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Abstract: LiDAR offers a wide range of uses in autonomous driving, remote sensing, urban planning,
and other areas. The laser 3D point cloud acquired by LiDAR typically encounters issues during
registration, including laser speckle noise, Gaussian noise, data loss, and data disorder. This work
suggests a novel Student’s t-distribution point cloud registration algorithm based on the local features
of point clouds to address these issues. The approach uses Student’s t-distribution mixture model
(SMM) to generate the probability distribution of point cloud registration, which can accurately
describe the data distribution, in order to tackle the problem of the missing laser 3D point cloud
data and data disorder. Owing to the disparity in the point cloud registration task, a full-rank
covariance matrix is built based on the local features of the point cloud during the objective function
design process. The combined penalty of point-to-point and point-to-plane distance is then added
to the objective function adaptively. Simultaneously, by analyzing the imaging characteristics of
LiDAR, according to the influence of the laser waveform and detector on the LiDAR imaging, the
composite weight coefficient is added to improve the pertinence of the algorithm. Based on the public
dataset and the laser 3D point cloud dataset acquired in the laboratory, the experimental findings
demonstrate that the proposed algorithm has high practicability and dependability and outperforms
the five comparison algorithms in terms of accuracy and robustness.

Keywords: point cloud registration; Student’s t-distribution mixture model; local features; adaptive
penalties; composite weight coefficient

1. Introduction

Point cloud registration can be extensively applied in domains like 3D reconstruc-
tion [1–3], robotics [4–7], and computer vision [8–14]. Through rotation and translation
transformation, point cloud registration joins three-dimensional point clouds from various
viewpoints into a comprehensive data model. Iterative Closest Point (ICP) is the most clas-
sical algorithm for solving the point cloud registration problem, which takes the Euclidean
distance between points and points as the objective function and uses iterative methods
to optimize the registration. Nevertheless, finding the closest pair of points in the point
cloud for each iteration of the ICP algorithm takes time, particularly in high-dimensional
spaces or with enormous amounts of data. As a result, the ICP algorithm model has a
lengthy iteration time, a high computing cost, and is prone to local optimum convergence.
Researchers have refined the ICP algorithm structure in certain ways to enhance regis-
tration performance. By introducing overlap ratios, the Trimmed Iterative Closest Point
(TrICP) algorithm [15] overcomes the registration problem of non-overlapping point sets.
Scholars employ optimization algorithms and ICP algorithm to integrate and enhance the
algorithm’s global performance to tackle the local convergence problem of point cloud
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registration [10,16,17]. To enhance the algorithm’s efficiency, the point features [10,18] and
the local plane features [19,20] of the point cloud are introduced into the objective function
of the registration, which provides an excellent initial attitude for the registration.

To increase the point cloud registration algorithm’s global robustness, statistical theory
was incorporated into the registration process. A Coherent Point Drift (CPD) point cloud
registration algorithm [21] was introduced by Andriy Myronenko. It implements the stiff
registration and affine translation of the point cloud and formulates the registration problem
as a probability density estimation function. To tackle the pairwise registration problem,
researchers suggest the FilterReg algorithm [22] and GMMReg algorithm [23], which are
based on the CPD algorithm as a framework. The FilterReg algorithm represents the three-
dimensional set of points as a Gaussian mixture model (GMM) and then transforms the
pairwise registration problem into a maximum likelihood estimation problem. GMMReg
algorithm utilizes two GMMs to represent two point sets and describes the pairwise
registration as a problem of aligning two GMMs, in which the expectation maximization
(EM) algorithm minimizes the statistical difference measure between the two GMMs.
Dylan proposed an SVR algorithm [24] that trains a one-class support vector machine
with a Gaussian radial basis function kernel and subsequently approximates the output
function with a Gaussian mixture model. Eckart proposed a tree-based Gaussian mixture
model (GMMTree) algorithm [25]. This algorithm enhances the robustness of the algorithm
by performing data association in logarithmic time and dynamically adjusting the level
of detail to best match the complexity and spatial distribution characteristics of local
scene geometry.

