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Abstract: In Indonesia, the monitoring of rainfall requires an estimation system with a high resolution
and wide spatial coverage because of the complexities of the rainfall patterns. This study built a
rainfall estimation model for Indonesia through the integration of data from various instruments,
namely, rain gauges, weather radars, and weather satellites. An ensemble learning technique,
specifically, extreme gradient boosting (XGBoost), was applied to overcome the sparse data due
to the limited number of rain gauge points, limited weather radar coverage, and imbalanced rain
data. The model includes bias correction of the satellite data to increase the estimation accuracy.
In addition, the data from several weather radars installed in Indonesia were also combined. This
research handled rainfall estimates in various rain patterns in Indonesia, such as seasonal, equatorial,
and local patterns, with a high temporal resolution, close to real time. The validation was carried
out at six points, namely, Bandar Lampung, Banjarmasin, Pontianak, Deli Serdang, Gorontalo, and
Biak. The research results show good estimation accuracy, with respective values of 0.89, 0.91, 0.89,
0.9, 0.92, and 0.9, and root mean square error (RMSE) values of 2.75 mm/h, 2.57 mm/h, 3.08 mm/h,
2.64 mm/h, 1.85 mm/h, and 2.48 mm/h. Our research highlights the potential of this model to
accurately capture diverse rainfall patterns in Indonesia at high spatial and temporal scales.

Keywords: rainfall; ensemble learning; multisensor

1. Introduction

Indonesia is a tropical country with various complexities in its rainfall patterns [1–4].
Based on data processing and analysis over 30 years (1991–2020), it has been identified
that the rainfall distribution patterns in the Indonesian region consist of 487 monsoonal,
178 equatorial, and 34 local types. This has a direct impact on many aspects of life, such
as transportation, agriculture, water resource management, and disasters [5–8]. Moreover,
extreme rainfall can cause significant impacts on the economic sector, infrastructure, and
public safety [9,10]. However, at present, the information regarding rainfall in Indonesia
has regrettably not reached a high resolution, and the geographical coverage is limited.

Rainfall measurements in Indonesia are generally performed using two methods:
direct observation via a rain gauge and indirect estimation via remote sensing [11–13]. The
measurements using rain gauges are accurate; however, the total surface area of rain gauges
in Indonesia covers only 1.29 × 10−11 of the country’s total area. This inadequate gauge
density results in inaccuracies when representing the total rainfall across an area [14]. The
distribution of rain gauges in Indonesia also highlights a concerning disparity in gauge
density. Papua Island, the eastern region of Indonesia, has fewer rain gauges even though
the region has local rain patterns with its diverse topography. In contrast, Java Island, the
southern region of Indonesia, has a monsoon pattern and non-complex topography, but the
rain gauge distribution there is very dense. The optimum rain gauge network has been the
subject of research and operation in Indonesia over the years [15,16]. However, the national
weather radar network does not cover the entire observation area in Indonesia [17]. Several
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weather radars also cannot explain a single relationship between radar reflectivity and
rainfall [18]. The variability in this relationship can certainly affect the accuracy of rainfall
estimates using weather radars. Meanwhile, weather satellite images with global coverage
have resolution limitations [19]. In measuring rainfall in Indonesia, the necessity for a wide
spatial coverage with a high level of resolution is the main challenge [20,21]. This condition
explains why the existence of only one data source is insufficient to fulfill Indonesia’s need
for reliable rainfall data.

Indonesia’s national rainfall information product is provided by the Meteorology,
Climatology, and Geophysics Agency (BMKG) via its official website at www.bmkg.go.id,
accessed on 31 July 2024. The information displayed is limited to rain classification images
covering Indonesia with a time resolution of 1 h and an accumulation of 24 h. Apart
from that, a research institution in Indonesia, the National Innovation Research Agency
(BRIN), has the Sadewa website at the address https://sadewa.brin.go.id/sadewabgr/
(accessed on 24 June 2024), which provides information on rainfall predictions with a time
resolution of 1 hours resulting from modeling with a spatial resolution of 1 km. The results
of previous studies also have limitations. The generated products are typically not in the
form of numerical data but are mostly in the form of classifications [22–24], are not yet
able to produce comprehensive spatial products, tend to be limited to data per point or
region [25–29], and do not provide actual and up-to-date information to meet real-time
needs [20,30–33]. Based on these facts, there is no numerical, spatial, high-resolution rainfall
estimation model that uses observational equipment. In fact, information about rainfall
in Indonesia is really needed because it has a direct impact on many aspects of life [5–8],
such as agriculture, because rainfall affects agricultural productivity [34]; transportation,
because it can be the cause of transportation accidents [35–38]; and disasters, because its
impact is often associated with disasters such as floods and landslides [9,10,39,40].

