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Abstract: In this paper, artificial intelligence (AI) technology is applied to the electromagnetic imaging
of anisotropic objects. Advances in magnetic anomaly sensing systems and electromagnetic imaging
use electromagnetic principles to detect and characterize subsurface or hidden objects. We use
measured multifrequency scattered fields to calculate the initial dielectric constant distribution of
anisotropic objects through the backpropagation scheme (BPS). Later, the estimated multifrequency
permittivity distribution is input to a convolutional neural network (CNN) for the adaptive moment
estimation (ADAM) method to reconstruct a more accurate image. In the meantime, we also improve
the definition of loss function in the CNN. Numerical results show that the improved loss function
unifying the structural similarity index measure (SSIM) and root mean square error (RMSE) can
effectively enhance image quality. In our simulation environment, noise interference is considered
for both TE (transverse electric) and TM (transverse magnetic) waves to reconstruct anisotropic
scatterers. Lastly, we conclude that multifrequency reconstructions are more stable and precise than
single-frequency reconstructions.

Keywords: electromagnetic imaging; artificial intelligence; anisotropic objects; back-propagation
scheme; loss function; convolutional neural network

1. Introduction

Advances in magnetic anomaly sensing systems and electromagnetic imaging use elec-
tromagnetic principles to detect and characterize subsurface or hidden objects. Magnetic
anomaly sensing systems primarily detect changes in the earth’s magnetic field caused by
ferromagnetic objects or anomalies. Electromagnetic imaging uses electromagnetic waves
to create detailed images of the interior of an object, such as dielectric constant and con-
ductivity. Combining these two technologies will result in a more comprehensive sensing
and imaging solution to improve the accuracy and depth of subsurface investigations,
consequently serving as a powerful tool for applications such as environmental monitoring,
safety inspections, and medical diagnostics. Artificial intelligence (AI) technology is used
in various fields and has flourished in recent years [1–8]. Overall, electromagnetic imaging
technology by AI plays an important role in modern science and engineering and will
continue to be developed and applied in the future.

In the current academic research, the following two approaches are used to solve
electromagnetic imaging: algorithms [9–13] and AI [14–18]. In 2019, Zhou proposed
that a non-decimated wavelet transform based on an iterative method with adaptive
thresholding for the compressed sensing method (NDW-IMATCS) combined with the
dual-mesh method could achieve fast, accurate and stable reconstruction of nonsparse
objects [9]. In 2020, Wei proposed a novel computational approach to solve the forward
scattering problem, ensuring accurate convergence of the total field by incorporating
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high-order components. [10]. To solve the 3-D inverse scattering problem effectively, in
2021, Zhao et al. introduced an enhanced subspace-regularized distorted Born iterative
method, utilizing a multilevel Green’s function interpolation approach to expedite the
computation of the forward problem. [11]. In 2022, Saraskanroud proposed two hybrid
time domain (TD) and frequency domain (FD) microwave imaging schemes. This hybrid
method combined the discontinuous Galerkin method implementation of the TD forward–
backward time stepping (FBTS) algorithm and FD contrast source inversion (CSI) or gauss–
newton inversion (GNI) to shorten the computing time of the quantitative TD imaging
algorithm and improve the image resolution of the quantitative FD imaging algorithm.
The results also showed that low-resolution FD prior information could improve TD
convergence [12]. In 2023, Sun proposed a fast algorithm for the cross-correlation contrast
source inversion (CC-CSI) method. By assuming a uniform background medium, the most
time-consuming part of the CC-CSI method in the linear equation system was solved. And
the 3-D inversion of transverse magnetic (TM) and transverse electric (TE) was effectively
realized through multiple fast Fourier transforms and inverse fast Fourier transforms,
respectively. Furthermore, this rapid approach applied to all inversion methods concerning
the direct calculation of electric fields from contrasting sources in homogeneous background
media [13].

AI is another option that has been commonly used in recent years to generate electro-
magnetic imaging [14–18]. In 2019, Wei proposed a convolutional neural network (CNN)
technique to solve the full-wave inverse scattering problem (ISP). He compared three U-Net
CNN-based training schemes, namely, backpropagation, dominant current scheme, and
direct inversion. The results showed that the proposed dominant current scheme outper-
formed the other two schemes in terms of accuracy and timeliness. It could resolve a typical
ISP within 1 s [14]. In 2020, Xiao proposed a 3-D electromagnetic inversion method based
on Born approximation and a CNN to reconstruct non-uniform scatterers with complex
shapes. The result showed that 3-D U-Net outperformed the traditional variational Born
iteration method in both accuracy and efficiency [15]. In 2021, Ma presented a learning-
based non-iterative approach to solve the ISP using the generative adversarial network
(GAN) pix2pix. The forward-induced current learning method (FICLM) with direct sum of
dielectric constant contrast and Born-type induced currents had the best computational
accuracy and generalization capability. Compared with other types of neural networks, the
adversarial framework in pix2pix provided FICLM superior performance in dealing with
complex scatterers [16]. To bridge the gap between traditional model-based approaches
and data-driven deep learning schemes, in 2022, Liu proposed a physical model-inspired
deep unrolling network (PM-Net) to solve nonlinear ISP. Compared with traditional itera-
tive methods, this mechanism, which learned fewer parameters, was comparable or even
better than subspace-based optimization methods under high-noise environments [17].
In 2023, Wang investigated multiple-space deep learning schemes (MSDLSs) combining
frequency-space and real-space processing. Through the complementary feature between
the serial and parallel MSDLSs, dynamic interaction among multiple-space information
could be achieved in both the training and testing stages [18].