Pairwise registration can be accomplished with good accuracy and robustness using
point cloud registration techniques based on GMM classes. Nevertheless, they are time-
consuming due to the large number of point correspondences that need to be established.
Additionally, these methods have a significant registration error when heavy-tail noise is
present in the point cloud. Therefore, scholars propose a probability distribution using the
Student’s t-distribution mixture model to construct point cloud registration [26–29]. This
approach leverages Student’s t-distribution to produce registration results that are more
reliable and accurate than GMM in situations where noise is present.

The 3D point clouds produced by LiDAR contain a variety of noises and outliers,
and the laser point cloud data can be modelled using SMM even in the absence of prior
noise distribution and missing outlier information. To increase point cloud registration
technique’s resilience, this research suggests a Student’s t-distribution point cloud reg-
istration algorithm based on local features. The algorithm uses the normal information
of the point cloud to calculate the local surface flatness, constructs the covariance matrix
of the SMM according to the local features of the point cloud, and adaptively adds the
registration penalty. When the local surface of the point cloud is relatively flat and the
curvature changes little, a larger point-to-plane penalty should be added; on the contrary,
when the local surface of the point cloud changes significantly, then larger point-to-point
penalty should be added. Given the LiDAR imaging properties, the laser waveform is
roughly Gaussian and the precision of the imaging edge area decreases as illumination
brightness decreases. Consequently, we designed the weight coefficients of the SMM model
and filtered out some outliers. Lastly, the objective function of the registration is solved
using the EM algorithm.

The contents of this study are organized as follows. Related work is discussed in
Section 2. SMM is used in Section 3 to define an objective function and point cloud
registration model. In Section 4, the suggested approach is evaluated using six reference
datasets as well as a lab-acquired laser 3D point cloud dataset. The outcomes are contrasted
with those of five traditional algorithms. Section 5 provides a conclusion at the end.

2. Related Work

There are numerous point cloud registration techniques, and various techniques have
been successfully used in numerous domains. In this study, research is conducted using a
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robust mixture model approach based on the properties of 3D point clouds. It is restricted
to probabilistic methods for different types of mixture models in this review. A common
method based on the GMM converts point cloud data and its features into a GMM, uses
the parametric probability model of GMM to model the relationship between two point
clouds. Then, uses parameter estimation and optimization algorithms to transform the
model parameters into the best registration transformation [22,30–35]. Nevertheless, the
GMM registration robustness of the laser 3D point cloud with complicated noise and
outliers is low, and the point cloud registration approach based on the mixture model
depends on the model having an excellent fitting effect on the point cloud. Ma Yanlin
proposed a multi-viewpoint cloud registration based on SMM [28], which described all
point clouds as an SMM distribution, and all SMM centroids were searched by neural
network algorithms, improving efficiency. Min Zhe presented a method to model point
direction using the von Mises–Fisher mixture model and realized the robust generalized
point cloud registration [36]. For the 3D scanning laser point cloud registration problem,
Shu Qin proposed a point cloud registration method based on the Laplace mixture model,
which successfully overcame the nonlinear problem by using the sampling variance instead
of the variance of the likelihood estimation [37]. To solve the issues of data loss and disorder
during point cloud registration, Tang extended the point cloud mathematical model to the
orthogonal factor model and used SMM to calculate the point cloud data to achieve fast
real-time point cloud registration [38]. Alistair Barrie Forbes used a coordinate mixture
model to fit the point cloud on the surface of the workpiece [39]. He constructed a feature
correlation matrix based on the characteristics of the model, which improved the accuracy
of the workpiece registration. In this paper, according to the characteristics of laser 3D
point clouds, the SMM model will be used to carry out the research. The point cloud
registration is constructed as a maximum likelihood probability function based on SMM,
and the optimal registration of the point cloud is realized through optimal solving.

3. Method
3.1. Student’s T-Distribution Model

Sample data: x = [x1, x2, . . . , xn], assuming each data point obeys a n-dimensional
Gaussian distribution, the probability density function of data x is defined as:

fN(x; µ, Σ) =
1√

(2π)n|Σ|
e−

1
2 (x−µ)TΣ−1(x−µ) (1)

where µ is the mean of the Gaussian distribution and Σ is the covariance matrix of the
Gaussian distribution.