Currently, the existing rainfall estimation models cannot detect hidden patterns or
non-linear trends in rainfall data, which are important features for producing accurate
rainfall information products [41]. The dynamics of the air in the atmosphere may be
significantly non-linear; however, there are still discernable patterns in its movement.
These simple patterns may possibly be manually completed; however, for big data and
complex non-linear patterns, the patterns may be generated using machine learning [42].
The implementation of machine learning in the field of meteorology includes the use of
algorithms capable of processing extensive data, such as observation network data, weather
radars, satellites, and weather models [43–45]. Through processing more significant data
and more complex analysis, machine learning can be developed into a more accurate
rainfall estimation model [46,47]. Several approaches to rainfall estimation have been
explored by different researchers, and the importance of a high spatial and temporal
resolution for accurate estimation precision has been emphasized [48–54]. However, using
machine learning requires managing several challenging issues, namely, the unbalancing
of classes [55], such as a disproportionate number of instances without rain or deficient
rainfall compared with instances with high rainfall, a large number of missing attributes [56]
during the process in which the sensor collects data, and the need to work incrementally
immediately after new data are available. Addressing these challenges is crucial for
harnessing the full potential of machine learning, especially in rainfall estimation.

Tree-based machine learning is a popular approach in the world of machine learning.
The development of tree-based algorithms in machine learning has experienced a significant
evolution. The developments began with decision trees, which are a simple tree structure
used for decision making [57]. The drawbacks of decision trees include their tendency
to overfit data and their typically lower accuracy [58,59], often necessitating ensemble
methods to tackle these issues. The solution to the overfitting problem in decision trees is
“ensembling”, which involves assembling many weak trees together into a strong forest,
making predictions from each of the trees, and voting to decide on the winning prediction.
This is further developed into a random forest, which uses a large number of trees to
increase the accuracy and overcome overfitting [60]. With the bagging technique, weak
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learners/decision trees are arranged in parallel, and so they do not learn from each other;
therefore, they have limitations in terms of computation [61]. In 1996, Schapire developed
a boosting technique called AdaBoost, an ensemble learning technique that gives more
weight to data misclassified by the previous model [62]. In many applications, AdaBoost is
sensitive to both noise and data outliers and is slow in processing because it involves all
data samples in each iteration [63]. Furthermore, gradient boosting advances development
through the introduction of the concept of gradients and iteratively updating the model
to reduce prediction errors [64]. Finally, extreme gradient boosting (XGBoost) improves
boosting by increasing efficiency and accuracy with regularization, overfitting management,
and layered trees [65]. The strength of XGBoost is its scalability in all scenarios. The
scalability of XGBoost is due to several important systems and algorithmic optimizations.
One is a new tree-learning algorithm for handling sparse data [65]. Moreover, parallel and
distributed computing makes the learning process faster [66]. XGBoost is now the preferred
method for developing predictive models due to its remarkable accuracy, efficiency, and
adaptability [67,68]. Recently, XGBoost has even dominated the applied machine learning
domain and has won several Kaggle competitions [69].

Applying XGBoost in rainfall estimation and related meteorological phenomena has
demonstrated its efficacy and accuracy in predictive modeling. XGBoost was utilized along-
side rain gauges, radars, and satellite data, achieving a high correlation and low RMSE,
highlighting its robustness in integrating diverse data sources [70]. Despite its effectiveness,
that study focused on one city, which may not be generalized well to different geographic
locations with varying climate conditions. Coupling XGBoost with the Bat algorithm to esti-
mate evapotranspiration showed superior performance in arid regions compared with other
models [71]. Additionally, utilizing XGBoost for precipitation nowcasting outperformed
other methods, proving its superiority in real-time applications [72]. Finally, integrating
XGBoost with another method further enhanced precipitation nowcasting, demonstrating
significant improvements in detection probability and error reduction [73]. The existing
literature and studies show that XGBoost can be computationally demanding, especially
when dealing with large datasets and deep trees. Training such models requires significant
computational resources, which might not be available on less capable hardware. This com-
plexity extends to hyperparameter tuning, which necessitates extensive experimentation to
achieve optimal performance [66,74].

Currently, the application of machine learning to estimate rainfall in Indonesia is
increasing and developing [75]. This study aimed to estimate rainfall in Indonesia, which
exhibits seasonal, equatorial, and local characteristics. Our proposed approach integrates
data from different instrument sources (i.e., rain gauges, weather radars, and weather
satellites) to produce high-resolution rainfall estimates. Furthermore, ensemble learning,
XGBoost, was applied to anticipate the sparse data that may occur due to the limited
number of rain gauge points, limited radar coverage, and rain data imbalance problems.
Finally, a spatial rainfall estimation model was built with a temporal resolution close to
real time. Therefore, it is hoped that this study can benefit all stakeholders who use rainfall
information in Indonesia, especially the transportation sector, which needs actual and
high-resolution rainfall information.

