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Abstract: The number of connected devices or Internet of Things (IoT) devices has rapidly increased.
According to the latest available statistics, in 2023, there were approximately 17.2 billion connected
IoT devices; this is expected to reach 25.4 billion IoT devices by 2030 and grow year over year for the
foreseeable future. IoT devices share, collect, and exchange data via the internet, wireless networks,
or other networks with one another. IoT interconnection technology improves and facilitates people’s
lives but, at the same time, poses a real threat to their security. Denial-of-Service (DoS) and Distributed
Denial-of-Service (DDoS) attacks are considered the most common and threatening attacks that strike
IoT devices’ security. These are considered to be an increasing trend, and it will be a major challenge
to reduce risk, especially in the future. In this context, this paper presents an improved framework
(SDN-ML-IoT) that works as an Intrusion and Prevention Detection System (IDPS) that could help to
detect DDoS attacks with more efficiency and mitigate them in real time. This SDN-ML-IoT uses a
Machine Learning (ML) method in a Software-Defined Networking (SDN) environment in order to
protect smart home IoT devices from DDoS attacks. We employed an ML method based on Random
Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (kNN), and Naive Bayes (NB) with a
One-versus-Rest (OvR) strategy and then compared our work to other related works. Based on the
performance metrics, such as confusion matrix, training time, prediction time, accuracy, and Area
Under the Receiver Operating Characteristic curve (AUC-ROC), it was established that SDN-ML-IoT,
when applied to RF, outperforms other ML algorithms, as well as similar approaches related to our
work. It had an impressive accuracy of 99.99%, and it could mitigate DDoS attacks in less than 3 s.
We conducted a comparative analysis of various models and algorithms used in the related works.
The results indicated that our proposed approach outperforms others, showcasing its effectiveness in
both detecting and mitigating DDoS attacks within SDNs. Based on these promising results, we have
opted to deploy SDN-ML-IoT within the SDN. This implementation ensures the safeguarding of IoT
devices in smart homes against DDoS attacks within the network traffic.

Keywords: internet of things; intrusion detection system; smart home; software-defined networking;
machine learning; artificial intelligence; deep learning; cyber security; distributed denial of service

1. Introduction

Traditional network architectures [1], where switches and routers combine control
and data planes, rely on distributed control and static configurations, often require manual
configurations, and lack the agility to swiftly adapt to evolving IoT network demands.
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SDN [2] is a network concept that revolutionizes traditional network architectures for
managing and securing computer networks, smart grids, data centers, and, especially,
IoT devices by decoupling the control plane from the data plane. In an SDN for IoT, a
centralized controller orchestrates IoT network devices, allowing dynamic configuration
and adaptability through software-defined policies. It also offers unparalleled flexibility
and scalability. This separation of control enables rapid innovation, vendor independence,
and efficient resource utilization tailored for IoT environments; automation is intrinsic to
SDNs for IoT, streamlining tasks such as provisioning and optimization. In this context,
we used an SDN as an approach to make IoT networks more adaptable and flexible
by improving network control, management, and security. We combined an SDN with
ML [3–5] to enhance the security of IoT devices in a smart home. We used an SDN
control plane, SDN data plane, and ML model as an approach to building IoT network
security. The SDN control plane centralizes network intelligence and management, making
it more flexible and programmable. The SDN data plane, often implemented in network
switches and routers, is responsible for forwarding data packets based on instructions
received from the SDN controller in the control plane. It follows the policies and rules
set by the controller. The ML model, after training data, can predict potential threats
and vulnerabilities in the IoT network. It can also adapt and learn from new data to
improve prediction accuracy. When a security threat is detected, the SDN controller, in
collaboration with the ML model, can trigger automated responses. This helps mitigate
the impact on the affected IoT device and alerts network administrators. The OpenFlow
(OF) protocol [6] enables the OF Controller to instruct the OF switch on how to handle
incoming data packets; it adds flow entries from the switch’s flow tables [7], specifying the
criteria to perform an action, which is, in our case, dropping the packet. Upon receiving
the flow modification message, the OF switch installs the flow entry into its flow table,
and it will start blocking traffic that matches the specified criteria. The objective of this
paper is to achieve the real-time detection and mitigation of DDoS attacks [8,9] originating
from smart home IoT devices within a Software-Defined Networking (SDN) environment.
This is accomplished through the implementation of the SDN-ML-IoT method, which
is based on supervised ML and is capable of detecting multiple DDoS attacks that pose
a genuine threat to IoT devices. SDN-ML-IoT utilizes diverse approaches to ensure the
accuracy and suitability of data, resulting in enhanced convergence and model optimization.
These approaches include Recursive Feature Elimination (RFE), cross-validation k-fold,
and undersampling for balancing data. One of the major challenges in this process is
distinguishing between malicious and legitimate traffic. To address this, we employ the
OvR strategy, which simplifies the multiclass classification problem by breaking it down
into a series of binary classification tasks. This approach facilitates the distinction between
different classes, streamlining the overall classification process. Let us summarize our paper,
which consists of five main sections. In the first section, we present an overview of the
work related to our SDN-ML-IoT method. The second section delves into the background,
which serves to provide readers with a comprehensive understanding of the context
motivations and existing knowledge related to our research topic. The third section outlines
the methodology employed to build the SDN-ML-IoT framework, and we present an
analysis of the results obtained based on ML algorithms specializing in IDPS [10] and the
security of IoT devices [11] utilizing evaluation metrics. These include RF [12], LR [13],
KNN [14] and NB [15]. In the fourth section, we deploy our SDN framework in a live
network and subject it to comprehensive testing to evaluate its performance, effectiveness,
and reliability in detecting and mitigating DDoS attacks in real-world scenarios. Finally,
we compare the results of SDN-ML-IoT with those achieved in the related works.