Electromagnetic imaging is an imaging technique that applies low-frequency, high-
frequency, and even multifrequency electromagnetic waves. Low-frequency electromag-
netic waves have higher penetration and higher resolution because of their longer wave-
lengths. However, they easily interfere with other electromagnetic waves. High-frequency
electromagnetic waves are fast and directional. They can be focused on a small area to
achieve high-precision imaging. Nevertheless, their shorter wavelengths cause poorer pen-
etration that restricts the imaging range. Multifrequency electromagnetic imaging emerged
to overcome the defects of low- and high-frequency electromagnetic waves [19–24]. In
2020, Sangwoo proposed a MultiFrequency Direct Sampling Method (DSM) to solve the
limited-aperture inverse scattering problem [19]. In 2021, Zhang proposed a subspace-
based hierarchical optimization method that combined a subspace-based optimization
method with a hierarchical strategy using multifrequency data to reconstruct 2-D uniaxial
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anisotropic scatterers. This method could reconstruct images efficiently [20]. In 2021, Li
proposed a CNN that introduced a multi-channel scheme to solve the multifrequency ISP.
The CNN inversion method could achieve acceptable quality results rapidly. The proposal
also highlighted that the multifrequency CNN worked well in high contrast problems or
more complex cases, as well as different frequency bands [21]. In 2022, Xie proposed a mod-
ified major current coefficient method combining the major current coefficients method, the
hierarchical scheme, generalized Tikhonov regularization, and a frequency rejection mecha-
nism to solve the ISP using multiple-frequency data. This method improved reconstruction
performance within a limited view [22]. In 2022, Park considered a multifrequency DSM
for fast recognition of linear perfectly conducting cracks with small lengths from measured
far-field pattern data [23]. In 2023, Zhang inputted single-frequency EM scattering field
information into a complex-valued deep residual convolutional neural network to predict
multifrequency EM scattering fields. The resulting multifrequency EM scattering field
“image” was then input to a new complex-valued convolutional encoder–decoder structure
to regenerate target scatterers. This approach solved the ISP accurately and efficiently [24].

In most of the studies, TM waves were widely probed in various arenas. As TM waves
are purely scalar, they are simpler for reconstruction, whereas TE waves have correlated
x and y vectors that may interfere mutually, making them more complicated to process,
especially when dealing with uniaxial objects [25–28]. In 2020, Wang proposed using the
biconjugate gradient stabilized method and fast Fourier transform in the forward model
to simulate the electromagnetic scattering of arbitrary anisotropic scatterers embedded
in a layered arbitrary anisotropic background medium. Twelve dielectric parameters for
each cell of the arbitrary anisotropic scatterer were reconstructed by VBIM-SCC-SCS. The
shape of the scatterer as well as the anisotropic model parameters were satisfactorily recon-
structed [25]. In 2022, Ye presented an efficient, accurate, and real-time inverse algorithm
based on the super-resolution generative adversarial network for quantitative imaging
of 2-D biaxial anisotropic scatterers. With this approach, image quality and resolution
were greatly improved, and the computation time was also significantly reduced [26].
In 2022, Chiu proposed using a deep neural network to reconstruct the permittivity of
uniaxial scatterers more efficiently. The results showed that the reconstructed permittivity
performance by the dominant current scheme (DCS) was better than the backpropagation
scheme (BPS) [27]. In 2023, Chiu proposed combining AI with a modified contrast scheme
(MCS) technique to reconstruct microwave imaging of uniaxial objects. The results revealed
that for a small dielectric constant, the performance for MCS and DCS was almost the same.
The reconstruction for MCS turned out to be better when the dielectric constant became
higher [28].

Our contributions are as follows:

(1) In this paper, we demonstrate a novel deep learning scheme for reconstructing
anisotropic objects. In the neural network, we use a traditional U-Net with multi-loss
to reconstruct the material, shape, and size of a dielectric object. Past studies have
used RMSE as a reconstruction metric for neural networks. In this paper, we use SSIM
and RMSE as reconstruction metrics for neural networks. The numerical results show
that using SSIM and RMSE as the reconstruction metrics of the neural network can
effectively improve the quality of electromagnetic images.

(2) Similar studies in the past, such as reference [21], only reconstructed EM images in the
TM case. The advantage of this paper is that we successfully utilize multifrequency
techniques to reconstruct anisotropic objects. In addition, we analyze the effects of
different dielectric coefficient distributions and noise on the reconstruction of EM
images by multifrequency techniques. Lastly, we also validate the efficacy of our
proposed method with a research dataset.

We present the direct formulas in Section 2. The neural network architecture and loss
function are described in Section 3. Section 4 presents an analysis of the numerical results
of different case and research dataset. The conclusions are given in Section 5.
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2. Theory Formulation
2.1. Direct Problem

We assume an anisotropic object (scatterer) is immobilized in a closed surface S in
free space with relative permittivity tensors

=
ε r and magnetic conductivity µ0, as shown in

Figure 1. Here, a two-dimensional scenario is evaluated, namely, the material of the scatterer
only changes with the x, y coordinates. The diagonal matrix of the Cartesian coordinate
system can be used to define the dielectric constant distribution of the anisotropic object.
We denote the dielectric constant along the z axis as ε1 and along the x and y axes as ε2 and
ε3, as shown in (1). Among them, ε1(x, y), ε2(x, y), and ε3(x, y) are generally complex.

