shapley [7] 1465.27 s 78.11%

TMR Shapley [35] 1535.23 s 78.18%
Ours 1701.67 s 79.15%

(a) Exact Shapley (b) TMC Shapley

(c) K-subset Shapley (d) SOR Shapley

(e) TMR Shapley (f) Ours

Figure 11. Biased and unbiased.
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Table 11. Time and accuracy.

Name Time Accuracy

Exact Shapley [32] 19,426.56 s 78.55%
TMC Shapley [32] 984.67 s 79.72%

K-subset Shapley [34] 971.39 s 79.64%
SOR Shapley [7] 938.56 s 79.67%

TMR Shapley [35] 1058.56 s 79.28%
Ours 2058.26 s 80.82%

6. Conclusions

This paper proposes a fair contribution evaluation method based on the Shapley
value, addressing the limitations of existing federated learning (FL) contribution evalua-
tion methods. The proposed method assesses participants’ contributions to the FL model
performance based on the Shapley value, without requiring additional model training
or exposing sensitive local data. Its key idea involves reconstructing the model using
gradients. Additionally, we utilize a novel aggregation function to address the issue of
data distribution heterogeneity, thereby mitigating its impact on the measurement of con-
tributions. Extensive experiments were conducted on the MNIST dataset, demonstrating
that our method accurately measures participant contributions and exhibits robustness for
non-IID data. Our method achieves comparable speed and higher accuracy compared to
other baseline approaches.

However, the algorithm’s performance is suboptimal when dealing with noisy label
data. In future work, attention mechanisms could be incorporated to enable the model
to selectively attend to the noiseless components, thereby mitigating the impact of noisy
labels. We can build a deep learning model with an attention mechanism on each client,
such as a convolutional neural network (CNN) or a recurrent neural network (RNN),
and add an attention layer. We can integrate the attention mechanism in the model to allow
the model to automatically learn and focus on important features, thereby reducing the
impact of noisy labels. Each client uses its own data (containing noisy labels) to train the
model and reduces the noise impact through the attention mechanism to generate local
model updates. Furthermore, this method holds potential for extension to the domain of
federated medical image segmentation. In the medical field, due to concerns about privacy
issues, all parties are reluctant to participate in federated learning. Although federated
learning can solve privacy problems, in the field of federated medical image segmentation,
it also faces the non-IID problem (the same disease is caused by different factors, but the
manifestations of the lesion will be different, showing obvious regional characteristics),
resulting in unsatisfactory segmentation results. Expanding our method in the field of
image segmentation can effectively reduce the impact of the non-IID problem and improve
the accuracy of model segmentation.
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