2. Related Works

The study in [16] proposed a DDoS attack detection method that uses conditional
entropy [17] based on SDN traffic to reduce the incidence of false positives rate. The author
uses Scapy [18] to generate normal and DDoS traffic, flash Crowds, ICMP flooding and
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packet-in attacks. The proposed method for identifying anomalous DDoS traffic quantifies
the concentration of traffic based on the mean and standard deviation and uses changes
in three types of entropy values to determine the type of traffic, thereby achieving more
precise attack detection. Additionally, pre-processing is performed during traffic collection,
so it is not necessary to traverse all collected packets but only to process a random sample
of packets to quickly obtain entropy values while maintaining a certain level of accuracy.
This approach has lower false positive rates, a higher detection accuracy at 97.2%, and
faster response times at 0.74 s. The limitations of this work include the need to enhance
accuracy, develop effective mitigation methods for countering DDoS attacks post-detection,
and validate the deployment of these methods in real traffic to assess their efficiency.

The author in [19] introduces a novel Secured Automatic Two-level Intrusion De-
tection System, called SATIDS, which leverages an enhanced Long–Short-Term Memory
(LSTM) network [20]. SATIDS’s primary objective is to effectively distinguish between ma-
licious attacks and benign network traffic, accurately identify attack categories, and specify
sub-attack types with exceptional performance. The approach proposed in this paper is
assessed using the ToN-IoT dataset [21], encompassing network traffic data from various
IoT devices and scenarios that simulate real-world IoT network traffic. Additionally, the
InSDN dataset [22] is utilized, which includes several types of DoS attacks across different
OSI model layers. To execute various DoS attacks, Kali Linux is employed against a victim
web server represented by an h4 virtual host, including TCP, UDP, and HTTP flood attacks,
through the Low Orbit Ion Cannon (LOIC) tool [23]. The experimental results reveal that
when facing DDOS attacks using the ToN-IoT dataset, the SATIDS system performs opti-
mally with 3 LSTM layers and 500 hidden layers, achieving 94.8% precision and a 92.7%
detection rate. For the INSDN DATASET, utilizing 3 LSTM layers and 500 hidden layers
yields a precision rate of 90% for DDOS attacks. This work has limitations, including the
need for further accuracy improvements and the fact that it can only detect attacks without
mitigation. Further testing and deployment of the SATIDS model in real traffic networks
are necessary.

Singh, C [24] proposed a method for detecting DDoS attacks in SDN using the Gini
impurity [25]. The approach is specifically designed for IoT networks, taking advantage of
centralized control and efficient security threat management. To create a CSV dataset for
normal and DDoS attacks, the author used the CICFlowMeter program [26] to create it and
selected 42 features out of 80 based on their correlation matrix score. The proposed method
was evaluated on the NSL-KDD dataset [27], which contains three types of DDoS attacks:
UDP, ICMP, and TCP attacks. They applied four ML algorithms—Multilayer Perceptron
(MLP) [28], LR, kNN and Decision Tree (DT) [29]—along with their proposed Gini-impurity-
based approach to test the performance of these algorithms. The Gini impurity method
achieved an impressive accuracy of 99.9%. Moreover, the proposed approach not only
detects DDoS attacks but also includes effective mitigation strategies. Finally, the method
was successfully deployed on an SDN network, further validating its practical applicability.
The work looks promising, but it could benefit from employing feature reduction algorithms
to further reduce the number of features and considering the use of a multiclass approach
to detect different types of DDoS attacks.

The researcher in [30] introduced a DDoS detection method leveraging feature en-
gineering and ML within SDN. The CSE-CIC-IDS2018 dataset [31] was employed, and
26 significant features were selected from an initial set of 79 using the binary grey wolf
optimization algorithm [32]. Consequently, SVM [33], RF, Decision Tree, XGBoost [34],
and kNN were utilized to assess and determine the best classifier for both the original
and feature-extracted datasets. All classifiers demonstrated improvement across various
metrics. Notably, the RF classifier outperformed others in terms of accuracy (0.9913), preci-
sion (0.9843), recall (0.9992), and f1-score (0.9913). Following the deployment of the best
classifier selection method based on the RF model to the controller, DDoS detection was
executed using features from a subset of the most influential features. The results affirmed
the capability of the proposed method to detect DDoS attacks and alert users in real time.
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However, the study acknowledges a limitation, indicating the need for enhancing classifier
performance and accuracy, reducing features, and testing the network on various SDN
topologies to assess its efficiency.

The research paper in [35] proposed a method for detecting DDoS attacks in SDN
security. This work introduces RF, kNN, NB, and LR as supervised ML algorithms for
DDoS attack detection across three distinct network architectures: single topology, linear
topology, and multi-controller topology. The models are trained using datasets generated
in a simulated SDN environment utilizing the Mininet emulator and Ryu controller. The
simulation results reveal that NB and LR exhibit low accuracy rates, generating numerous
incorrect predictions. In contrast, RF and KNN demonstrate high accuracy rates and are
deemed effective prediction models for this study. Observations made during the attack,
based on monitoring network traffic, indicate that the assault primarily aims to exhaust the
controller and induce its failure by inundating the switch flow table with requests contain-
ing spoofed IP addresses. Additionally, it leads to some disruption in normal packet flow
as the controller is occupied with these falsified requests. This impact is predominantly
noticeable in the single topology, as opposed to linear and multi-controller topologies,
suggesting that increasing the number of switches reduces the load and facilitates rapid
elimination of the attack effect. Moreover, augmenting network switches minimizes detec-
tion and mitigation times. Furthermore, an increase in the number of controllers enhances
the detection and mitigation process by reducing error rates, detection times, and mitiga-
tion times. Ultimately, the proposed mitigation technique is successfully implemented to
thwart the attack before causing harm to the controller by blocking the attacker port for
120 s. However, it seems like this work exhibits overfitting in accuracy results and requires
the implementation of feature selection methods along with cross-validation and other
approaches to mitigate overfitting in accuracy outcomes.

Karthika, P [36] proposed architecture based on OF port statistics for implementing
ML-enhanced TCP/SYN flood detection and mitigation. The author employed ML tech-
niques, including SVM, NB, and MLP. A total of 6 features were carefully selected from
25 to effectively distinguish between regular traffic and SYN flood traffic. Additionally,
the method mitigates the impacts of the attacking node on the network by utilizing the
MAC address of the host. The results indicate that the MLP achieved the highest classi-
fication accuracy, reaching 99.75% for the simulation dataset. However, this work needs
to focus on other protocols capable of targeting and collecting a broader range of nor-
mal and DDoS data. These protocols should have the potential to impact various ports,
such as HTTP/HTTPS, Message Queuing Telemetry Transport (MQTT), and Constrained
Application Protocol (CoAP).