2. Materials and Methods

The data sources used in this research consisted of satellite data, weather radars, and
rain gauges provided by the BMKG. The weather radar and rain gauge data were obtained
directly from the BMKG monitoring system, which operates in various regions of Indonesia.
A complex method for rainfall estimation is proposed in this study. This study included a
bias correction process for satellite data to ensure data accuracy and weather radar data
integration and implemented the XGBoost machine learning ensemble to process big data.
The research stage diagram can be seen in Figure 1.
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namely, monsoonal, local, and equatorial types [78], as shown in Figure 2. 

Figure 1. Architecture of the ensemble learning-based rainfall estimation model using multiple
instruments: rain gauges, integrated weather radars, and weather satellites.

2.1. Study Area

Indonesia is an archipelagic country situated in Southeast Asia, straddling the equator.
Indonesia is located between 6◦ N to 11◦ S and 95◦ E to 141◦ E. Geographically, Indonesia
consists of more than 17,000 large and small islands, making it the largest archipelagic
country in the world. Overall, the land area is 1,993,662,036 km2; meanwhile, the water area
reaches 6,653,341,439 km2 [76]. These geographic characteristics provide Indonesia with a
diverse landscape, including mountains, tropical rainforests, and long beaches. More than
54,700 km of coastline connects the land with the sea, one of the main factors that influences
the rainfall patterns in various regions of Indonesia. In this study, understanding the geog-
raphy of Indonesia is fundamental to the process of rainfall estimation. Climatologically,
Indonesia’s territory consists of seasonal zones and non-seasonal zones [77]. Indonesia’s
territory is also divided into three types of rain patterns, namely, monsoonal, local, and
equatorial types [78], as shown in Figure 2.
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Figure 2. A map of the study area in Indonesia with three different rain patterns and a map of the
weather radar network used in this research.

2.2. Data

In this rainfall estimation study, information from two different technologies, weather
radar data and data from the Himawari satellite, became a training feature to obtain rainfall
estimates. The main target of this estimation was global precipitation measurement (GPM)
satellite data, which have been previously corrected using rain gauge data. This target
was selected to ensure that the rainfall estimation results followed the results of the field
observation measurements. The data period used covered the entire year of 2022. The
training period spanned from January to November to maximize the training process.
December was used for validation because it represents Indonesia’s peak rainy season,
providing a range of conditions, from no rain to maximum rainfall.

Various satellite-based rainfall estimation products with a high spatial and temporal
resolution have been developed to meet hydrometeorological data needs [79]. To date,
the GPM-integrated multi-satellite retrievals (IMERG) product has shown more consistent
performance and can be a good alternative for rainfall estimation [80,81]. The IMERG
system operates in near-real time, providing data in two runs, known as early and late
IMERG; subsequently, after the monthly gauge analysis is received, the final IMERG data
are generated [82]. Early-run products have the potential for real-time applications with
shorter delay times [83]. GPM combines the data from active and passive instruments
within the GPM constellation to produce rainfall estimates, referred to as IMERG [84]. The
GPM dataset is an early-run product produced every 30 min, covering 1 January to 31
December 2022. Spatial data with a pixel resolution of 10 km, covering a wide area of
Indonesia, were used in this research.

A weather radar is an instrument that can detect various atmospheric parameters,
such as rainfall, cloud movement, and wind speed, as well as the physical properties of rain
or ice grains [85]. A weather radar transmits electromagnetic waves into the atmosphere,
detects their reflections hitting objects, and measures the energy in radar reflectivity [86]. In
this research, the resulting weather radar reflectivity data were used as a feature to estimate
rainfall. In total, thirty-five weather radar units of various types were used to support this
research. Of this number, six weather radar locations were used for data training, namely,
the Lampung, Banjarmasin, Deli Serdang, Pontianak, Gorontalo, and Biak weather radars.
The six radar locations used represent the existing rain patterns in Indonesia, which are
seasonal, equatorial, and local rain patterns. The data are presented in a spatial resolution
of 500 square meters. The temporal resolution of the weather radar data was updated every
10 min. The combination of a high spatial resolution and fast temporal resolution enabled
very accurate and near-real-time rainfall estimates.
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Another feature we used was data from the Himawari satellite in the form of brightness
temperature. The Himawari satellite measures electromagnetic radiation emitted by various
surfaces and the atmosphere in various spectral channels. These data produce brightness
temperatures in various spectral channels, measured in kelvin (K). Equipped with an
advanced Himawari imager (AHI) sensor, the Himawari satellite can produce various
types of images. The Himawari satellite has 16 bands consisting of 3 visible bands, 3 near-
infrared (NIR) bands, and 10 infrared (IR) or thermal bands. Each channel has a different
wavelength, resolution, and use [87,88]. This research used IR band 13 with a wavelength
of 10.4 µm. The selection of the IR channel was designed for use for observations at night
since it can detect thermal radiation from objects on the Earth’s surface even though there
is no direct sunlight available. In addition, the wavelength in band 13 is a clean longwave
window with relatively high transparency toward electromagnetic radiation and is not
significantly affected by water vapor in the atmosphere. This channel helps detect surfaces
and clouds [88,89]. The spatial resolution of the Himawari satellite’s IR sensor is 2 km,
indicating the sensor’s ability to distinguish objects at a minimum distance of that size.