The Gaussian distribution is susceptible to noises and outliers because most of the
energy of the Gaussian probability density function is concentrated in the central area.
Student’s t-distribution is more resilient and can exclude the interference of particular
noises and outliers than the Gaussian distribution [40]. The following is an expression for
the probability density function of Student’s t-distribution:

fT(x; µ, Σ, v) =
Γ
(

ν+d
2

)
|Σ| 1

2 Γ
(

ν
2
)
(πν)

d
2 [1 + (x−µ)TΣ−1(x−µ)

ν ]

u+d
2

, (2)

where Γ(·) denotes the gamma distribution and Γ(·) can be used as a priori information for
Student’s t-distribution. Parameter v represents the tail degrees of freedom of Student’s
t-distribution.

Since Student’s t-distribution has a heavier tail than the Gaussian distribution, it
can describe the point cloud more accurately by taking into account outliers and noises
information. Changing the parameter v, the probability model of Student’s t-distribution
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will change the tail information weight, and the larger the v, the smaller the proportion of
tail information. When v → ∞ , Student’s t-distribution is close to the Gaussian distribution.

3.2. SMM Point Cloud Registration Model

Point cloud registration is the process of using rotation and translation to register both
the source and target point clouds. In general, the point cloud registration problem can be
transformed into a mathematical problem to solve the maximum likelihood function. The
transformed source point cloud is viewed as the SMM observation of the target point cloud
by executing a rigid transformation on the source point cloud. The data in this article are
described using the notation that follows:

N—number of points in the source point cloud;
M—the number of points in the target point cloud;
X ∈ RN×3—the source point cloud, the position of the n-th point in the source point

cloud is xn;
Y ∈ RM×3—target point cloud, the position of the m-th point in the target point cloud

is ym;
N ∈ RM×3—surface standard matrix, the m-th unit average vector in the point cloud

Y is nm;
I—Matrix of identity.
It is frequently necessary to include outlier distribution functions in GMM probabilistic

models for point cloud registration. It is not necessary to include uniformly distributed
outliers in the Student’s t-distribution model because it can handle noises and outliers
quite effectively. The following is an expression of a probabilistic model based on Student’s
t-distribution:

p(xn) =
M

∑
m=1

π(m)p(xn|m) (3)

where xn is the n-th point in the X ∈ RN×3. The mathematical significance of p(xn|m) is the
conditional probability that xn belongs to the component of the m-th Gaussian component
and π(m) is the prior probability of xn being assigned to the m-th Gaussian component.

The likelihood that a point belongs to the M Gaussian components is the same in
some mixture model methods [21,36], that is, π(m) = 1/M. When the detector’s imaging
error is consistent within its detection range, this configuration makes sense. Nevertheless,
noise, which is connected to the target’s imaging depth, has an impact on the camera’s
measurement error [41,42]. Furthermore, the laser waveform of LiDAR imaging is Gaussian-
like, the intermediate energy is higher than the edge energy, and the point cloud recovery
accuracy in the center of the field of view is higher than that of the edge during 3D
restoration. Thus, when creating the weight π(m), the algorithm should focus more on the
alignment of the measured points with high confidence to enhance the mixture model’s
capacity to represent the data. In this paper, based on the three-dimensional information of
the point cloud, two main aspects are considered: the measurement error of the detector
and the influence of the laser waveform on the recovery algorithm. The measurement
error of the detector is related to the depth of the target. We set ϕ1(x) = deepmin/deep(x),
deep(x) as the error models are related to the distance of the target, deepmin is the minimum
measurement error within the detector range, and the error analysis and modelling of
different detectors can be found in [42–44]. The recovery error of the laser waveform is
mainly related to the distance between the point in the point cloud and the center of mass of
the point cloud; the closer the distance, the higher the accuracy and the greater the weight,

which can be expressed as ϕ2(x) = 1
σlaser

√
2π

exp(− (x−x0)
2

2σlaser
2 ), where σlaser is the variance of

the laser waveform and x0 is the center of mass of the point cloud. The weight coefficient is
expressed as the product of the two parts of the weight: ϕ(x) = ϕ1(x) · ϕ2(x). Therefore,
the weight factor of the mixture model is set to:

π(m) =
ϕ(ym)