The author in [37] presented FMDADM, an ML-based DDoS detection and mitigation
framework tailored for SDN-enabled IoT networks. The framework comprises three
detection modules and a mitigation module. Notably, it employs a 32-packet window
size, a novel mapping function (DCMF), and feature engineering to enhance accuracy
and address overfitting. The proposed framework, evaluated with various ML models,
demonstrated superior performance, particularly with the RF model. FMDADM effectively
detects DDoS attacks in multi-node scenarios, showcasing strength where conventional
defenses may fall short. The framework is designed to prevent local IoT Botnet-induced
DDoS attacks from reaching the ISP level, offering protection to the controller and remote
nodes. The experimental results show that FMDADM surpasses current solutions in terms
of accuracy, precision, F-measure, recall, specificity, negative predictive value, false positive
rate, false detection rate, false negative rate, and average detection time, achieving 99.79%,
99.43%, 99.77%, 99.79%, 99.95%, 0.21%, 0.91%, 0.23%, and 2.64 µs, respectively.

The authors of [38] demonstrate the effectiveness of employing deep learning meth-
ods, specifically a hybrid model combining 1D Convolutional Neural Network (CNN),
Gated Recurrent Unit (GRU), and Dense Neural Network (DNN), to detect and protect
against DDoS attacks in SDN environments. The proposed model outperforms traditional
ML algorithms in accurately identifying DDoS attacks, especially low-rate ones, and detect-
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ing both short-term and long-term patterns in input data. However, limitations include
the evaluation of a specific dataset, necessitating further testing on diverse datasets and
network topologies for generalizability. Future research should focus on effective mitiga-
tion strategies post-detection. Despite these considerations, the findings underscore the
importance of employing deep learning techniques for DDoS detection and defense in SDN
networks. The hybrid model is identified as a valuable tool contributing to overall security
and stability, with future research recommended to explore additional strategies for further
enhancing detection and response to DDoS attacks in SDN networks.

The summary of related work in relation to our research is presented in Table 1 below.

Table 1. Summary of the related works.

Research Advantages Limitations

[16] Lower false positive rates and faster response times. Mitigation of DDoS attacks after detecting.
Improved accuracy.

[19] Effective differentiation of malicious attacks using the
SATIDS method and precise categorization of attacks.

Accuracy improvements.
Mitigation of DDoS attacks after detection.

[24]

Gini-impurity-based approach that achieves
high accuracy.

Deployment on live SDN traffic.
Mitigation.

Reduces the number of features.

[30]
Binary grey wolf optimization algorithm for

feature engineering.
High accuracy.

Reduces the number of features.
The performance of the proposed method was tested on

diverse network sizes and types.

[35] Deployment on SDN Network.
Mitigation. Overfitting in accuracy results.

[36] Reduces features.
Mitigation.

Gathers additional data from alternative protocols.
The performance of the proposed method was tested on

diverse network sizes and types.

[37]
High accuracy with low False Alarm Rate (FAR) and

minimal detection time.
Mitigation.

The proposed method was tested on live SDN traffic.
The performance of the proposed method was tested on

diverse network sizes and types.

[38] A combination of three different types of neural network
layers was utilized, yielding high accuracy.

Evaluation of a specific dataset.
Mitigation of DDoS attacks after detection.

The proposed method was teseted on live SDN traffic.

3. Background

In this section, our focus is on elucidating the orientation of our paper, centered on the
objective related to smart home technology [39,40]. Firstly, we define the MQTT protocol,
which is utilized in the majority of IoT devices for smart homes [41]. MQTT stands out
in smart home applications due to its speed, reliability, security, and compatibility with
a broad array of devices and platforms [42]. Secondly, we delve into the various types of
DDoS attacks that pose threats to these IoT devices, presenting a diverse set of algorithms
that showcase effectiveness in detecting DDoS attacks [43–45]. Lastly, we employed the
integration of SDN into the IoT network infrastructure, utilizing an ML-based Ryu SDN
Controller to improve the detection and mitigation of DDoS attacks. This strategy provides
a proactive defense mechanism against DDoS attacks directed at IoT devices, thereby
enhancing the security and resilience of our smart home environment.

3.1. IoT for Smart Homes
3.1.1. MQTT Protocol Overview

• MQTT: This is a lightweight messaging protocol designed for resource-constrained
devices and situations with low bandwidth, high latency, or unreliable networks. It
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operates on the publish/subscribe paradigm and is commonly used in the IoT and
other scenarios where efficient, real-time communication is essential.

• Topics: In MQTT, messages are published according to topics, and subscribers express
interest in certain topics by subscribing to them. Topics are hierarchical, using a for-
ward slash (/) as a separator. For example, in our work, “iot/device1” or “iot/device2”
are representative topic structures.

• Publishing: Publishers send messages to the broker, specifying a topic and payload.
For example, in our work, a temperature and humidity sensor might publish a message
to the topic “iot/device1”, with the payload being the actual temperature value.

• Subscribing: Subscribers express interest in specific topics by subscribing to them on
the broker. Subscribers receive messages from topics they have subscribed to. For
example, in our work, a subscriber receives messages by subscribing to the topic
“iot/device2”, with the payload containing the actual temperature value.

• Broker Responsibilities: This is an intermediary server that manages the commu-
nication between publishers and subscribers. The broker receives messages from
publishers and routes them to the appropriate subscribers based on topic subscrip-
tions. It manages client connections, handles subscriptions, and delivers messages
according to the specified Quality-of-Service (QoS) level.

• QoS Levels: MQTT supports different QoS [46] levels:

⇒ QoS 0: The message is delivered at most once, with no confirmation.
⇒ QoS 1: The message is delivered at least once, with confirmation.
⇒ QoS 2: The message is delivered exactly once by using a four-step handshake.

• Legitimate Traffic: Legitimate MQTT traffic involves authorized publishers and sub-
scribers communicating with the broker. Publishers send messages to topics, and sub-
scribers receive messages based on their topic subscriptions. Legitimate traffic is char-
acterized by well-formed messages and adherence to the established topic structure.

