Memristive True Random Number Generator for Security Applications
Abstract
:1. Introduction
2. Memristive Technology and Its Application Scenarios
2.1. Classifications of Memristors
2.2. Key Performance Parameters
2.3. Application Scenarios
3. True Random Number Generator Based on Memristors
3.1. Classifications of Memristor-Based TRNG
3.2. Comparison with CMOS Technologies
4. Case Study: Entropy Source Based on Electroforming Free YMO Memristor for TRNG
5. Challenge and Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Chanthbouala, A.; Garcia, V.; Cherifi, R.O.; Bouzehouane, K.; Fusil, S.; Moya, X.; Xavier, S.; Yamada, H.; Deranlot, C.; Mathur, N.D.; et al. A ferroelectric memristor. Nat. Mater. 2012, 11, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A. Memristor-based neural networks. J. Phys. D Appl. Phys. 2013, 46, 093001. [Google Scholar] [CrossRef]
- Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. Memristor-based material implication (IMPLY) logic: Design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2013, 22, 2054–2066. [Google Scholar] [CrossRef]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E.; et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2018, 1, 52–59. [Google Scholar] [CrossRef]
- Huang, C.Y.; Shen, W.C.; Tseng, Y.H.; King, Y.C.; Lin, C.J. A contact-resistive random-access-memory-based true random number generator. IEEE Electron Device Lett. 2012, 33, 1108–1110. [Google Scholar]
- Wang, Y.; Wen, W.; Li, H.; Hu, M. A novel true random number generator design leveraging emerging memristor technology. In Proceedings of the 25th edition on Great Lakes Symposium on VLSI, Pittsburgh, PA, USA, 20–22 May 2015; pp. 271–276. [Google Scholar]
- Wei, Z.; Katoh, Y.; Ogasahara, S.; Yoshimoto, Y.; Kawai, K.; Ikeda, Y.; Eriguchi, K.; Ohmori, K.; Yoneda, S. True random number generator using current difference based on a fractional stochastic model in 40-nm embedded ReRAM. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 4–8. [Google Scholar]
- Zhang, T.; Yin, M.; Xu, C.; Lu, X.; Sun, X.; Yang, Y.; Huang, R. High-speed true random number generation based on paired memristors for security electronics. Nanotechnology 2017, 28, 455202. [Google Scholar] [CrossRef]
- Woo, K.S.; Kim, J.; Han, J.; Choi, J.M.; Kim, W.; Hwang, C.S. A high-speed true random number generator based on a CuxTe1−x diffusive memristor. Adv. Intell. Syst. 2021, 3, 2100062. [Google Scholar] [CrossRef]
- Woo, K.S.; Zhang, A.; Arabelo, A.; Brown, T.D.; Park, M.; Talin, A.A.; Fuller, E.J.; Bisht, R.S.; Qian, X.; Arroyave, R.; et al. True random number generation using the spin crossover in LaCoO3. Nat. Commun. 2024, 15, 4656. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Belkin, D.; Savel’ev, S.E.; Lin, S.; Wang, Z.; Li, Y.; Joshi, S.; Midya, R.; Li, C.; Rao, M.; et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Gao, B.; Lin, B.; Qian, H.; Wu, H. Memristors for hardware security applications. Adv. Electron. Mater. 2019, 5, 1800872. [Google Scholar] [CrossRef]
- Carboni, R.; Ielmini, D. Stochastic memory devices for security and computing. Adv. Electron. Mater. 2019, 5, 1900198. [Google Scholar] [CrossRef]
- Du, N.; Schmidt, H.; Polian, I. Low-power emerging memristive designs towards secure hardware systems for applications in internet of things. Nano Mater. Sci. 2021, 3, 186–204. [Google Scholar] [CrossRef]
- Lv, S.; Liu, J.; Geng, Z. Application of Memristors in Hardware Security: A Current State-of-the-Art Technology. Adv. Intell. Syst. 2021, 3, 2000127. [Google Scholar] [CrossRef]