The rainfall data were obtained from the Automated Weather Observing System
(AWOS) equipment, which is an airport weather observation system that can provide
weather information for 10 parameters, namely, wind speed, visibility, weather, sky con-
ditions, temperature, relative humidity, wind chill, the heat index, pressure, and rain-
fall [90,91]. A rain gauge, which is one of the sensors in the AWOS equipment, is capable of
measuring rain to an accuracy of 0.1 mm, so it is susceptible to detecting rainfall. With a
time resolution of 1 min, this sensor can provide very detailed data about rainfall patterns
in short intervals. With six rain gauge points, their use was advantageous in the GPM data
correction process, which involved identifying rain events. Using the high-resolution rain
gauges in the AWOS equipment increased the accuracy and precision of the rainfall data
used in this research.

The instruments used in this study, including information on time resolution, spatial
resolution, working principles, and units of product produced, are presented in Table 1.

Table 1. The research data sources from rain gauge, weather radar, and weather satellite equipment.

Instrument Size of Dataset Product Time Resolution Spatial Resolution Unit of
Measurement

GPM satellite
(NASA, USA) 9.3 GiB Rainfall 30 min 10 × 10 km mm/h

Himawari satellite
(JMA, Japan) 1 TiB Brightness

temperature 10 min 2 × 2 km K

Weather radars
(EEC, USA) 50.7 TiB Reflectivity 10 min 0.5 × 0.5 km dBZ

Rain gauges
(All Weather, Inc,

USA)
13.3 MiB Rainfall 1 min Point mm

2.3. Data Preprocessing

The data and instruments used in this study had different resolutions and units of
measurement. The rainfall amount acquired from the rain gauges (mm), which were used
to verify the GPM satellite rainfall product, was converted into the rain rate (mm/h) by
taking into account the duration of the rainfall that occurred [92]. Rainfall data measured
every 1 min by a rain gauge were converted into the rainfall intensity in units of millimeters
per hour (mm/h). This conversion process was performed by measuring the total amount
of rainfall every 10 min and then calculating the average rainfall intensity. In this way, rain
gauge rainfall data measured every 1 min could be converted into the rainfall intensity
displayed every 10 min in millimeters per hour.

The spatial resolution between the GPM satellite, Himawari satellite, and weather
radars was another element that must be equalized. The weather radar pixels and Hi-
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mawari satellites were adjusted to the GPM satellite pixels. We used bilinear interpolation
techniques for the inter-pixel adjustments. In this technique, the new pixel value was
determined based on the average by giving weight to the closest pixels. This technique
was used because it can produce continuous data between known data points, making it
easier to maintain spatial consistency. The bilinear interpolation process was carried out
alternately on one of the vertical or horizontal sides [93]. Interpolation only involves the
four nearest neighboring points, so the interpolation process is fast even when using a
large dataset. By using the average value of the four nearest neighboring points, bilinear
interpolation minimizes the loss of information that may occur [94].

The frequency of re-recording of all research instruments was equalized over a certain
period. The temporal resolution must have the same interval [95]. The rain gauge data
recorded every 1 min were downscaled to 10 min intervals to match the temporal resolution
of the weather radars and Himawari satellites. The method used was to take a 10 min
average of 10 consecutive data points. The data from the weather radars and Himawari
satellites recorded every 10 min were maintained because they were in accordance with
the desired resolution. For the training process, data that overlapped with the GPM data
were used, and they were recorded every 30 min. The running process still used data
every 10 min. Data from the GPM satellite recorded every 30 min were used for the
training process.

Some of the data-filtering techniques applied in this research were resampling tech-
niques for time series and intersection data. The resampling technique changed the time–
frequency of data from one interval to another. With different sources and different time–
frequencies, resampling helped make the data consistent and allowed for easier compar-
isons. Meanwhile, intersection was used to obtain the same elements between two or more
data sets [96]. Intersection performed the operational function of merging several intersec-
tions of data sets that were previously incomplete to become sequentially complete. The
research files were processed in the Zarr format, which stores each piece of data separately
using data compression techniques to help reduce storage space requirements and speed
up data transfer [97].