=
ε r =

ε2(x, y) 0 0
0 ε3(x, y) 0
0 0 ε1(x, y)


xyz

(1)
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First, the incident field
⇀
E

i
(x, y) with ejωt is regarded as time-dependent harmonics, and

the Ei
z(x, y) function is the magnitude of the incident field. Since the material properties of

the scatterer are assumed to be independent of the z-direction, only TM-polarized scattered
waves will be generated when irradiating TM-polarized waves (with the incident field in
the z-direction). We irradiate TE and TM waves separately to reconstruct the dielectric
coefficient of the anisotropic objects for comparison.

For the direct problem, we discretize the scatterer’s surface into many small enough
regions, where the dielectric coefficient and electric field in each region are treated as
constants. Let ε1n, ε2n, and ε3n represent the dielectric coefficients of the n-th region in the
z-, x-, and y-directions, respectively. Then, (3)–(10) are solved using the method of moments
and expanded with pulse basis functions. The Dirac delta function is eventually tested.

2.1.1. TM (Transverse Magnetic) Waves

TM electromagnetic waves are irradiated in the region S. Equation (2) is the incident
field Ei

z(x, y). k0 is the free-space wave number and ξ is the incident angle.

Ei
(x, y) = Ei

z(x, y)ẑ = e−jk0(xcosξ+ysinξ) ẑ (2)

Since the incident z-direction waves can only generate the z component scattered field,
the total electric field and scattered field can be written as (3) and (4), respectively.

Ez(x, y) =
∫

s G(x, y; x′, y′)(ε1(x′, y′)− 1)Ez (x′, y′)ds′

+Ei
z(x′, y′), (x, y), (x′, y′) ∈ S

(3)
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Es
z(x, y) =

∫
s

G
(
x, y; x′, y′

)(
ε1
(
x′, y′

)
− 1
)
Ez
(
x′, y′

)
ds′,

⇀
r /∈ S,

⇀
r
′
∈ S (4)

where G(x, y; x′, y′) = − jk2
0

4 H(2)
0 (k0|(x, y)− (x′, y′)|) is Green’s function of two-dimensional

free space, and H(2)
0 is the zero-order Hankel function of the second kind. Then, (3) and (4)

can be converted into matrix equations as shown in (5) and (6), respectively,

−
(

Ei
z

)
= ([G1][τz]− [I])(Ez) (5)

(Es
z) = [G2][τz](Ez) (6)

and the Green’s function matrices are as shown in (7) and (8)

(G1)mn =

{
− jπk0an

2 J1(k0an)H0
(2)(k0ρmn), m ̸= n

− j
2

[
πk0an H1

(2)(k0an)− 2j
]
, m = n

(7)

(G2)mn = − jπk0an

2
J1(k0an)H0

(2)(k0 ρmn) (8)

where (Ez) represents the total electric field column vectors of the N-element,
(
Ei

z
)

repre-
sents the incident field column vectors of the N-element, and (Es

z) represents the scattered
field column vectors of the M-element. M is the number of measurement points. [G1] is
an N × N square matrix, while [G2] is an M × N matrix. [τz] is the diagonal matrix that is
constituted by the dielectric coefficient: (τz)nn = ε1(x, y)− 1. [I] is the N × N unit matrix.

2.1.2. TE (Transverse Electric) Waves

TE electromagnetic waves are irradiated in the region S. Ei
x(x, y) and Ei

y(x, y) are the
incident fields with the equations shown in (9) and (10), respectively.

Ei
x(x, y) = −sinξe−jk0(xcosξ+ysinξ) (9)

Ei
y(x, y) = cosξe−jk0(xcosξ+ysinξ) (10)

We adopt the vector potential technique to offset the coupling effect of the incident
field Ei

(x, y) = Ei
x(x, y)x̂ + Ei

y(x, y)ŷ. The total electric field E(x, y) = Ex(x, y)x̂ + Ey(x, y)ŷ
and the external scattered field Es

(x, y) = Es
x(x, y)x̂ + Es

y(x, y)ŷ are shown in Equations
(11)–(14), respectively.

Ex(x, y) =
(

∂2

∂x2 + k0
2
)[∫

s G(x, y; x′, y′)(ε2(x′, y′)− 1)Ex(x′, y′)ds′
]

+ ∂2

∂x∂y
[∫

s G(x, y; x′, y′)(ε3(x′, y′)− 1)Ey(x′, y′)ds′
]

+
⇀
E

i

x(x′, y′)

(11)

Ey(x, y) = ∂2

∂x∂y
[∫

s G(x, y; x′, y′)(ε2(x′, y′)− 1)Ex(x′, y′)ds′
]

+
(

∂2

∂y2 + k0
2
)[∫

s G(x, y; x′, y′)(ε3(x′, y′)− 1)Ey(x′, y′)ds′
]

+
⇀
E

i

y(x′, y′)

(12)

Es
x(x, y) =

(
∂2

∂x2 + k0
2
)[∫

s G(x, y; x′, y′)(ε2(x′, y′)− 1)Ex(x′, y′)ds′
]

+ ∂2

∂x∂y
[∫

s G(x, y; x′, y′)(ε3(x′, y′)− 1)Ey(x′, y′)ds′
] (13)

Es
y(x, y) = ∂2

∂x∂y
[∫

s G(x, y; x′, y′)(ε2(x′, y′)− 1)Ex(x′, y′)ds′
](

∂2

∂y 2 + k0
2
)[∫

s G(x, y; x′, y′)(ε3(x′, y′)− 1)Ey(x′, y′)ds′
] (14)