∑M ϕ(ym)
(4)
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The local feature information of the target surface is taken into account while devel-
oping the probability density function in order to increase the robustness and accuracy of
point cloud registration. The CPD algorithm measures the registration effect by using the
point-to-point Euclidean distance as the objective function. The point cloud registration
solution is changed into an unsuitable optimization problem by the FilterReg algorithm,
which uses the distance between the point and the plane as the objective function. This
results in a non-full-rank problem in the probability density function. Thus, in this arti-
cle, the combined penalty of point-to-point and point-to-plane distance is added as the
objective function adaptively, and a full-rank covariance matrix is generated based on the
local surface geometric properties of the point cloud. The following is an expression for the
intended probability density function:

p(xn|m) = cm
Γ( ν+d

2 )

|Σm |
1
2 Γ( ν

2 )(πν)
d
2 [1+ (xn−ym)T Σ−1

m (xn−ym)
ν ]

u+d
2

Σ−1
m = 1

σ2 (αmnmnT
m + I)

(5)

cm is a normalized constant and σ2 is a covariance multiplier that can be expressed as:

σ2 =

N
∑

n=1

M
∑

m=1
Pmn ∥ g(xn)− ym ∥2

(αmnmnT
m+I)−1

3
N
∑

n=1

M
∑

m=1
Pmn

(6)

Σm is the covariance matrix constructed in this paper, and its inverse matrix Σ−1
m

is composed of a linear combination of the identity matrix I and nmnT
m. In Equation

(6), the physical meaning (xn − ym)
TI(xn − ym) is the distance between point xn in point

cloud X and point ym in point cloud Y, and the Euclidean distance from point-to-point is
taken as the objective function to measure the registration effect. The physical meaning
(xn − ym)

T 1
σ2 αmnmnT

m(xn − ym) is the distance between a point xn in point cloud X and the
local plane around a point ym in point cloud Y. Therefore, this paper designs the covariance
matrix Σ−1

m to describe the point-to-point distance between points xn and points ym and
the distance from a point xn to the local plane around the point ym.

In this paper, the point-to-plane penalty is added adaptively based on the local surface
flatness of the point cloud. The surface variation parameter κm describes the deviation
of a point in the point cloud from its tangent and can be evaluated by evaluating the
surface variation κm near the point ym, the design penalty factor, and the surface variation
κm ∈ (0, 1/3). According to the properties of the parameter κm, a function αm is designed
as a penalty coefficient in the probability density function:

αm =

1 − 3 ∗ κm ∗ exp
((

3 − 1
κm

)λ
)

1 + 3 ∗ κm ∗ exp
((

3 − 1
κm

)λ
)αmax (7)

where αmax is the upper bound of the penalty coefficient and λ is the coefficient that controls
the sensitivity of αm to κm. When κm → 1/3 and αm → 0, the surface of the point cloud
changes incredibly. When κm → 0 and αm → αmax, the surface of the point cloud changes
little and tends to be flat. The adaptive modulation coefficient αm is set according to the
point cloud’s surface characteristics. When the surface of the point cloud is flat, a sizeable
point-to-plane penalty coefficient is set. When the surface curvature is large or the noise is
damaged, the point-to-plane penalty and the matching error are reduced.
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3.3. Solve the Objective Function

Suppose the point cloud registration’s transformation function is g(·), the point xn can
be represented as g(xn) after transformation. The likelihood function of the registration
can be expressed as:

L
(
s, σ2) = −

N
∑

n=1
log(p(g(xn)))

= −
N
∑

n=1
log(

M
∑

m=1
π(m)p((g(xn)|m))

(8)

This paper uses the EM algorithm to solve the maximum likelihood estimation prob-
lem. In the EM framework, the complete data include the observed variable xn and the
latent variable zmn, and the likelihood function for solving the problem can be expressed as:

Lc(g, σ2, Z) = − log
N
∏

n=1
(

M
∏

m=1
(π(m)p(g(xn)|m))zmn)

= −
N
∑

n=1
(

M
∑

m=1
zmn log(π(m)p(g(xn)|m)))

(9)

Since the latent variable zmn cannot be directly observed, the posterior probability of
the latent variable can be calculated according to the Bayesian principle:

P(zmn = 1|gold(xn)) = P(zmn=1)p(gold(xn)|zmn=1)
p(gold(xn))

= π(m)p(gold(xn |m))
∑M π(m)p(gold(xn)|m)

(10)

Therefore, the objective function of point cloud registration can be expressed as:

Q = −
N
∑

n=1

M
∑

m=1
E(zmn|gold(xn)) log(p(g(xn)|m))