- Lanza, M.; Sebastian, A.; Lu, W.D.; Le Gallo, M.; Chang, M.F.; Akinwande, D.; Puglisi, F.M.; Alshareef, H.N.; Liu, M.; Roldan, J.B. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 2022, 376, eabj9979. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H. Prospects for memristors with hysteretic memristance as so-far missing core hardware element for transfer-less data computing and storage. J. Appl. Phys. 2024, 135. [Google Scholar] [CrossRef]
- Hamdioui, S.; Aziza, H.; Sirakoulis, G.C. Memristor based memories: Technology, design and test. In Proceedings of the 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Santorini, Greece, 6–8 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–7. [Google Scholar]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J.J. Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D Appl. Phys. 2018, 51, 503002. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, X.; Strachan, J.P.; Yang, Y.; Lu, W.D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 2022, 7, 575–591. [Google Scholar] [CrossRef]
- Merrikh-Bayat, F.; Shouraki, S.B. Memristor-based circuits for performing basic arithmetic operations. Procedia Comput. Sci. 2011, 3, 128–132. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, R.; Zhu, Z.; Liu, K.; Jing, Z.; Cai, Y.; Wang, Y.; Yang, Y.; Huang, R. Memristor-based efficient in-memory logic for cryptologic and arithmetic applications. Adv. Mater. Technol. 2019, 4, 1900212. [Google Scholar] [CrossRef]
- Rose, G.S.; McDonald, N.; Yan, L.K.; Wysocki, B. A write-time based memristive PUF for hardware security applications. In Proceedings of the 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 18–21 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 830–833. [Google Scholar]
- Rayapati, V.R.; Du, N.; Bürger, D.; Patra, R.; Skorupa, I.; Matthes, P.; Stöcker, H.; Schulz, S.E.; Schmidt, H. Electroforming-free resistive switching in polycrystalline YMnO3 thin films. J. Appl. Phys. 2018, 124, 144102. [Google Scholar] [CrossRef]
- Huang, Y.; Gu, Y.; Mohan, S.; Dolocan, A.; Ignacio, N.D.; Kutagulla, S.; Matthews, K.; Londoño-Calderon, A.; Chang, Y.F.; Chen, Y.C.; et al. Reliability improvement and effective switching layer model of thin-film MoS2 memristors. Adv. Funct. Mater. 2024, 34, 2214250. [Google Scholar] [CrossRef]
- You, T.; Ou, X.; Niu, G.; Bärwolf, F.; Li, G.; Du, N.; Bürger, D.; Skorupa, I.; Jia, Q.; Yu, W.; et al. Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes. Sci. Rep. 2015, 5, 18623. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.H.; Park, H.; Ghenzi, N.; Kim, Y.R.; Cheong, S.; Shim, S.K.; Yim, S.; Park, T.W.; Song, H.; Lee, J.K.; et al. Multiphase Reset Induced Reliable Dual-Mode Resistance Switching of the Ta/HfO2/RuO2 Memristor. ACS Appl. Mater. Interfaces 2024, 16, 16462–16473. [Google Scholar] [CrossRef] [PubMed]
- Chua, L. Resistance switching memories are memristors. In Handbook of Memristor Networks; Springer: Cham, Switzerland, 2019; pp. 197–230. [Google Scholar]
- Chua, L. Everything you wish to know about memristors but are afraid to ask. In Handbook of Memristor Networks; Springer: Cham, Switzerland, 2019; pp. 89–157. [Google Scholar]
- Chua, L. If it’s pinched it’sa memristor. Semicond. Sci. Technol. 2014, 29, 104001. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Y.; Lv, Z.; Xie, P.; Xu, Z.X.; Luo, M.; Zhang, Y.; Huang, S.; Zhou, K.; Zhang, G.; et al. Ferroelectric coupling for dual-mode non-filamentary memristors. Appl. Phys. Rev. 2022, 9, 021417. [Google Scholar] [CrossRef]