If the permittivity tensor of the scatterer is known, the total electric field for (3), (11),
and (12) can be solved first. The scattered field outside the scatterer can be obtained from
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(4), (13). (13), and (14) and can be converted to matrix equations as shown in (15) and (16),
respectively, (

−Ei
x

−Ei
y

)
=

{[
[G3] [G4]
[G4] [G5]

][
[τx] 0

0
[
τy
]]− [[I] 0

0 [I]

]}(
Ex
Ey

)
(15)

(
Es

x
Es

y

)
=

{[
[G6] [G7]
[G7] [G8]

][
[τx] 0

0
[
τy
]]}(Ex

Ey

)
(16)

and the Green’s function matrices are shown in (17)–(22)

(G3) =

− jπan J1(k0an)
2ρ3

mn
×
[
kρmn(ym − yn)

2H0
(2)(k0ρmn) +

(
(xm − xn)

2 − (ym − yn)
2
)

H1
(2)(k0ρmn)

]
, m ̸= n

− j
4

[
πk0an H1

(2)(k0an)− 4j
]
, m = n

(17)

(G4) =

{
− jπan J1(k0an)

2ρ3
mn

(xm − xn)(ym − yn)×
[
2H1

(2)(k0ρmn)− k0ρmn H0
(2)(k0ρmn)

]
, m ̸= n

0, m = n
(18)

(G5) =

− jπan J1(k0an)
2ρ3

mn
×
[
k0ρmn(xm − xn)

2H0
(2)(k0ρmn) +

(
(ym − yn)

2 − (xm − xn)
2
)]

, m ̸= n

− j
4

[
πk0an H1

(2)(k0an)− 4j
]
, m = n

(19)

(G6) = − jπan J1(k0an)

2ρ3
mn

×
[
k0ρmn(ym − yn)

2H0
(2)(k0ρmn) +

(
(xm − xn)

2 − (ym − yn)
2
)

H1
(2)(k0ρmn)

]
(20)

(G7) = − jπan J1(k0an)

2ρ3
mn

(xm − xn)(ym − yn)
[
2H1

(2)(k0ρmn)− k0ρmn H0
(2)(k0ρmn)

]
(21)

(G8) = − jπan J1(k0an)

2ρ3
mn

[
k0ρmn(xm − xn)

2H0
(2)(k0ρmn) +

(
(ym − yn)

2 − (xm − xn)
2
)

H1
(2)(k0ρmn)

]
(22)

where ρmn =
√
(xm − xn)

2 + (ym − yn)
2 and H(2)

0 is the second kind of the zero-order

Hankel function. H1
(2) is the second kind of the first-order Hankel function, J1 is the

Bessel function of the first order. (xn, yn) is the n-th source point and (xm, ym) is the m-th
observation point.

(Ex) and
(

Ey

)
represent the total electric field column vectors of the N-element,(

Ei
x
)
and

(
Ei

y

)
represent the incident field column vectors of the N-element, and (Es

x)

and
(

Es
y

)
represent the scattered field column vectors of the M-element. M is the number of

measurement points. [G3], [G4], and [G5] are the N × N square matrices, while [G6], [G7],
and [G8] are the M × N matrices. [τx]and

[
τy
]

are the diagonal matrices with the dielectric
coefficients of (τx)nn = ε2(r)− 1 and

(
τy
)

nn = ε3(r)− 1. [I] is an N × N unit matrix.

2.2. Inverse Problem
Backpropagation Scheme (BPS)

We utilize the measured scattered field to estimate the dielectric constant distribution
of anisotropic objects by the backpropagation scheme (BPS) to reduce the training difficulty
of U-Net. Firstly, the backpropagation field is assumed to be proportional to the induced
current Ib

z , Ib
x , and Ib

y , as shown in (23) and (24).(
Ib
z

)
= Ym·[G2]

H(Es
z) (23)(

Ib
x

Ib
y

)
= Ye·

[
[G6] [G7]
[G7] [G8]

]H(Es
x

Es
y

)
(24)

where H stands for conjugate transpose.
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According to (6), the loss function of the TM wave can be defined as:

Lb
m(Y) =

∥∥∥(Es
z)− [G2]·Ym·[G2]

H(Es
z)
∥∥∥2

(25)

According to Equation (16), the loss function of the TE wave can be defined as:

Lb
e (Y) =

∥∥∥∥∥
(

Es
x

Es
y

)
−
[
[G6] [G7]
[G7] [G8]

]
·Ye·
[
[G6] [G7]
[G7] [G8]

]H(Es
x

Es
y

)∥∥∥∥∥
2

(26)

To minimize the loss function, the derivative must be zero. The analytical solutions
for Ym and Ye are shown in (27) and (28), respectively,

Ym =
(Es

z )
T ·
(
[G2]

(
[G2]

H ·(Es
z)
))∗

∥∥∥[G2]
(
[G2]

H ·(Es
z)
)∥∥∥2 (27)

Ye =

(
Es

x
Es

y

)T

·
([

[G6] [G7]
[G7] [G8]

]([
[G6] [G7]
[G7] [G8]

]H

·
(

Es
x

Es
y

)))∗

∥∥∥∥∥
[
[G6] [G7]
[G7] [G8]

]([
[G6] [G7]
[G7] [G8]

]H

·
(

Es
x

Es
y

))∥∥∥∥∥
2 (28)

where T stands for transpose and ∗ stands for complex conjugate.
Once Ym is known, (23) is used to find the induced current of the TM wave. And the

backpropagation total field Eb
z is solved by (5) to produce (29).(

Eb
z

)
=
(

Ei
z

)
+ [G1]