= −
N
∑

n=1

M
∑

m=1
[1 · P(zmn = 1|gold(xn)) + 0 · P(zmn = 0|gold(xn))] log(p(g(xn)|m))

= −
N
∑

n=1

M
∑

m=1
Pmn(log(cm)−

1
2
∥ g(xn)− ym ∥2

Σ−1
m
)

(11)

where cm is the normalization constant, Σm is the covariance matrix, and Pmn can be
expressed as:

Pmn =
π(m)p(gold (xn)|m)

∑M π(m)p(gold(xn)|m)
(12)

The best point cloud registration transformation matrix can be obtained by solving the
target likelihood function of point cloud registration to realize the operation.

4. Experiment

We tested the suggested technique on both the laboratory’s laser 3D point cloud data
and the public dataset to ensure its resilience and correctness. Every experiment was
run on a personal computer (PC) equipped with an A6000 GPU and an Intel(R) Xeon(R)
Silver 4210RCPU. The authors of the studies or open-source libraries provided comparison
methods. In the experiment, the algorithm parameters were provided by the author or the
program; if not, we carefully adjusted them. To reduce the impact of unintentional errors,
the experimental findings were obtained by averaging them after repeated experiments
and deleting the outliers.

4.1. Point Cloud Registration of Public Datasets

In this section, we introduce noises and outliers to the dataset to evaluate the regis-
tration algorithm’s performance. Here, the term “outlier” refers to a specific percent of
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Gaussian random noise applied to the point cloud’s exterior space, and the term “noise”
refers to a specific percent of Gaussian randomization of the point cloud’s points. The
suggested approach was used to register the public dataset after introducing noises and
outliers to the point cloud. The algorithm was then tested and evaluated using the registra-
tion results.

We set the maximum size of the point cloud in the x, y, and z dimensions to 2 mm
and sample all the point clouds to 3000 points to guarantee the similarity of the density
of the point cloud dataset. We configured the point cloud’s rotation angle to be randomly
generated in three directions, but we made sure that the point cloud’s rotation angles in
the x, y, and z axes added up to 60◦. Likewise, we designated the point cloud’s translation
distance in three directions to be created at random. However, we needed to make sure that
the sum of the translation distance of the point cloud in the x, y, and z directions is 6 mm.
Using the identical parameter values, we compare the registration method described in
this paper with the following algorithms: FilterReg algorithm, Support Vector Registration
(SVR) algorithm, GMMTree algorithm, TrICP algorithm, and CPD algorithm. After the
source point cloud is input in 3D space, the target point cloud is obtained after the rotation
and translation transformation of the same angle, and then the source point cloud and the
target point cloud are registered by the algorithm. Thirty independent experiments were
carried out for each group of point clouds, and the experimental results were averaged as
the results for error evaluation. We use the average distance error Derror of the points in the
point concentration and the angular error Aerror of the rotation matrix to measure the point
cloud registration effect. The two error evaluation functions can be expressed as: Derror =

1
N

N
∑

i=1

∥∥gest(xi)− ggt(xi)
∥∥

2

Aerror = a cos((trace(Rgt
−1Rest)− 1)/2)

(13)

where xi is the i-th point in the source point set and gest(x) and ggt(x) are the estimated
transformation matrix and the real transformation matrix of point cloud registration,
respectively. Rgt and Rest are the actual and estimated rotation matrices for point cloud
registration, respectively.

In the outlier experiment, we modified the source and target point cloud data by
adding varying amounts of Gaussian outlier noises. When Gaussian outliers are included,
Figure 1 displays the point cloud registration error results; Figure 1a shows the point
average distance error Derror of the algorithmic registration. Figure 1b illustrates the
angular error Aerror of the rotation matrix for the registration algorithm. In Figure 1, as the
proportion of outliers increases, the distance and angle errors of the registration increase.
The error curve shows that the registration error of the algorithm proposed in this paper is
the smallest, and the registration accuracy is the highest. Figure 2 shows the registration
results of the registration algorithm at the Gaussian outlier ratio = 1. From a subjective
visual point of view, the registration results of the SVR algorithm, GMMTree algorithm,
TrICP algorithm, and CPD algorithm are close to each other and the error rate is high. The
algorithm we proposed in this paper has the best registration effect.