- Shi, Z.M.; Hou, Y.C.; Chen, C.Y.; Tan, G.H.; Lin, H.C.; Lai, P.T.; Hou, C.H.; Shyue, J.J.; Cheng, W.K.; Su, T.K.; et al. Highly Thermally Resilient Dual-Mode (Digital/Analog) Amorphous Yttrium Fluoride Memristors Exhibiting Excellent Symmetric Linearity. Adv. Electron. Mater. 2022, 8, 2200922. [Google Scholar] [CrossRef]
- Teja Nibhanupudi, S.; Roy, A.; Veksler, D.; Coupin, M.; Matthews, K.C.; Disiena, M.; Ansh; Singh, J.V.; Gearba-Dolocan, I.R.; Warner, J.; et al. Ultra-fast switching memristors based on two-dimensional materials. Nat. Commun. 2024, 15, 2334. [Google Scholar]
- Poddar, S.; Zhang, Y.; Gu, L.; Zhang, D.; Zhang, Q.; Yan, S.; Kam, M.; Zhang, S.; Song, Z.; Hu, W.; et al. Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Lett. 2021, 21, 5036–5044. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Kanzawa, Y.; Arita, K.; Katoh, Y.; Kawai, K.; Muraoka, S.; Mitani, S.; Fujii, S.; Katayama, K.; Iijima, M.; et al. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–4. [Google Scholar]
- Sung, J.H.; Park, J.H.; Jeon, D.S.; Kim, D.; Yu, M.J.; Khot, A.C.; Dongale, T.D.; Kim, T.G. Retention enhancement through capacitance-dependent voltage division analysis in 3D stackable TaOx/HfO2-based selectorless memristor. Mater. Des. 2021, 207, 109845. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.B.; Kim, C.J.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Peter, M.; Schindler, W. A Proposal for: Functionality Classes for Random Number Generators; German Federal Office for Information Securtity (BSI): Bonn, Germany, 2022; Version 2.35—Draft.
- Yarragolla, S.; Du, N.; Hemke, T.; Zhao, X.; Chen, Z.; Polian, I.; Mussenbrock, T. Physics inspired compact modelling of BiFeO3 based memristors. Sci. Rep. 2022, 12, 20490. [Google Scholar] [CrossRef] [PubMed]
- Bucci, M.; Luzzi, R. Design of testable random bit generators. In Proceedings of the Cryptographic Hardware and Embedded Systems–CHES 2005: 7th International Workshop, Edinburgh, UK, 29 August–1 September 2005; Proceedings 7. Springer: Berlin/Heidelberg, Germany, 2005; pp. 147–156. [Google Scholar]
- Schindler, W. Random number generators for cryptographic applications. In Cryptographic Engineering; Springer: Boston, MA, USA, 2009; pp. 5–23. [Google Scholar]
- Balatti, S.; Ambrogio, S.; Wang, Z.; Ielmini, D. True random number generation by variability of resistive switching in oxide-based devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 214–221. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Z.; Guan, Z.; Fang, Z.; Zhang, Y.; Zhao, J.; Sun, J.; Han, X.; Niu, J.; Wang, L.; et al. A high-speed true random number generator based on Ag/SiNx/n-Si memristor. Front. Phys. 2024, 19, 13202. [Google Scholar] [CrossRef]
- Woo, K.S.; Wang, Y.; Kim, Y.; Kim, J.; Kim, W.; Hwang, C.S. A combination of a volatile-memristor-based true random-number generator and a nonlinear-feedback shift register for high-speed encryption. Adv. Electron. Mater. 2020, 6, 1901117. [Google Scholar] [CrossRef]
- Kim, G.; In, J.H.; Kim, Y.S.; Rhee, H.; Park, W.; Song, H.; Park, J.; Kim, K.M. Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor. Nat. Commun. 2021, 12, 2906. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wen, J.; Wang, L.; Yang, L.; Zhu, Q.; Zuo, W.; Zhang, P.; Li, Y.; Tong, H.; Ma, G.; et al. A 2.22 Mb/s True Random Number Generator Based on a GeTex Ovonic Threshold Switching Memristor. IEEE Electron Device Lett. 2023, 44, 853–856. [Google Scholar] [CrossRef]