(
Ib
z

)
(29)

Similarly, (24) can be used to find the induced current of the TE wave. The backpropa-
gation total field Eb

x and Eb
y are solved by (15) to produce (30).(

Eb
x

Eb
y

)
=

(
Ei

x
Ei

y

)
+

[
[G3] [G4]
[G4] [G5]

](
Ib
x

Ib
y

)
(30)

The relationship between the induced current Ib
z and the contrast

[
τb

z

]
is shown in (31).(

Ib
z,p

)
= diag

([
τb

z

])(
Eb

z

)
(31)

The relationship between the induced current Ib
x,p and Ib

y,p with contrasts
[
τb

x

]
and[

τb
y

]
is shown in (32). (

Ib
x,p

Ib
y,p

)
= diag

[τb
x

]
0

0
[
τb

y

](Eb
x

Eb
y

)
(32)

where p represents each incidence and
[
τb

z

]
,
[
τb

x

]
, and

[
τb

y

]
represent the dielectric constant

profiles of the backpropagation.
The least squares method is used to calculate all incidences of (31) to obtain the contrast[

τb
z

]
of the n-th element, as shown in (33).

[
τb

z

]
=

∑Ni
p=1 Ib

z, p(n)·
[

Eb
z(n)

]∗
∑Ni

p=1
∥∥Eb

z(n)
∥∥2 (33)
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Similarly, the contrasts
[
τb

x

]
and

[
τb

y

]
of the n-th element can be obtained by calculating

all incidences of (32) using the least squares method, as shown in (34)

[
τb

x
τb

y

]
=

Ni

∑
p=1

Ib
x,p(n)

Ib
y,p(n)

·
[(

Eb
x

Eb
y

)
(n)

]∗
∥∥∥∥∥Eb

x(n)
Eb

y(n)

∥∥∥∥∥
2 (34)

where p represents the number of incident waves.

3. Convolutional Neural Network

A CNN is a machine learning model inspired by the biological nervous system, which
simulates the information processing and transfers among neurons in the brain. The
applications cover a wide range, such as graphical image recognition, natural language
processing, computer vision, speech recognition, and so on. The advantage of convolutional
neural network is that the system is capable of changing its internal structure based on
external information by its adaptive characteristic for learning.

The CNN architecture includes a convolutional layer, a pooling layer, a ReLu layer,
and a fully connected layer. The convolutional layer detects features in an input image
by converting it into a matrix. It slides various kernels over the matrix, convolving local
regions with the kernels to generate feature maps. The kernels are the important weight
parameters in the convolutional layer. They are used to detect features such as edges, colors,
textures, etc., by the size and step of each slide. The pooling layer is used to reduce the
spatial dimension of the feature mapping and the size of the feature image, which in turn
speeds up computation and avoids the occurrence of over-fitting. The ReLu layer is used
to quell the non-linear features to improve the training effectiveness of the CNN and to
mitigate the problem of gradient vanishing. It also possesses sparse activation to promote
the generalization ability of CNN models. The fully connected layer is used to expand the
feature matrix into a one-dimensional vector.

In this paper, U-Net, a network architecture for image segmentation in a CNN, is
applied as the training model. Its feature extraction step is more complicated than the
CNN, which consists of two parts, an encoder and a decoder. The advantages of U-Net
include the following:

(1) U-Net has a strong generative capability even with limited training data.
(2) Its skip-connect method can effectively mitigate the problem of gradient vanishing

during the training process.
(3) Through U-Net’s down-sampling network, the perceptual range is expanded, thereby

enhancing the accuracy of pixel predictions.
(4) The batch normalization layers expedite training and reduce gradient dependency on

parameters or initial values.

The U-Net architecture in Figure 2 consists of a right half extended network and a
left half contracted network. The left half includes overlapping 3 × 3 convolutional layers,
batch normalization layers, and ReLU activation layers. The pooling layer in the contracted
and extended networks are a 2 × 2 max-pooling layer and a 3 × 3 transposed convolutional
layer, respectively. The fully connected layer is a 1 × 1 convolutional layer. The number of
incidences Ni is equal to the number of output channels Nout. By averaging the outputs of
the fully connected layer and inputting them into the regression layer, the error value of
the dielectric coefficient distribution can be calculated.
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The minimization equation for the TM wave dielectric coefficient εz is shown in (35)

argmin
Ai1, i

:
Nt

∑
N=1

f (Ai1(ε
α
1), ε1) + Q1(i) (35)

And the minimization equation for the TE wave dielectric coefficients εx and εy is shown
in (36)

argmin
Ai2, i

:
Nt

∑
N=1

f
(

Ai2

(
εα

2
εα

3

)
,
(

ε2
ε3

))
+ Q2(i) (36)

where Ai1 and Ai2 represent the neural network structure, i is the parameter of the neural
network, f is the error, εα

1, εα
2, and εα

3 are the approximate dielectric coefficients, and Q1(i)
and Q2(i) are the regularization functions.

The deep learning training method implemented in this paper is adaptive moment
estimation (ADAM), which is a first-order gradient optimization algorithm for stochastic
objective functions based on low-order moment adaptive estimation. Its strengths include
easy implementation, high computational efficiency, low memory capacity requirements,
and constant diagonal rescaling of the gradient. This method also provides an apt solution
for non-stationary and highly noisy or sparse gradient problems.