• Malicious DDoS Traffic: Malicious entities may attempt to overload the MQTT broker
by flooding it with connection requests or messages, leading to a Denial-of-Service
situation.

3.1.2. Smart Home IoT Device Sensors

Our smart home IoT device system includes a temperature and humidity sensor, along
with a coffee maker sensor. They are configured as illustrated in Figures 1 and 2. These
two IoT devices are connected through ESP8266 and utilize the Mosquitto MQTT protocol.
The Mosquitto MQTT server is installed on a Raspberry Pi desktop operating system of
Raspberry Pi 4, enabling both publishing and remote control. MQTT facilitates messaging
between host devices and the broker, as well as between the broker and IoT devices.

Figure 1. IoT device subscribes to a specific topic from the host publisher.
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Figure 2. IoT device publishes a message to a specific topic for subscriber hosts.

Temperature and humidity sensors are responsible for publishing temperature and
humidity data, whereas coffee maker sensors are subscriber-controllable devices. The
MQTT Mosquitto broker receives messages from publishers and directs them to the relevant
subscribers based on the topic. Legitimate users or host devices can access temperature and
humidity data and control the coffee maker device. Any suspicious or excessive network
traffic is identified and categorized as potential DDoS attacks.

3.2. Types of Security Breaches in DDoS Attacks

As shown in Figure 3, DDoS attacks in SDNs are executed by generating numerous
new flow entries that inundate the packet processing of OF switches and the controller,
resulting in the unavailability of a network of IoT devices to users.

Figure 3. DDoS attacks in SDN.

In 2023, DDoS attacks targeting IoT devices increased by 300%, as reported by refer-
ences [9,47,48]. This surge resulted in a global financial loss of 2.5 billion dollars during
the first half of the year. Notably, 90% of the observed complex DDoS attacks in 2023
were orchestrated through botnets, exploiting the distributed nature of IoT devices such as
routers, cameras, NAS boxes, and smart homes. These statistics underscore the escalating
threat of DDoS attacks on IoT devices and emphasize the urgent need for enhanced security
measures to safeguard these devices from potential cyber threats. Recent studies have
identified CoAP Flood [49,50], MQTT broker DDoS attacks [51], HTTP flood, UDP flood,
SYN flood, and ICMP flood [8,9,52] as the most perilous DDoS types targeting IoT devices,
as illustrated in Table 2.
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Table 2. The most dangerous DDoS attacks targeting IoT devices.

DDoS Attack Names Type Target Vulnerability

SYN flood Network-based DDoS attack. TCP/IP handshake process.
IoT devices, due to limited

computational and
networking capabilities.

UDP flood Floods the target’s network
with UDP packets.

Overwhelms network
resources.

IoT devices can be used as
amplifiers to multiply traffic

volume.

ICMP flood Floods the target with ICMP
packets.

Consumes resources,
potentially causing network

congestion.

IoT devices susceptible to
resource exhaustion.

HTTP flood Floods the target’s web server
with HTTP/HTTPS requests.

Exhausts server resources,
making it difficult for

legitimate users.

Impacts IoT devices with web
server functionality.

MQTT broker DDoS attacks Targets MQTT brokers used in
IoT environments.

Saturates connections to and
from the MQTT broker.

Overwhelms MQTT brokers,
impacting IoT functionality.

CoAP flood Targets IoT devices using
CoAP, a lightweight protocol.

Overwhelms devices with a
high volume of CoAP

requests.

Disrupts the operation of
CoAP-enabled IoT devices.

3.3. ML Algorithms
3.3.1. k-Nearest Neighbors (kNN)

kNN retains the feature vectors of historical data points and, during training, memo-
rizes the spatial relationships between instances in the feature space. When presented with
a new instance, kNN identifies its k-nearest neighbors, and the majority class among these
neighbors determines the classification of the instance.

3.3.2. Naive Bayes (NB)

NB estimates the probability of each feature given the class labels (normal or DDoS
attack) using historical data. When applied to predicted data, NB calculates the probability
of the instance belonging to each class. The class with the highest probability is assigned as
the final classification.

3.3.3. Logistic Regression (LR)

LR assesses the likelihood of a DDoS attack based on historical features in the training
data. It learns the coefficients for each feature in the logistic function. When applied to
predicted data, LR calculates the probability of a DDoS attack. A predefined threshold is set,
and instances with probabilities surpassing this threshold are classified as DDoS attacks.

3.3.4. Random Forest (RF)

The RF algorithm discerns patterns in network features that distinguish normal traffic
from DDoS attacks. It accomplishes this by constructing multiple DT, each trained on a
subset of the data. Upon encountering a predicted data point, the RF ensemble collectively
votes on its class. The mode of these votes determines whether the instance is classified as
normal or indicative of a DDoS attack.

3.4. Integration of ML into SDN Architecture for Smart Homes

Figure 4 illustrates that the SDN Ryu controller serves as the central intelligence for
network management. It communicates with the SDN switch using the OF protocol to
control the flow of traffic to and from IoT devices and other hosts. The trained ML model is
integrated into the Ryu SDN controller. This integration allows the ML model to analyze
real-time network data received by the controller. As network traffic passes through the Ryu
controller, the ML model classifies it in real time. The model assesses whether the current
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network behavior aligns with normal patterns or if there are indications of a potential
DDoS attack. Based on ML classification, the Ryu controller can make dynamic decisions
to mitigate the impact of DDoS attacks for IoT devices comprising a temperature and
humidity sensor and a coffee maker sensor by reconfiguring network policies, redirecting
traffic, or isolating affected devices.

Figure 4. ML-based SDN Ryu controller framework for securing smart homes.

4. Implementation

In this section, we will elucidate the tools employed and the SDN-ML-IoT methods
that utilize ML techniques to ensure the security and stability of IoT devices within the
SDN framework.

We will discuss the process step by step and evaluate the ML performance results to
make an informed decision in selecting the SDN-ML-IoT framework.