2.4. Bias Correction Strategy

The GPM product had several uncertainty sources, such as sensor calibration, retrieval
errors, and orographic effects [98,99]; therefore, the product needed to be corrected for
actual rainfall data from the rain gauges [100,101]. The bias correction method modified
the bias correction strategy used in [102]. The first step in this research stage was to identify
the rain events. In this context, only ‘hit’ events underwent bias correction; meanwhile, the
other conditions were ignored in the analysis. A ‘hit’ event was when the GPM correctly
detected rain. For the ‘hit’ events that were identified, corrections were made to reduce
the bias between the GPM data and actual rain events that occurred using the linear
regression method, which was previously performed by the authors of [103–105]. As
previously explained in the data subsection, the six rain gauge points that were used for
GPM correction are listed in Table 2. The bias correction could be carried out with at least
one rain gauge available in each area to be corrected [106].

Table 2. The rain gauge locations in AWOS equipment used for the bias correction of GPM rain-
fall products.

Location Latitude Longitude Elevation (masl)

Bandar Lampung 105.174 −5.239 83
Banjarmasin 114.767 −3.439 20

Pontianak 109.402 −0.142 2
Deli Serdang 98.884 3.645 7

Gorontalo 122.852 0.638 32
Biak 136.104 −1.19 12
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2.5. Integration of Weather Radar Data

A composite map can show the spatial rainfall distribution over a larger area, which is
very important for understanding the current weather conditions and possibly predicting
the rainfall cloud movements [17]. The number of weather radars scattered in the research
area allowed for the intersection of coverage areas. To generate a composite map from
several weather radars, the merging of the CMAX reflectivity values in each intersection
coverage area was performed [107]. The complete information on the location, frequency
band, and weather radar polarization used in this study is shown in Table 3.

Table 3. The weather radars operating in Indonesia integrated into this study. These consisted of
35 weather radars located in various locations with diverse frequency bands, polarizations, and peak
power.

No. Location Latitude Longitude Elevation
(masl)

Frequency
Band Polarization Peak Power

1 Banda Aceh 5.53 95.49 446 C Single 250 kW
2 Nias 1.16 97.0 6 C Single 350 kW
3 Medan 3.53 98.63 61 C Single 250 kW
4 Padang 0.78 100.3 24 C Single 250 kW
5 Pekanbaru 0.45 101.46 31 C Single 250 kW
6 Bengkulu −3.85 102.34 15 C Single 400 kW
7 Jambi −1.63 103.64 44 C Single 400 kW
8 Palembang −2.91 104.7 12 C Single 250 kW
9 Pangkalpinang −2.16 106.14 30 C Single 350 kW
10 Lampung −5.2 105.17 106 C Single 250 kW
11 Cengkareng −6.17 106.64 25 C Single 250 kW
12 Pontianak −0.08 109.39 26 C Single 250 kW
13 Sintang −0.04 111.45 28 C Dual 400 kW
14 Pangkalanbun −2.73 111.64 31 C Single 400 kW
15 Banjarmasin −3.46 114.84 81 C Single 250 kW
16 Balikpapan −1.25 116.89 50 C Single 250 kW
17 Tarakan 3.31 117.58 45 C Single 250 kW
18 Yogyakarta −7.73 110.35 182 C Single 350 kW
19 Surabaya −7.41 112.76 3 C Single 250 kW
20 Denpasar −8.73 115.17 28 C Single 250 kW
21 Lombok −8.75 116.24 94 C Single 400 kW
22 Bima −8.54 118.68 45 C Single 250 kW
23 Maumere −8.61 122.08 36 C Single 400 kW
24 Kupang −10.21 123.62 326 C Dual 400 kW
25 Majene −3.55 118.98 30 X Single 2 × 500 kW
26 Makassar −4.99 119.57 11 C Single 250 kW
27 Masamba −2.55 120.32 66 X Single 2 × 500 kW
28 Gorontalo 0.63 123.01 90 C Single 250 kW
29 Ternate 0.85 127.34 105 C Single 400 kW
30 Manado 1.5 129.91 16 C Single 250 kW
31 Ambon −3.71 128.09 9 C Single 250 kW
32 Biak −1.16 136.08 72 C Single 250 kW
33 Sorong −0.89 131.28 22 C Single 250 kW
34 Timika −4.52 136.89 54 C Single 250 kW
35 Merauke −8.49 131.28 88 C Single 250 kW

2.6. Ensemble Learning Approach

Ensemble learning techniques have achieved state-of-the-art performance in diverse
machine learning applications through the combination of predictions from two or more
base models. We used the XGBoost algorithm for this research, more specifically, the XG-
Boost Python Package. XGBoost is a decision tree-based optimization technique that builds
on the gradient descent method. The gradient descent method is used to optimize the loss
function; additionally, regularization parameters are employed to prevent overfitting. The
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fundamental concept underlying the XGBoost algorithm is the minimization of the follow-
ing objective function, which consists of the loss function and regularization terms [65].
Additionally, XGBoost is efficient in handling large datasets [108]. First, the procedure
used in this algorithm involves dividing the original dataset into multiple sub-datasets.
Then, each subset is randomly assigned to the base learner for prediction. The algorithm
calculates the result of the weak learner based on a certain weight. Finally, the model results
can be expressed as the weighted sum of the predicted results of all the decision trees.