4. Numerical Results

The aim of this research is to reconstruct the electromagnetic imaging of free-space
anisotropic objects in the simulation environment, as shown in Figure 1. The incident wave
frequency is 2, 3, and 4 GHz, and the edge length of the scatterer is subdivided into sizes
smaller than 0.2λ0√

εs
, where λ0 represents the free-space wavelength, and εs represents the

maximum relative permittivity of the anisotropic scatterers. In the simulation environment,
separate TE and TM waves are emitted to illuminate the anisotropic objects. We deploy
32 transmitters and 32 receivers for measurements, with 5% and 20% Gaussian noise
added, respectively. In the TM polarization process, the transmitters and receivers are
placed 11.25 degrees apart. However, since the magnitudes of the incident fields Ei

x and
Ei

y are affected by the incident angles during the reconstruction process of TE waves, we
carefully select the incident angle of TE polarization. In the training, BPS is used to estimate
the dielectric constant profiles of the anisotropic objects. The data are further divided into
50% for training, 25% for validating, and 25% for testing. ADAM deep learning method
is used to train U-Net. The initial learning rate and the max epoch are set at 10−3 and 40,
respectively. The 0.1 gradient descent is run for every 20 epochs, and the batch size is 32;
the gradient decay factor and the squared gradient decay factor are assumed as 0.9 and
0.99, respectively.
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In order to evaluate the performance of the reconstruction results, we define the root
mean squared error (RMSE) as shown in (37)

RMSE =
1

MT

MT

∑
i=1

∥I − Iα∥F
∥I∥F

(37)

where I and Iα represent the original image and reconstructed image, respectively, MT
represents the total number of tests, and F represents the Frobenius norm.

The structural similarity index measure (SSIM) in (38) is employed to compare the
dissimilarity of the reconstructed results

SSIM =

(
2µ∼

y
µy + C1

)(
2σ∼

yy
+ C2

)
(

µ2
∼
y
+ µ2

y + C1

)(
σ2
∼
y
+ σ2

y + C2

) (38)

where
∼
y and y represent the reconstructed image and the original image, respectively, the

pixel sample mean of y is µy, the variance of y is σ2
y , and the covariance of

∼
y and y is σ∼

yy
.

C1 and C2 are two variables used to stabilize the division with a weak denominator.
The improved loss function used in this proposal is formed by combining SSIM with

RMSE as shown in (39).

L f ull(ŷ, y) =
Np

∑
j=1

LRMSE
(
ŷj, yj

)
+ αLSSIM

(
ŷj, yj

)
(39)

where ŷj and yj represent the j-th pixel of image ŷ and y, respectively, and LSSIM and
LRMSE represent the loss function value of SSIM and RMSE, respectively. α is set at 0.5,
representing the weight of SSIM.

4.1. Relative Permittivity Ranging from 1 to 1.5

In this study, we establish dielectric constant profiles within the interval of 1.0 to
1.5. We assume that there are 10 scatterers of different dielectric constant profiles situated
randomly at 80 various locations with 20% random Gaussian noise added. The dielectric
constant distribution is derived from the multifrequency scattered field data employing
BPS, and these data are input into a CNN for electromagnetic image reconstruction. Subse-
quently, we compare the reconstruction results obtained from both the single-frequency
and multifrequency methodologies.

Figure 3a–c illustrate the initial dielectric constant profiles of the ε1, ε2, and ε3 scatter-
ers, respectively. Figure 4a–c illustrate, respectively, the reconstructed dielectric constant
profiles of ε1, ε2, and ε3 by the CNN with 2 GHz input to BPS. Figure 5a–c illustrate,
respectively, the reconstructed dielectric constant profiles of ε1, ε2, and ε3 by the CNN
with 3 GHz input to BPS. Figure 6a–c illustrate, respectively, the reconstructed dielectric
constant profiles of ε1, ε2, and ε3 by the CNN with 4 GHz input to BPS. Figure 7a–c illustrate,
respectively, the reconstructed dielectric constant profiles of ε1, ε2, and ε3 by the CNN with
multifrequency input to BPS. The results indicate that multifrequency outperforms the
single frequency in reconstructing the dielectric coefficient distribution. Table 1 presents the
SSIM and RMSE values of the reconstruction results. We can see that the reconstructed im-
ages using multifrequency data demonstrate superior error rates and similarity compared
with those using single-frequency data in both the TE and TM cases.



Sensors 2024, 24, 4994 11 of 19
Sensors 2024, 24, x FOR PEER REVIEW 11 of 19 
 

 

   
(a) (b) (c) 

Figure 3. Ground truth: (a) 𝜀ଵ, (b) 𝜀ଶ, and (c) 𝜀ଷ for Case 4.1. 

   
(a) (b) (c) 

Figure 4. Image reconstructed using BPS with 2 GHz input: (a) 𝜀ଵ, (b) 𝜀ଶ, and (c) 𝜀ଷ for Case 4.1. 

(a) (b) (c) 

Figure 5. Image reconstructed using BPS with 3 GHz input: (a) 𝜀ଵ, (b) 𝜀ଶ, and (c) 𝜀ଷ for Case 4.1. 

   
(a) (b) (c) 

Figure 6. Image reconstructed using BPS with 4 GHz input: (a) 𝜀ଵ, (b) 𝜀ଶ, and (c) 𝜀ଷ for Case 4.1. 

   
(a) (b) (c) 

Figure 7. Image reconstructed using BPS with multifrequency input: (a) 𝜀ଵ, (b) 𝜀ଶ, and (c) 𝜀ଷ for 
Case 4.1. 