- Lu, Y.F.; Li, H.Y.; Li, Y.; Li, L.H.; Wan, T.Q.; Yang, L.; Zuo, W.B.; Xue, K.H.; Miao, X.S. A High-Performance Ag/TiN/HfOx/HfOy/HfOx/Pt Diffusive Memristor for Calibration-Free True Random Number Generator. Adv. Electron. Mater. 2022, 8, 2200202. [Google Scholar] [CrossRef]
- Petrie, C.S.; Connelly, J.A. A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2000, 47, 615–621. [Google Scholar] [CrossRef]
- Bucci, M.; Germani, L.; Luzzi, R.; Trifiletti, A.; Varanonuovo, M. A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans. Comput. 2003, 52, 403–409. [Google Scholar] [CrossRef]
- Holcomb, D.E.; Burleson, W.P.; Fu, K. Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 2008, 58, 1198–1210. [Google Scholar] [CrossRef]
- Mathew, S.K.; Srinivasan, S.; Anders, M.A.; Kaul, H.; Hsu, S.K.; Sheikh, F.; Agarwal, A.; Satpathy, S.; Krishnamurthy, R.K. 2.4 Gbps, 7 mW all-digital PVT-variation tolerant true random number generator for 45 nm CMOS high-performance microprocessors. IEEE J. Solid-State Circuits 2012, 47, 2807–2821. [Google Scholar] [CrossRef]
- Wang, K.; Cao, Y.; Chang, C.H.; Ji, X. High-speed true random number generator based on differential current starved ring oscillators with improved thermal stability. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Wang, L.; Wen, J.; Zhu, R.; Chen, J.; Tong, H.; Miao, X. Failure mechanism investigation and endurance improvement in Te-rich Ge–Te based ovonic threshold switching selectors. Appl. Phys. Lett. 2022, 121, 193501. [Google Scholar] [CrossRef]
Source of Randomness | Material Stack | Endurance (Cycle #) | Bit Generation Rate (kb/s) | Post-Processing | NIST Tests (n/15) | Year References |
---|---|---|---|---|---|---|
RTN | W/TiOxNy/SiO2 | N/A | N/A | Yes | 5/15 | 2012 [8] |
Ir/Ta2O5/TaOx/TaN | Yes | 15/15 | 2016 [10] | |||
Switching probability | Cu/AlOx/TaN | N/A | Yes | N/A | 2015 [46] | |
Pt/TiO2/Ti/Pt | N/A | N/A | Yes | N/A | 2015 [9] | |
Cycle to cycle variation | Pt/TaOx/Ta | Yes | 12/15 | 2017 [11] | ||
Delay time | Pt/Ag/Ag:SiO2/Pt | 6 | No | 15/15 | 2017 [14] | |
Ag/SiNx/n-Si | N/A | No | 15/15 | 2024 [47] | ||
Delay and relaxation times | Pt/Cu0.1Te0.9/HfO2/Pt | No | 15/15 | 2021 [12] | ||
Pt/HfO2/TiN | N/A | No | 15/15 | 2020 [48] | ||
Stochastic oscillation | Pt/Ti/NbOx/Pt | No | 15/15 | 2021 [49] | ||
W/GeTex/W | Yes | 12/15 | 2023 [50] | |||
Pt/LaCoO3/Pt/LaAlO3 | No | 15/15 | 2024 [13] | |||
Stochastic firing pulses | Ag/TiN/HfOx/HfOy/HfOx/Pt | No | 15/15 | 2022 [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Chen, L.-W.; Li, K.; Schmidt, H.; Polian, I.; Du, N. Memristive True Random Number Generator for Security Applications. Sensors 2024, 24, 5001. https://doi.org/10.3390/s24155001
Zhao X, Chen L-W, Li K, Schmidt H, Polian I, Du N. Memristive True Random Number Generator for Security Applications. Sensors. 2024; 24(15):5001. https://doi.org/10.3390/s24155001
Chicago/Turabian StyleZhao, Xianyue, Li-Wei Chen, Kefeng Li, Heidemarie Schmidt, Ilia Polian, and Nan Du. 2024. "Memristive True Random Number Generator for Security Applications" Sensors 24, no. 15: 5001. https://doi.org/10.3390/s24155001
APA StyleZhao, X., Chen, L. -W., Li, K., Schmidt, H., Polian, I., & Du, N. (2024). Memristive True Random Number Generator for Security Applications. Sensors, 24(15), 5001. https://doi.org/10.3390/s24155001