Hyperparameters were used to enhance the algorithm’s performance results, signifi-
cantly affecting various model tests. In this study, the hyperparameter method that was
applied was Bayesian optimization. This method uses a probabilistic model to direct the
search for the best hyperparameters. The previous search results are used to estimate the
combination of hyperparameters that is most likely to provide better performance. The
Bayesian optimization process consists of two main components: a surrogate model, which
fits each observation to a target function, and an acquisition function, which balances
exploitation and exploration to determine the next evaluation point. Bayesian optimization
stabilizes exploration and exploitation to find optimal options while avoiding missing out
on better configurations in areas that have not been evaluated [109–111].

The parameters that were optimized and expected to improve the model’s performance
included seven parameters [110,112,113], as shown in Table 4 below.

Table 4. Hyperparameter tuning for XGBoost.

Hyperparameter Range Definition

learning_rate 0.01–1
The step size when updating model weights to
minimize errors, which affects the speed and
convergence of the training process.

max_depth 0–12
The maximum depth of a tree, which controls the
complexity of the model by limiting the number of
levels of splitting in each tree.

n_estimators 100–1000
The total number of decision trees to be built and
used in an ensemble model, which directly affects
the performance and complexity of the model.

subsample 0.1–1
The proportion of training data samples used to
build each tree, introducing variation in the training
process.

min_child_weight 0.1–2
The sum of instance weights required at a leaf node,
which ensures that nodes will not split if they do not
meet this minimum weight threshold.

gamma 0–1
The minimal reduction in loss required to split
nodes, which helps control tree growth by
preventing insignificant splits.

colsample_bytree 0.1–1
The proportion of features (columns) randomly
selected to build each tree, which helps prevent
overfitting by reducing the correlation between trees.

For several reasons, Bayesian optimization has shown significant advantages in hy-
perparameter tuning for XGBoost compared with other methods. Primarily, it offers a
systematic approach to exploring the hyperparameter space efficiently, utilizing prior in-
formation to guide the search process and update beliefs about the best regions to explore
as more data are gathered. This probabilistic framework allows for a more informed and
directed search, often resulting in faster convergence to optimal hyperparameters. For
instance, studies such as that by Qiu et al. (2022) demonstrated that Bayesian optimization
could achieve lower prediction errors and higher model performance with fewer itera-
tions than traditional grid or random search methods. Moreover, Bayesian optimization
effectively balances exploration and exploitation, enhancing the model’s accuracy and
robustness [109–114].
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2.7. Evaluation of Estimation Results

The estimated rainfall results from the ensemble learning model were evaluated using
statistical and detection indicators [115]. The statistical indicators assessed the root-mean-
square error (RMSE) values of the estimated rainfall; meanwhile, the detection indicators
gauged the accuracy of the rainfall detection. The RMSE was used to measure the average
magnitude of the errors between the estimated values and the actual values. The RMSE
calculated the square root of the average of the squared differences between the predicted
values and the actual values. The RMSE value provides an overall picture of the magnitude
of the errors and can be useful in comparing model performance. In this case, accuracy
refers to the extent to which the model could correctly classify rain occurrences or non-
rain occurrences.

3. Results and Discussion
3.1. Data Correlation

The first task was to display and discuss the relationship between the input and target
data that were used to build the rainfall estimation model. Specifically, we examined the
relationship between the rainfall data produced by the GPM satellite and the rainfall data
measured using the rain gauges.

The rainfall estimates produced by the GPM satellite with rain-gauge-measured rain-
fall data revealed a low correlation [116,117], as shown in Figure 3. This may be the result of
several errors in the data retrieval algorithms and sensors [118]. Other studies have stated
that this discrepancy can be caused by cloud characteristics, climate, season, geographic
location, and topography [119,120]. However, seeing the consistently low correlation in
several locations, we suspect that the differences occurred due to lag time [121], i.e., the
time delay between raindrops from clouds and rainfall on the Earth’s surface. This time
delay means that when the GPM satellite observed rain from clouds, there was a certain
time required for the raindrops to reach the Earth’s surface. Many factors, such as the
distance between the cloud and the surface, can cause this delay. Therefore, the rainfall
estimation data needed to be evaluated and corrected for bias.