4.1. Tools Used

As shown in Table 3, we employ a set of tools to facilitate various tasks in our project.
Initially, we utilized a virtual machine (VM) with Ubuntu v20.04.1 to deploy Mininet and the
Ryu controller for implementing network infrastructure. These tools aid in establishing a
virtual network environment and efficiently managing network components. Additionally,
we utilize Ryu controller tools to generate the dataset required for our research and analysis.
We employ hping3 to simulate DDoS attacks, Mosquitto for publishing and subscribing to
messages, and the Python programming language as the primary language for developing
SDN applications and network control logic.
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Table 3. Tools and their descriptions used for implementing SDN.

Tool Name Description

Mininet A network emulator that creates a virtual network environment consisting of
hosts, switches, controllers, and links.

Ryu controller
A software framework with well-defined APIs that simplify the development

of network management and control applications. It is fully written
in Python.

Oracle VM
Cross-platform virtualization software, Virtual Box, enabling users to run
multiple operating systems, such as Microsoft Windows, Mac OS X, and

Linux, on their existing computers. In our work, it enables us to run Ubuntu.

Ubuntu v20.04.1
The operating system used on the VM. Ubuntu is a popular choice as the

underlying operating system on which other SDN-related software, such as
the Ryu controller and Mininet, can be easily installed and utilized.

Python3 A programming language utilized for creating the Mininet topology and
developing the Ryu controller.

Mosquitto

An open-source message broker that implements the MQTT. It is used as a
central server that facilitates communication between MQTT clients, allowing
them to publish and subscribe to topics, exchange messages, and coordinate

data transfer in a scalable and efficient manner.

hping3 A network tool capable of generating flooding attacks.

4.2. Collect Traffic Data

The Ryu controller is designed to efficiently collect network traffic data from host
devices and IoT devices in a Mininet-based environment; the application monitors flow
statistics in the SDN network. It collects flow statistics from OF-enabled network switches.
The application periodically requests flow statistics from each switch and handles state
changes in switches. When flow statistics replies are received, it extracts relevant features.
The extracted data based on feature information are then written to a CSV file named
“data.csv”. The application distinguishes between different IP protocols (ICMP, TCP, UDP).
The monitoring interval is set to 10 s. It captures both normal and DDoS traffic. As shown
in Figure 5, the collected dataset comprises six attack types and normal traffic, including
normal, SYN flood, UDP flood, ICMP flood, HTTP flood, CoAP flood, and MQTT broker
DDoS attacks. The CSV dataset contains a total of 1,426,858 records, representing various
attacks and normal instances.

Figure 5. DDoS attack label details.
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As indicated in Table 4, the dataset encompasses a total of 22 features, inclusive of the
class label. The class label represents different types of attacks: normal, SYN flood, UDP
flood, ICMP flood, HTTP/HTTPS flood, CoAP flood, and MQTT broker DDoS attacks,
denoted by the values 0, 1, 2, 3, 4, 5, and 6, respectively.

Table 4. The features of collected datasets.

ID Feature Name ID Feature Name

1 Timestamp 12 flow_duration_nsec

2 datapath_id 13 idle_timeout

3 flow_id 14 hard_timeout

4 ip_src 15 Flags

5 tp_src 16 packet_count

6 ip_dst 17 byte_count

7 tp_dst 18 packet_count_per_second

8 ip_proto 19 packet_count_per_nsecond

9 icmp_code 20 byte_count_per_second

10 icmp_type 21 byte_count_per_nsecond

11 flow_duration_sec 22 Label

4.3. Data Preprocessing
4.3.1. Drop Duplicate Values

Any duplicate rows present in the dataset were removed to avoid redundant information.

4.3.2. Label Encoding

We used the label encoding technique to transform categorical labels into numerical
values. In this step, we applied label encoding to three specific features: flow_id, ip_src,
and ip_dst. By employing label encoding, we converted these categorical data points into a
numerical format suitable for ML algorithms. This transformation ensured that our dataset
was well prepared for model training, preventing any challenges associated with handling
non-numeric data. Ultimately, this process allows ML models to effectively learn from the
data and make precise predictions.

4.4. Feature Selection

We utilized the Recursive Feature Elimination (RFE) [53] module for feature selection
in our work. RFE is instrumental in the identification of the most pertinent features, thereby
enhancing overall model performance. Through the elimination of less significant features,
the model is able to concentrate on the most informative ones, subsequently mitigating
noise within the data. In our specific work, when testing the model against real-time
network traffic. As shown in Figure 6, we selected the top 10 important features, employing
fewer than 10 features often results in an elevated false alarm rate. Conversely, selecting
more than 10 features has the potential to induce overfitting, where the model excels in
training data but struggles to generalize to novel, unseen data. RFE plays a crucial role in
averting overfitting by meticulously choosing a subset of features that maximally contribute
to predictive performance.
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Figure 6. Top ten features selection using RFE module.

4.5. One-versus-Rest (OvR) Strategy Setup

We used the OvR strategy in multiclass classification tasks to simplify the problem
and leverage binary classification algorithms. The training of binary classifiers makes it
computationally efficient, especially for large datasets. This parallelization can lead to
faster training times. Below is an explanation of how OvR works for our dataset label class:

For each class i ∈ C, train a binary classifier hi with the following labels:

Positive class: + 1 : Class Normal(0)

Negative class: − 1 : All other six DDoS classes (from 1 to 6)

For each binary classifier hi, the training involves learning a model fi to distinguish
between instances of class i and instances not belonging to class i. The training process
minimizes a binary classification loss function for each classifier.

Mathematically, the prediction for a binary classifier hi is given by:

hi(x) =

{
+1 if fi(x) ≥ 0
−1 if fi(x) < 0

(1)

To predict the class for a new instance x, evaluate each binary classifier hi and choose
the class associated with the classifier that produces the highest score. The predicted class
is given by:

ŷ = arg max
i∈C

fi(x) (2)

4.6. Data Splitting

The transformed feature data XF and the target variable y were split into training
and testing sets. A standard practice involves allocating 75% of the data for training and
reserving 25% for testing purposes.

4.7. Balancing Data Classes

Following the data split, we employed undersampling techniques [54] to achieve a
balanced class distribution within the training set. Undersampling entails the random
removal of instances from the majority class, aligning it more closely with the minority
class. It is essential to emphasize that this step is exclusively applied to the training
data to prevent any potential data leakage. We opted for undersampling techniques over
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SMOTE [55] due to concerns of bias and false alarms. Undersampling techniques provide
more accurate results.