 

-1 0 1
X -a x is  (m )

1

0

-1

Y-
ax

is
 (m

)

1

1 .1

1 .2

1 .3

1 .4

1 .5

− − − 

− − − 

− − − 

− − − 

− − − 

− − −

−

−

− −

− − − −

−

−

− − − − − −

− − − −

Figure 3. Ground truth: (a) ε1, (b) ε2, and (c) ε3 for Case 4.1.
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Figure 4. Image reconstructed using BPS with 2 GHz input: (a) ε1, (b) ε2, and (c) ε3 for Case 4.1.
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Table 1. SSIM and RMSE for the permittivity range of 1–1.5 with 20% noise.

Reconstruction Performance ε1 ε2 ε3

2 GHz
SSIM 96.64% 95.9% 96.7%
RMSE 2.19% 2.44% 2.37%

3 GHz
SSIM 96.16% 98.6% 98.7%
RMSE 2.02% 1.15% 1.31%

4 GHz
SSIM 98.94% 98.7% 98.9%
RMSE 1.12% 1.05% 1.17%

Multifrequency SSIM 99.05% 99.01% 99.04%
RMSE 0.83% 0.88% 0.93%

4.2. Relative Permittivity Ranging from 1.5 to 2

In this case, we configure the dielectric constant distribution ranging from 1.5 to 2. We
consider 10 scatterers, each with varying dielectric constants, that can move freely among
80 different positions within the measurement area. To simulate realistic conditions, we
introduce 5% Gaussian noise. We initially estimate the dielectric constant distribution
from multifrequency scattered field data via BPS, which is then input into the CNN for
electromagnetic image reconstruction. Eventually, we compare the reconstruction results
obtained from the single-frequency and multifrequency methods.

Figure 8a–c depict the initial dielectric constant profiles of the ε1, ε2, and ε3 scatterers,
respectively. Figure 9a–c show the reconstructed dielectric constant profiles for ε1, ε2, and
ε3 by the CNN using BPS with 2 GHz input. Figures 10a–c and 11a–c present, respectively,
the reconstructed dielectric constant profiles for ε1, ε2, and ε3 using the CNN with BPS
for 3 GHz and 4 GHz inputs. Figure 12a–c present the reconstructed dielectric constant
profiles for ε1, ε2, and ε3 by the CNN using BPS with multifrequency input. Figures 9–12
demonstrate that BPS with 2 GHz, 3 GHz, 4 GHz, and multifrequency inputs can only
reconstruct the scatterer positions and provide a coarse dielectric constant profile. The
findings show that BPS using multifrequency data achieves a more precise reconstruction
of the dielectric coefficient distribution compared with single-frequency data. Based on the
SSIM and RMSE values shown in Table 2, it is clear that the images reconstructed using
multifrequency data perform better than those reconstructed using single-frequency data
in terms of both similarity and the error rate.
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Figure 10. Image reconstructed using BPS with 3 GHz input: (a) ε1, (b) ε2, and (c) ε3 for Case 4.2.
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Figure 11. Image reconstructed using BPS with 4 GHz input: (a) ε1, (b) ε2, and (c) ε3 for Case 4.2.
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Figure 12. Image reconstructed using BPS with multifrequency input: (a) ε1, (b) ε2, and (c) ε3 for
Case 4.2.

Table 2. SSIM and RMSE for the permittivity range of 1.5–2 with 5% noise.

Reconstruction Performance ε1 ε2 ε3

2 GHz
SSIM 97.9% 97.6% 97.7%
RMSE 1.76% 2.03% 1.98%

3 GHz
SSIM 98.9% 98.5% 98.8%
RMSE 1.1% 1.47% 1.43%

4 GHz
SSIM 99% 98.56% 97.2%
RMSE 0.87% 2.59% 2.49%

Multifrequency SSIM 99.33% 98.8% 98.8%
RMSE 0.8% 1.38% 1.34%

4.3. Relative Permittivity Ranging from 2 to 2.5

The Modified National Institute of Standards and Technology (MNIST) database is
a prominent dataset for image recognition in machine learning and deep learning. It
comprises 70,000 grayscale images of handwritten digits from 0 to 9, each measuring
28 × 28 pixels. In our study, we utilize the MNIST dataset with a dielectric distribution
range of 2 to 2.5. We simulate 8000 randomized images, adding 5% Gaussian noise, to
estimate the dielectric coefficient distribution. These data are processed using BPS on both
single-frequency and multifrequency scattering fields and subsequently input into the
CNN for electromagnetic image reconstruction. Finally, we compare the reconstruction
results obtained from the two different input datasets.
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Figure 13a–c display the initial dielectric constant profiles of the scatterers ε1, ε2, and
ε3, respectively. Figure 14a–c present the reconstructed dielectric constant profiles for ε1, ε2,
and ε3 using the CNN with BPS based on 2 GHz input. Similarly, Figures 15a–c and 16a–c
show the reconstructed dielectric constant profiles for ε1, ε2, and ε3 using the CNN with BPS
based on 3 GHz and 4 GHz inputs, respectively. Likewise, in cases A and B, these figures
demonstrate that BPS with 2 GHz, 3 GHz, and 4 GHz inputs can only reconstruct the scatterer
positions and provide a coarse dielectric constant profile. Figure 17a–c display the reconstructed
dielectric constant profiles for ε1, ε2, and ε3 using the CNN with BPS based on multifrequency
input. The simulation outcomes also indicate that using multifrequency data yields a more
accurate reconstruction of the dielectric coefficient distribution compared with single-frequency
data. In Table 3, the SSIM and RMSE values for the reconstruction results confirm that images
reconstructed with multifrequency data exhibit lower error rates and higher similarity compared
with those reconstructed with single-frequency data.
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Figure 13. Ground truth: (a) ε1, (b) ε2, and (c) ε3 for Case 4.3.
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Figure 14. Image reconstructed using BPS with 2 GHz input: (a) ε1, (b) ε2, and (c) ε3 for Case 4.3.
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Figure 15. Image reconstructed using BPS with 3 GHz input: (a) ε1, (b) ε2, and (c) ε3 for Case 4.3.
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Figure 16. Image reconstructed using BPS with 4 GHz input: (a) ε1, (b) ε2, and (c) ε3 for Case 4.3.
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Table 3. SSIM and RMSE for the permittivity range of 2–2.5 with 5% noise.