The second data correlation occurred between the rainfall data produced by the GPM
satellite and the brightness temperature data measured by the Himawari satellite. The
plotting of the two datasets is shown in Figure 4. Plotting the data at six points shows
an inverse relationship between the cloud brightness temperature from the Himawari
satellite data and the rainfall from the GPM satellite data, with a correlation value between
−0.37 and −0.49. The correlation slope, even though insignificant, illustrates that when
the cloud brightness temperature was low, the rainfall was high. Conversely, when the
cloud brightness temperature was high, the rainfall was low. When the cloud brightness
temperature decreases or becomes colder, this indicates that the cloud is thicker and tends
to have larger water particles. The correlation value between the GPM satellite and the
Himawari satellite was low due to differences in the working principles regarding the
measurement targets. Working at a wavelength from 0.46 to 13.3 µm [122], the Himawari
satellite can identify cloud droplets with a diameter of < 50 µm [123]. However, the presence
of droplets in clouds does not always indicate rain. The droplets can turn into raindrops
when small droplets collide with each other and merge through a process called coalition
and coalescence [124]. However, not all droplets undergo this process until they reach a
size large enough to fall as rain. In this case, the Himawari satellite is too sensitive for the
task of identifying raindrops. Meanwhile, the GPM satellite has technical specifications that
allow it to detect precipitation with a minimum size of 0.2 mm [125]. Therefore, the GPM
satellite tends to be more accurate because it focuses on raindrops as the measurement
object. Physically, this difference in measurement principles can result in a low correlation
between the two satellites. The GPM satellite essentially measures raindrops, while the
Himawari satellite measures cloud droplets, which do not necessarily turn into raindrops.
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There was a further correlation between the GPM satellite data and weather radar
data. In physical terms, the higher the radar reflectivity (the dBZ value), the greater the
possibility of high-intensity rain in that area. However, as presented in Figure 5, the
data show that the correlation of the rainfall data produced by the GPM satellite with
the radar reflectivity data was low. At a shorter measurement time resolution of 30 min,
the correlation of the GPM satellite with the weather radars was lower than the daily
or monthly measurement times [126]. This was due to the limitations of the early-run
IMERG in capturing rapid changes in rain patterns. Topography was also a general factor
that influenced the correlation of the GPM satellite with the weather radars [127]. The
fundamental issue was the difference in the working principles of these two instruments.
GPM identified precipitation directly via a combination of dual-frequency precipitation
radar technology and the GPM microwave imager [128]. Meanwhile, the radars measured
the reflectivity that was reflected back from the collection of droplets detected in the radar
volume, but not from each droplet individually. High reflectivity can be caused by a few
large droplets or many small droplets; therefore, it is difficult to determine the distribution
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and size categories of droplets based solely on reflectivity values [129–131]. In physical
terms, the correlation between the GPM satellite data and the weather radars was low
because GPM measured raindrops, while the radars measured a collection of droplets that
may not necessarily be raindrops.
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3.2. Bias Correction Result

Compared with the original product, the bias-corrected GPM product showed a better
performance in estimating rainfall values. We display a graph of the probability density
function (PDF), which is used to describe the probability distribution of a continuous
random variable at a certain point. Additionally, a cumulative distribution function (CDF)
graph is presented to illustrate the cumulative PDF of a random variable. This graph shows
how often a random variable takes either a certain value or less than a certain value in its
distribution; as a result, the graph can help in understanding the distribution, evaluating
the probabilities, and identifying the patterns in GPM data before and after bias correction.
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The PDF and CDF graphs show a significant gap between the uncorrected GPM
graph and the measured rainfall graph. This gap indicates that the initial satellite rainfall
estimates had a significant bias; therefore, bias correction needed to be applied to bring the
estimated results closer to the actual observation data. The GPM, which was not corrected,
appeared to underestimate the measured rainfall. Meanwhile, the corrected GPM graph
coincides more closely with the measured rainfall graph. This indicates that the applied
bias correction succeeded in accurately approximating the observational data. The data
distribution is shown in Figure 6.
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3.3. Weather Radar Network

A national weather radar network was generated in this study with a total of 35 weather
radars being integrated. This merging employed the spatial averaging of composite data,
accommodating differences in frequency bands, such as C and X; differences in polarization,
including single and dual; and differences in range, as illustrated in Figure 7.
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Figure 7. Data fusion technique for multiple weather radars with frequency, polarization, and
coverage range differences. There are several coverage overlaps of the weather radars with the data
from each radar, which are combined into a single data output. The dot is the weather radar location,
and the circle is the weather radar range.

3.4. Hyperparameter Tuning Results

Hyperparameter tuning optimization produced optimal values for each parameter
using the Bayesian optimization method, as shown in Table 5.
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Table 5. Hyperparameter and optimal values obtained by each Bayesian optimization strategy.