In the noise experiment, we destroy the source and target point clouds by applying
varying ratios of Gaussian noises. The results of point cloud registration with Gaussian
noise applied are displayed in Figure 3. Figure 3a shows the point mean distance error
Derror for the algorithm registration; Figure 3b illustrates the angular error Aerror of the
rotation matrix for the registration algorithm. As can be seen in the experimental results,
with the increase of Gaussian noise, the performance of the algorithm we proposed in this
paper is significantly better than that of the other five algorithms, and it has good robust
performance. Figure 4 shows the registration results of the registration algorithm when the
Gaussian noise ratio = 0.04, and subjectively, the algorithm we proposed in this paper can
overcome the influence of noise and achieve accurate registration.
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Figure 1. Point cloud registration error with different Gaussian outlier ratios. (a) the point average
distance error of the algorithmic registration. (b) the angular error of the rotation matrix for the
registration algorithm.

Figure 2. The point cloud registration results when the Gaussian outlier ratio = 1.

Figure 3. Point cloud registration error with different Gaussian noise ratios. (a) the point average
distance error of the algorithmic registration. (b) the angular error of the rotation matrix for the
registration algorithm.
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Figure 4. The point cloud registration result when the Gaussian noise ratio is 0.04.

Computation complexity is another crucial metric for assessing the algorithm’s per-
formance, in addition to registration correctness. There are two types of computation
complexity for algorithms: time complexity and spatial complexity. The relationship be-
tween the amount of input data and the time it takes to execute an algorithm is known as
time complexity. We vary the number of points input to the point cloud and measure the
time required by the main method for point cloud registration to verify the time complexity
of the algorithm. After testing, when the amount of input point cloud data is doubled, the
algorithm time increases by four times, so we determine the algorithm’s time complexity
is O(n2). The amount of memory space used by an algorithm while it is in operation is
measured by its spatial complexity, which in this work is related to three aspects: the
storing of input data, the storage of local features, and the computation of the objective
function. The two point cloud datasets are the algorithm’s input, the storage space of each
point cloud is O(N · d), N is the number of points of the point cloud, and d is the dimension
of points. In the calculation process, the algorithm needs to use the feature data of the point
cloud, including curvature and average vector. This part of the storage space is O(N · f ),
and f is the dimension of the eigenvector. In the calculation process of the objective function,
intermediate variables such as weight matrix and distance matrix need to be stored and are
usually related to the size and feature dimension of the point cloud. In general, the spatial
complexity of the algorithm can be approximated by O(N · d) + O(N · f ). Therefore, the
spatial complexity of the algorithm is on the order of O(n). Tables 1 and 2 provide the time
taken for point cloud registration of the dataset bunny at different outlier ratios and noise
ratios, respectively.

The algorithm presented in this research has a high computing efficiency and a rapid
operation speed based on its time complexity and running time.

Determining the boundary case of algorithm failure and providing success cases are
essential for gauging an algorithm’s overall performance. We set the translation distances
in the x, y, and z directions to a total of 6 mm and the sum of the point cloud’s rotation
angles in the x, y, and z directions to 60◦. The point cloud registration performs well with
this option set.
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Table 1. Run time of point cloud registration at different outlier ratios.

Outlier ratios 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 0.7176 0.7518 0.8027 0.7951 0.8323 0.8546 0.8742 0.9074 0.9415 0.9289

Table 2. Run time of point cloud registration at different noise ratios.

Noise ratios 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (s) 0.3959 0.4273 0.4574 0.4866 0.5387 0.5218 0.5749 0.5782 0.6075 0.6169

We set the sum of the point cloud’s rotation angles in the x, y, and z axes to 60◦ to
quantify the impact of the translation distance on the point cloud’s registration. The point
cloud’s translation distance in the x, y, and z directions adds up to 10 mm–35 mm. The
point cloud registration results are displayed in Figure 5 with the point cloud translation
distance spacing of Figure 5a–f being 5 mm apart in the case of outlier noise = 1. Table 3
displays the point cloud registration error.

Figure 5. When outlier noise ratios = 1, the point cloud registration results in different sums of
the translation distances. The sum of the translation distances for each subgraph is: (a) = 10 mm;
(b) = 15 mm; (c) = 20 mm; (d) = 25 mm; (e) = 30 mm; (f) = 35 mm.