4.8. Model Training

After collecting the dataset, as explained in Section 4.2, we divided it into training and
testing sets. The OvR strategy was applied to transform the multiclass classification problem
into binary classification. To achieve a balanced binary class distribution, undersampling
was employed, and only the top 10 important features were selected. The ML model,
incorporating kNN, NB, LR, and RF algorithms, was then trained using the selected
features from the training set. Following the training phase, the model underwent testing
on the test dataset to assess its ability to make accurate predictions on new, unseen flow
data. Based on grid search cross-validation (GridSearchCV) [56] to find the optimal set of
hyperparameters, the parameters employed for each ML algorithm are outlined below in
Table 5.

Table 5. Parameters employed in ML algorithms for our SDN-ML-IoT model.

ML Algorithm Parameters

RF n_estimators = 100, criterion = “entropy” and random_state = 0.

LR C = 1.0, penalty = “l2”, solver = “lbfgs” and max_iter = 100.

kNN n_neighbors = 5.

NB Default Parameters.

Our SDN-ML-IoT-based system incorporates the OvR strategy. In our specific scenario,
the objective is to predict among seven classes, while numerous classification algorithms
are inherently designed for binary classification, distinguishing only between normal and
DDoS attacks and capable of handling two classes at a time. The OvR strategy proves to be
a practical solution in addressing our multi-class classification problem.

Cross-validation using k-fold: Cross-validation was implemented using k-fold
validation [57] with k = 10 to assess the model’s robustness and generalization across
different subsets of the training data. This ensures a more comprehensive evaluation of the
model’s performance and helps identify potential overfitting or underfitting issues.

4.9. Model Evaluation

Finally, we evaluated the model’s performance using various metrics on the testing
dataset. The key evaluation metrics included accuracy, precision, AUC-ROC, training time,
and prediction time. These metrics provide a holistic view of the model’s effectiveness in
making accurate predictions and its computational efficiency. The evaluation metrics are
listed and defined below:

Con f usionMatrix =

[
TP FN
FP TN

]
(3)

Accuracy =
TP + TN

TP + FN + FP + TN
(4)

Sensitivity =
TP

TP + FN
(5)

Speci f icity =
TN

TN + FP
(6)

where:
N: The number of target classes in the dataset.
True Positives (TPs): The instances where the model correctly identified a rule and

detected an attack.
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False Positives (FPs): The instances where the model incorrectly identified a rule and
classified an instance as an attack when it was not present.

True Negatives (TNs): The instances where the model correctly identified that no rule
matched and correctly classified an instance as not being an attack.

False Negatives (FNs): The instances where the model incorrectly identified that no
rule matched and failed to detect an attack.

The Area Under the Receiver Operating Characteristic curve (AUC-ROC): A perfor-
mance metric for binary classification models. It evaluates the trade-off between sensitivity
(true positive rate) and specificity (true negative rate). The ROC curve plots the true posi-
tive rate against the false positive rate at various threshold settings. AUC-ROC quantifies
the classifier’s ability to distinguish between classes, with a higher AUC indicating better
overall performance, considering both sensitivity and specificity.

4.10. Simulation Results

Table 6 displays the training results for RF, LR, kNN, and NB. The accuracy metric
indicates strong performance for both RF and kNN. RF attains a high accuracy of 0.9999
and an AUC-ROC of 0.9999; however, it requires longer fit and testing times compared to
the other algorithms. kNN demonstrates commendable accuracy at 0.9998 and a perfect
AUC-ROC of 0.9999, with shorter times spent on training and testing compared to RF. In
contrast, NB and LR exhibit suboptimal accuracy, suggesting that they may not be the most
suitable models for this specific task.

Table 6. Evaluation metrics results.

ML
Methods

Training
Time (Sec)

Prediction
Time (Sec) Confusion Matrix Accuracy AUC-ROC

RF 25.95 1.1656
[

6747 0
1 349967

]
0.9999 0.9999

LR 09.47 0.0063
[

6747 0
349968 0

]
0.5000 0.5000

kNN 13.96 1.0050
[

6747 0
155 349813

]
0.9998 0.9999

NB 05.73 1.074
[

6747 0
138670 211298

]
0.6113 0.9658

LR and NB were omitted from our model selection in favor of RF and kNN, which
produced superior results. This decision led us to proceed with RF and kNN for the
subsequent simulation test in a real SDN Testbed.

We conducted tests on various network topologies—single, linear, tree, ring, and
mesh structures—with different sizes—small (4 hosts), medium (16 hosts), and large
(64 hosts). To initiate the deployment process for our proposed framework SDN-ML-IoT,
we integrated the Ryu controller with our ML models, which are based on kNN-OvR or
RF-OvR. The deployment also involved using Mininet to establish network configurations.
These configurations are detailed in Table 7.

4.10.1. Evaluating SDN Performance Based on Detection Time

We conducted comparative studies on multiple network topologies and sizes to assess
the SDN performance within RF and KNN, specifically focusing on detection time. Table 8
illustrates that kNN has a lower detection time compared to RF for all network topology
types and sizes. The detection time results for RF and kNN exhibited nearly identical
detection rates for DDoS attacks. Based on a comparison of the two algorithms, we
conclude that across small, medium, and large configurations, the detection times are
almost similar. However, the mesh topology displayed a longer detection time of more
than 2 s due to its inherent complexity.
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Table 7. Configuration details for SDN encompassing multiple topology types and sizes.

Network Topology
Type Number of Hosts Number of Switches Number of

Controllers

Single network size
4

16
64

1
1
1

1

Linear network size
4

16
64

4
16
64

1

Tree network size
4

16
64

3
15
63

1

Ring network size
4

16
64

4
16
64

1

Mesh network size
4

16
64

4
16
64

1

Table 8. Evaluation of the detection time for multiple topology types and sizes using RF and KNN.