Reconstruction Performance ε1 ε2 ε3

2 GHz
SSIM 91.1% 93.81% 90.93%
RMSE 9% 6.3% 6.8%

3 GHz
SSIM 96.11% 95.2% 92.9%
RMSE 5.83% 3.37% 4.78%

4 GHz
SSIM 97.01% 97.07% 95.29%
RMSE 5.23% 2.77% 4.42%

Multifrequency SSIM 97.36% 97.62% 96.62%
RMSE 5.02% 2.71% 2.48%

4.4. Research Dataset

In this study, we utilize a dataset from the Fresnel Institute to validate the effectiveness
of our proposed multifrequency BPS in both the TE and TM schemes. The research dataset
is set up in a test environment with eight transmitters and 241 receivers. The transmitters
are positioned 1.67 m from the object under test. As horn antennas are used to measure the
scattered field, no transmitters are placed adjacent to the receivers. We use the FoamDielExt
measurement data for both the TE and TM cases, comprising a small cylinder (Berlon)
and a large cylinder (SAITEC SBF 300). The small cylinder has a dielectric constant of
εr = 3 ± 0.3 and a diameter of 31 mm, while the diameter of the large cylinder is 80 mm
with a dielectric constant of εr = 1.45 ± 0.15 [29].

In the simulation, the scatterer is placed in a 320 mm × 320 mm measurement area
and illuminated with TE and TM waves at 2 GHz, 3 GHz, 4 GHz, and multifrequency. The
received scattered fields are then calibrated. During calibration, we normalize using the
scattered field received from the opposite side of the incident angle. The schematic diagram
of FoamDielExt is shown in Figure 18.

Figure 19a–c, Figure 20a–c, and Figure 21a–c show the reconstructed dielectric constant
profiles of ε1, ε2, and ε3 using 2 GHz, 3 GHz, and 4 GHz input-based BPS, respectively. All
these data reveal that the BPS based on 2 GHz, 3 GHz, and 4 GHz inputs are only able to
reconstruct the position of the scatterer and provide a rough distribution of the dielectric
constant. Figure 22a–c illustrate the reconstructed dielectric constant profiles of ε1, ε2,
and ε3 using the multifrequency input-based CNN and BPS. The simulation results show
that multifrequency data from BPS are capable of reconstructing more accurate dielectric
coefficients. Table 4 lists the SSIM and RMSE values of the reconstruction results for the
research dataset.
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Figure 19. Image reconstructed using BPS with 2 GHz input: (a) ε1, (b) ε2, and (c) ε3 for Case 4.4.
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Figure 20. Image reconstructed using BPS with 3 GHz input: (a) ε1, (b) ε2, and (c) ε3 for Case 4.4.
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Figure 21. Image reconstructed using BPS with 4 GHz input: (a) ε1, (b) ε2, and (c) ε3 for Case 4.4.
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Figure 22. Image reconstructed using BPS with multifrequency input: (a) ε1, (b) ε2, and (c) ε3 for
Case 4.4.

Table 4. SSIM and RMSE for the research dataset.

Reconstruction Performance ε1 ε2 ε3

2 GHz
SSIM 92.1% 92.96% 92.44%
RMSE 9.68% 7.41% 8.98%

3 GHz
SSIM 93% 93.09% 94.04%
RMSE 6.47% 7.29% 6.74%

4 GHz
SSIM 94.13% 95.16% 95.43%
RMSE 3.78% 6.89% 4.97%

Multifrequency SSIM 97.03% 97.35% 97.34%
RMSE 3.4% 0.48% 0.53%

5. Conclusions

The innovation of this paper lies in utilizing SSIM and RMSE to generate an improved
loss function for reducing reconstruction artifacts. The numerical results indicate that
an electromagnetic image can be significantly improved by the enhanced CNN model.
Moreover, a comparison between single-frequency and multifrequency is also performed
in terms of high accuracy and stability. By analyzing the anisotropic objects reconstructed
by the TE and TM waves, we can see that despite the addition of 5% and 20% noises in
the simulation environment, the images are still outstanding. Therefore, we conclude
that through our proposed method of integrating BPS with appropriate CNN parameters,
excellent reconstruction performance can be achieved for anisotropic objects located in free
space under different dielectric coefficient distributions or different noise levels.

In addition, since a combination of SSIM and RMSE is used to optimize the loss
function in this paper, other differentiable perceptual metrics may also be used to construct
loss functions, which in turn inspires a new way of thinking for the current research. In the
future, we intend to extend our exploration associated will anisotropic objects buried in
half space or multi-layer space.
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