Table 3. When outlier noise ratios = 1, the registration error at different sums of the translation
distances.

The Sum of the Point Cloud Translation Distance (mm) 10 15 20 25 30 35

Aerror 0.2123 0.2239 0.2451 0.2324 0.2547 0.2356

Derror 0.1675 0.1735 0.1864 0.1758 0.1975 0.2147

We set the rotation angle of the point cloud in the x, y, and z directions to be 70–120◦

and the total of the translation distances of the point cloud in the x, y, and z directions to
6 mm to quantify the impact of the rotation angle on the registration of the point cloud.
Figure 6 displays the point cloud registration results when the outlier noise = 1, with a 10◦

separation between the point cloud rotation angle intervals of Figure 6a,f. Table 4 displays
the point cloud registration error.
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Figure 6. When outlier noise ratios = 1, the point cloud registration results at different sums of the
rotation angle. The sum of the rotation angle for each subgraph is: (a) = 70◦; (b) = 80◦; (c) = 90◦;
(d) = 100◦; (e) = 110◦; (f) = 120◦.

Table 4. When outlier noise ratios = 1, the registration error at different sums of the rotation angle.

The Sum of the Point Cloud Rotation Angle (◦) 70◦ 80◦ 90◦ 100◦ 110◦ 120◦

Aerror 0.2955 0.3478 0.4971 0.5308 0.6295 0.8530

Derror 0.2546 0.2764 0.2964 0.3547 0.5741 0.7828

The registration results show that the translation distance of the point cloud has little
effect on the registration accuracy of the suggested approach and that it can be disregarded.
The point cloud’s rotation angle has a big impact on the algorithm’s accuracy. The target’s
registration accuracy starts to vary dramatically when the total of the point cloud’s rotation
angles in the x, y, and z directions exceeds 90◦.

To minimize the impact of datasets on algorithm registration outcomes, this research
chooses many sets of datasets for registration. The registration data are selected from
the publicly available Stanford University 3D scan repository [45], and spacecraft models
are available on the National Aeronautics and Space Administration (NASA) website.
Figure 7 shows the registration results according to the cross-section to facilitate subjective
comparison and judgment of the registration effect. As can be seen from Figure 7, the
proposed algorithm achieves the best registration effect on all datasets.

To evaluate the robustness of the suggested technique, we registered two datasets
with Gaussian noise. Thirty independent tests were conducted for each group of exper-
iments, and the datasets of the two sets of tests were supplemented with 40% and 50%
of the Gaussian noise data points, respectively. Tables 5 and 6 display the outcomes of
the experiment.

Table 5. Point cloud registration error results with 40% Gaussian noise added.

FilterReg SVR GMMTree TrICP CPD OURS

Derror Aerror Derror Aerror Derror Aerror Derror Aerror Derror Aerror Derror Aerror

Armadillo 0.0523 0.0085 0.0617 0.1152 0.0543 0.1034 0.0594 0.1107 0.0572 0.1087 0.0387 0.0048
Dragon 0.0627 0.0065 0.0707 0.0762 0.0634 0.0681 0.0684 0.0756 0.0673 0.0725 0.0413 0.0066

Long 0.0829 0.0225 0.0874 0.1135 0.0861 0.0947 0.0868 0.1023 0.0862 0.0987 0.0514 0.0133
MRO4 0.0648 0.0123 0.1084 0.0312 0.0543 0.0289 0.0842 0.0305 0.0769 0.0298 0.0338 0.0081

SKYLAB 0.0418 0.0087 0.0939 0.0230 0.0697 0.0364 0.0764 0.0261 0.0751 0.0346 0.0329 0.0025
Voyager 0.0991 0.0147 0.1074 0.0287 0.0967 0.0271 0.0985 0.0274 0.0982 0.0295 0.0501 0.0075
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Table 6. Point cloud registration error results with 50% Gaussian noise added.