Network Topology
Type Network Size Detection Time

Using RF (ms)
Detection Time
Using kNN (ms)

Single network size
4

16
64

1222
1387
1407

1113
1282
1314

Linear network size
4

16
64

1184
1222
1281

1129
1131
1269

Tree network size
4

16
64

1333
1599
1701

1086
1178
1234

Ring network size
4

16
64

1098
1152
1198

1012
1288
1311

Mesh network size
4

16
64

1713
1921
2082

1612
1888
2011

4.10.2. Evaluating SDN Performance Based on CPU Utilization and Memory Usage

Based on the last comparison, we conclude that single linear, tree, and ring topologies
are similar, unlike mesh topology, owing to their complexity, redundancy, and highly
interconnected switches. Therefore, we continue evaluation based on the two SDN topolo-
gies: linear topology and mesh topology. Tables 9–11 present evaluations of CPU usage
and memory consumption for linear and mesh topology scenarios. Table 9 focuses on
configurations with four hosts, four switches, and one controller. In Table 10, the evaluation
extends to setups with 16 hosts, 16 switches, and 1 controller. Lastly, Table 11 examines
CPU usage and memory consumption for larger networks featuring 64 hosts, 64 switches,
and 1 controller. The results indicate that kNN exhibits higher memory consumption than
RF, especially for large topologies and complex networks. The RF algorithms demonstrate
a more significant reduction in CPU and memory usage after mitigating DDoS attacks
compared to kNN.
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Table 9. Evaluation of CPU usage and memory consumption for linear and mesh topology types
with a small size using RF and kNN.

ML Methods
CPU Usage

Under DDoS
Attacks

Memory
Consumption
Under DDoS

Attacks

CPU Usage
after

Mitigation of
DDoS Attacks

Memory
Consumption

after
Mitigation of
DDoS Attacks

RF linear topology 55.67% 37.58% 8.71% 32.68%

kNN linear topology 65.98% 41.51% 10.24% 39.47%

RF mesh topology 76.58% 33.99% 18.79% 22.80%

kNN mesh topology 68.77% 41.46% 32.69% 38.73%

Table 10. Evaluation of CPU usage and memory consumption for linear and mesh topology types
with a medium size using RF and kNN.

ML Methods
CPU Usage

Under DDoS
Attacks

Memory
Consumption
Under DDoS

Attacks

CPU Usage
after

Mitigation of
DDoS Attacks

Memory
Consumption

after
Mitigation of
DDoS Attacks

RF linear topology 78.70% 34.22% 20.10% 33.52%

kNN linear topology 84.33% 41.59% 40.06% 40.87%

RF mesh topology 88.36% 28.42% 16.00% 28.78%

kNN mesh topology 88.92% 37.21% 65.98% 35.37%

Table 11. Evaluation of CPU usage and memory consumption for linear and mesh topology types
with a large size using RF and kNN.

ML Methods
CPU Usage

Under DDoS
Attacks

Memory
Consumption
Under DDoS

Attacks

CPU Usage
after

Mitigation of
DDoS Attacks

Memory
Consumption

after
Mitigation of
DDoS Attacks

RF linear topology 96.49% 35.11% 24.47% 40.46%

kNN linear topology 92.16% 42.34% 35.43% 40.52%

RF mesh topology 99.49% 36.97% 23.79% 27.80%

kNN mesh topology 99.36% 49.96% 83.35% 39.50%

4.10.3. Model Selection

The model selection for integration on live SDN monitoring traffic is directed toward
RF due to its superior accuracy, acceptable fit and prediction times, and flexibility with
multiple SDN topologies, along with lower memory consumption and CPU usage. The
integration using the RF model can be scaled and adapted to different network sizes
and types.

4.11. Model Integration

After demonstrating the scalability, adaptability, and reliability of our SDN-ML-IoT
framework across various topology types such as single, linear, tree, ring, and mesh, as
well as different sizes, including small, medium, and large, as detailed in Section 3.4, we
integrated our model using the Ryu controller along with the switching application. We
employed Mininet to establish an SDN with diverse topology types, including single, linear,
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tree, ring, and mesh, and varying sizes from small to large. During live traffic, the switch
forwards packet information to the ML classifier integrated into the Ryu controller. Our
SDN-ML-IoT framework, which is based on RF-OvR, determines whether the traffic is
malicious. For legitimate traffic, the controller examines the packet’s destination and makes
a decision on the output port. Subsequently, it adds a new rule to the forwarding layer to
permit the traffic. In the case of malicious traffic, the controller instructs the forwarding
layer to block packets by sending a rule that creates a flow entry to drop the packet.

5. Framework Deployment on a Real Testbed

In this section, we emphasize the steps involved in integrating SDN-ML-IoT into a
real SDN topology. We discuss the deployment process on an actual live network and
subsequently assess their effectiveness across various topology types.

5.1. Detection and Mitigation of DDoS Attacks

Figure 7 depicts the operational diagram of the SDN-ML-IoT method within an SDN
topology. This method serves as a controller, enabling real-time decision making to differ-
entiate between legitimate traffic and the presence of DDoS attacks. If the traffic is deemed
legitimate, it forwards the packets to the appropriate host device or IoT device; otherwise,
it blocks the packets.

Figure 7. Activity diagram of SDN-ML-IoT method to monitor traffic.

Algorithm 1 detects DDoS attacks based on a list of predictions (flow_pred) related
to network traffic flows. It counts legitimate and DDoS traffic within the predictions and
computes a label class for non-zero values. If a significant portion of the traffic is legitimate
(more than 90%), it classifies the traffic as legitimate (assigns prediction as 0). If not, it uses
a label class to classify the traffic as a DDoS attack (assigns predict as 1) and returns this
classification as predict.
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Algorithm 1 DDoS attacks detection

1. Input: f low_pred
2. Output: predict
3. legitimate_tra f f ic← 0
4. Begin:
5. for i in f low_pred:

if i == 0:
legitimate_tra f f ic← legitimate_tra f f ic + 1

end if
6. end for
7. if (legitimate_tra f f ic/len( f low_pred)) > 0.9 :

predict← 0
8. end if
9. else :

predict← 1
10. end else
11. return predict
12. end

Algorithm 2 identifies the source port and network device of the incoming packet.
Subsequently, it takes the action of dropping any packets arriving on the specified source
port of the given network device for a duration of 100 s.

Algorithm 2 Incoming packet identification

1. Input: packet_received
2. Output: block DDoS attacks
3. Begin:
4. source_port = packet_received.source_port
5. datapath_id = packet_received.datapath_id
6. if is_ddos_attack(packet_received):

Send a flow modification message to the switch to drop packets from the identi-
fied source port with a timeout of 100 s

7. end if
8. end

5.2. Legitimate Traffic

• In the case of the smart coffee maker, legitimate traffic would involve sending an “on”
or “off” payload message from an h1 to the IoT device smart coffee maker, which is
h2, to control its power state. This communication allows h1 users to remotely turn
the coffee maker on or off based on their preferences. Figure 8 shows the scenario of
legitimate traffic in which h2 (smart coffee) subscribes to h1, enabling remote control of
the coffee maker based on its needs. Our SDN-ML-IoT framework accurately predicts
legitimate traffic originating from h1 to IoT device subscribers.

• In the case of the temperature and humidity IoT sensor, legitimate traffic involves
the IoT device acting as h1, transmitting temperature and humidity data to h2. Then,
h1, functioning as an IoT sensor, publishes temperature and humidity data, while h2
subscribes to h1 to collect the data from h1. Figure 9 depicts the scenario of legitimate
traffic in which h1 (the temperature and humidity sensor) publishes temperature and
humidity data to subscriber h2. Our SDN-ML-IoT framework accurately predicts
legitimate traffic originating from IoT publishers.
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Figure 8. Subscribe to legitimate traffic for smart coffee IoT device.

Figure 9. Temperature and humidity IoT device publishes legitimate traffic.

5.3. DDoS Attacks

The hping3 tool is widely recognized as a frequently used utility in DDoS attacks, as
indicated in Table 3. As depicted in Figure 10, h2 utilizes hping3 to generate a substantial
volume of packets directed toward the target machine, h1, which is an IoT device targeting
the MQTT port. Our SDN-ML-IoT framework detects DDoS attacks in less than 3 s.
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Figure 10. Detecting DDoS attacks targeting IoT devices.

5.4. Blocking DDoS Attacks

As illustrated in Figure 11 , the processes for mitigating DDoS attacks using packet
switching and their corresponding source port function effectively, successfully blocking
DDoS attacks in real time.

Figure 11. Mitigating DDoS attacks targeting IoT devices.

6. Results and Discussion

This section presents a comparative study of three related works closely aligned
with my research and our SDN-ML-IoT method. As shown in Table 12 below, Zhenpeng
Liu, in [30], employed an improved binary grey wolf optimization algorithm and RF.
Their model achieved an accuracy of 99.13%. When compared to similar studies, the
presented work demonstrated an improvement in accuracy by 0.0033. Hani Elubeyd, in
their paper [37], proposed a hybrid deep learning model that combines three algorithms:
a 1D CNN, a GRU, and a DNN. They achieved an accuracy of 99.81%, improving upon
other related works by 0.50%. Walid I. Khedr, in the paper [38], utilized the FMDADM
framework based on the RF algorithm, achieving an accuracy of 99.79%. This outperforms
previous related works by 0.08%.

Our proposed method, SDN-ML-IoT, employs the RF algorithm on a synthetic dataset.
It is essential to note that different studies use diverse datasets, models, and evaluation
metrics. Consequently, making direct comparisons with the results of other studies can be
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challenging. Nonetheless, our proposed method exhibits outstanding accuracy, achieving
99.99%. This performance surpasses that of related studies. It adeptly detects DDoS attacks
on SDNs and effectively mitigates these attacks.

Table 12. Comparison of our method with other studies.

Research Method Used Accuracy Mitigation Environment
Used

Topology Network
Adaptable

[30] RF method. 99.9% Using in_port. Mininet and Ryu
controller. Tree Topology.

[37] Hybrid deep
learning approach. 99.81% X Mininet and Ryu

controller. Not specified.

[38] RF method. 99.79% Using src_port. Mininet and POX
controller. Not evaluated.

SDN-ML-IoT RF method. 99.99%
Using src_port

with 100 sec
timeout.

Mininet and Ryu
controller.

Single, linear, tree,
ring, and mesh.

7. Conclusions and Future Works

This paper introduces an enhanced IDPS framework, utilizing the RF algorithm within
the SDN framework, named SDN-ML-IoT, aimed at fortifying the security of IoT devices in
smart homes against DDoS attacks. The model selection process involved the collection of
a synthetic dataset based on the monitoring capabilities of the Ryu controller. This dataset
encompasses normal traffic and six distinct types of DDoS attacks, tailored to the specific
requirements of IoT devices in smart homes. The dataset was then utilized to train and
evaluate four ML algorithms specialized in IDPS: NB, LR, KNN, and RF. To address the
multiclass classification challenge, we employed an OvR strategy to transform it into a bi-
nary classification problem, optimizing the detection problem for binary classification. This
strategy facilitated the handling of imbalanced data, reduced computational complexity,
and improved training and prediction times. Additionally, we utilized the REF method to
streamline feature selection, reducing training time and enhancing accuracy. The method
also incorporated a method and fold cross-validation approach to mitigate overfitting. The
simulation results showed that the selection of RF as the SDN-ML-IoT framework was
favorable for real-time deployment within SDN networks for smart homes, achieving an
accuracy of 99.99% and a training time of 20 s. The model demonstrated adaptability and
effectiveness across different network topologies and sizes, providing predictive detection
times between 1 and 3 s, depending on network complexity. The SDN-ML-IoT not only
identifies DDoS attacks but also mitigates them by blocking the DDoS packets based on
their source ports.

In future work, we plan to implement our SDN-IoT-ML framework in real-world
deployments to evaluate its results. We aim to enhance our model by incorporating multi-
class classification to directly mitigate attacks based on their class, leveraging the ip_proto
field. Additionally, we will focus on exploring other attack types targeting IoT devices,
emphasizing threats such as man-in-the-middle attacks, Botnets, Zero-Day Exploits, and
more. Employing multiple Ryu controllers will facilitate the rapid sharing of threat infor-
mation, enabling controllers to respond more quickly to emerging security threats. This
investigation aims to enhance the understanding of security vulnerabilities in IoT systems
and develop robust countermeasures against these prevalent threats.
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