FilterReg SVR GMMTree TrICP CPD OURS

Derror Aerror Derror Aerror Derror Aerror Derror Aerror Derror Aerror Derror Aerror

Armadillo 0.0685 0.0263 0.0857 0.1452 0.0741 0.0843 0.07658 0.0962 0.7692 0.0861 0.0635 0.0067
Dragon 0.0801 0.0148 0.0868 0.1097 0.0695 0.0942 0.07214 0.1006 0.7034 0.9657 0.0697 0.0083

Long 0.0964 0.0357 0.1041 0.1246 0.0894 0.1108 0.0965 0.1163 0.9231 0.1135 0.0717 0.0173
MRO4 0.0851 0.0201 0.1353 0.0638 0.0946 0.0473 0.1203 0.0528 0.1108 0.4854 0.0738 0.0088

SKYLAB 0.0643 0.0163 0.1142 0.0519 0.1023 0.0407 0.1068 0.0467 0.1052 0.4263 0.0572 0.0082
Voyager 0.1087 0.0919 0.1269 0.0491 0.1139 0.0645 0.1162 0.5362 0.1148 0.5739 0.0879 0.0198

The best registration outcomes for every set of experiments are bolded in Tables 5 and 6.
For point cloud registration tests utilizing various datasets, experimental results demon-
strate that the technique suggested in this study has good robustness and registration
accuracy when Gaussian noise is included.

Figure 7. Point cloud registration cross-sectional view: (a) aligned 3D model; (b) the results of the
FilterReg algorithm; (c) the results of the SVR algorithm; (d) the results of the GMMTree algorithm;
(e) the results of the TrICP algorithm; (f) the results of the CPD algorithm; and (g) the results of
our research.
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4.2. Laser 3D Point Cloud Registration

In Section 4.1, we used the algorithm to register the public dataset, and our algorithm
showed good competitiveness in both the original dataset and the dataset with added
noise. Due to its imaging principle, laser 3D point clouds include speckles and Gaussian
noise. This section uses the laser 3D point cloud data obtained by the laboratory LiDAR for
registration after preprocessing operations such as target extraction and noise reduction.
The experimental results are shown in Figure 8.

Figure 8. Laser 3D point cloud registration results.

In Figure 8, the registration error of the SVR algorithm is significant, and the central
part of the target can achieve partial registration. In contrast, the columnar region in
the target has a significant deviation, and the registration accuracy is low. The FilterReg
algorithm, GMMTree algorithm, TrICP algorithm, and CPD algorithm can realize the
registration of most point clouds. However, due to the influence of noise, there is a specific
registration error. From the perspective of visual subjectivity, the algorithm proposed in
this paper can achieve the best point cloud registration.

Table 7 shows the registration errors for the six algorithms. The registration’s rotation
and translation errors of the SVR algorithm are the largest, which is more suitable for
the coarse registration work before accurate registration. The registration errors of the
FilterReg algorithm, GMMTree algorithm, TrICP algorithm, and CPD algorithm are small,
and the registration accuracy is disturbed by noise, which has certain limitations for the
application scenarios of high-precision registration. The algorithm proposed in this paper
has the highest registration accuracy and can realize the accurate registration task of laser
3D point cloud.

Table 7. Evaluation of laser 3D point cloud registration.

FilterReg SVR GMMTree TrICP CPD OURS

Derror 0.0136 0.0409 0.0287 0.0336 0.2947 0.0084

Aerror 0.0347 0.0369 0.0398 0.0384 0.03762 0.0021

This section uses five registration algorithms to calculate the point cloud registration
results under different datasets and noise environments. We are judging from the algo-
rithm’s registration results. Compared with other related algorithms, such as the CPD
algorithm, FilterReg algorithm, and GMMTree algorithm, the proposed algorithm has
apparent advantages in registration accuracy and computation efficiency, which proves
its effectiveness.
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5. Conclusions

In this paper, a novel Student’s t-distribution point cloud registration algorithm based
on local features is proposed. The algorithm builds an objective function using the Stu-
dent’s t-distribution mixture model and solves the problem using the maximum likelihood
function. Six publicly available datasets are tested to confirm the algorithm’s performance.
This research presents a comparison of five different point cloud registration algorithms.
The point cloud registration algorithms that are suggested have clear advantages in terms
of efficiency and accuracy of registration. Lastly, we performed the registration test using
the laser 3D point cloud that was gathered in the lab. According to experimental data,
the suggested method performs well in terms of efficiency and accuracy. This algorithm’s
successful application offers a workable solution to the laser 3D point cloud registration
problem. Its high practicability and dependability can also strongly promote future research
and applications in related fields.
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