Hyperparameter Optimal Value

learning_rate 0.04
max_depth 1

n_estimators 886
subsample 0.96

min_child_weight 0.14
gamma 0.08

colsample_bytree 0.45

Each hyperparameter was optimized to achieve a low objective value, which indicated
a better model performance, as seen in Figure 8. The objective function in XGBoost regres-
sion is an evaluation metric, such as the mean squared error (MSE). In the learning_rate
graph, it can be seen that the optimal value was in the range of around 0.01 to 0.1. A
learning rate that is too high (>0.1) tends to produce a higher objective value, indicating
overfitting. Meanwhile, a learning rate that is too low (<0.01) also does not provide the
best performance because the model may be too slow to converge. For the hyperparameter
max_depth, the optimal value was one. A too-deep depth (>6) is not optimal because it
makes the model too complex. The graph for n_estimators shows that underestimating
the number of estimators gave the best objective value. There is an ideal number of de-
cision trees that should be used to achieve a balance between bias and variance. In the
subsample graph, the optimal value was 0.96. For min_child_weight, the optimal value
was 0.14. Higher values (>5) did not provide the best performance, indicating that the
model requires some complexity to capture variations in the data. The gamma graph shows
that the optimal value was 0.08, which shows that proper regularization is necessary to
avoid overfitting. Finally, for colsample_bytree, the optimal value was around 0.4. Low or
high values did not perform best, indicating that proper column sampling is necessary to
reduce the correlation between trees.
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3.5. Product and Evaluation

After undergoing preprocessing and several processing steps, including weather radar
integration, the GPM satellite bias correction, and the modeling of rainfall estimates using
the XGBoost algorithm, the rainfall estimation results for the Indonesian region were
obtained. Figure 9 presents the spatial rainfall estimation products for the Indonesian
region. This rainfall estimate was generated in near-real time every 10 min.
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Figure 9. Rainfall estimation products in mm/h using ensemble learning techniques and multisensor
data integration produced in this study.

We evaluated the rainfall estimation product to demonstrate the RMSE value and
accuracy. Table 6 shows the results of evaluating the rainfall estimation model in this study.
Furthermore, we captured and analyzed several rain events in areas with different rain
patterns and variations in rainfall intensity.
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Table 6. The results of the rainfall estimation model evaluation.

Location RMSE Accuracy

Bandar Lampung 2.75 0.89
Banjarmasin 2.57 0.91

Pontianak 3.08 0.89
Deli Serdang 2.64 0.9

Gorontalo 1.85 0.92
Biak 2.48 0.9

Based on Figure 10, the weather radar image shows a high reflectivity (>30 dBZ),
and the Himawari image shows thick clouds with a low cloud top temperature, recorded
at 190 ◦K or −83.5 ◦C. This condition indicates the potential for very heavy rain in the
area. At the start of the very heavy rain, the rain gauge measured 24.2 mm/h, and the
model estimated rainfall to be 20.5 mm/h, while the GPM Satellite only detected normal
rain, namely, 6.7 mm/h. After 1 h, all three detected very heavy rain: the rain gauge
measured 25 mm/h, the rainfall model estimate was 21.0 mm/h, and the GPM satellite
measurement was 20.1 mm/h. This fact shows that the estimation model is more sensitive
to local variations and can quickly capture weather dynamics.

Figure 11 shows the Himawari satellite image features with cloud cover, which indi-
cates the potential for heavy rainfall. The brightness temperature of the Himawari satellite
was 210 ◦K, reflecting the presence of a lot of water vapor in the clouds. Likewise, in the
radar measurements, the reflectivity of 30 dBZ indicated the number of droplets that would
eventually become rain. The results of the rainfall estimation model tended to be close
to the results of the rain gauge measurements; this shows its reliability. In contrast, GPM
consistently recorded lower values, which may indicate a delay or underestimation.
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Figure 10. Image capture of GPM, radar, satellite, and estimation model results as well as comparison
graphs of rain between rain gauge, GPM, and rainfall estimations during ongoing rain that occurred
during very heavy rain (>20 mm/h) in Bandar Lampung on 16 December 2022 between 13.00
and 14.30.
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Figure 11. Image capture of GPM, radar, satellite, and estimation model results as well as comparison
graphs of rain between rain gauge, GPM, and rainfall estimation during ongoing rain which occurred
during heavy rain (10–20 mm/h) in Biak on 26 December 2022 between 16.30 and 18.00.

The consistency of the model estimation results and GPM underestimation of mea-
sured rainfall was still visible in moderate rain events that occurred in Gorontalo. Figure 12
shows the rainfall estimates with images that are not too thick, indicating a relatively
low rainfall intensity. The model estimated rainfall from 11:00 to 12:30 with a moderate
intensity, proven to be accurate based on field observations from the rain gauge, which
recorded rainfall of 1.0 mm at 11:30, increasing to 7.6 mm at 12:00, and decreasing again



Sensors 2024, 24, 5030 19 of 27

to 3.8 mm at 12:30. These data show that the rain only lasted a short time, around one
hour, with a normal intensity, based on the estimates obtained from the rainfall model.
This validation indicates that the rainfall estimation model can provide accurate rainfall
projections, especially when identifying short rainfall durations.
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The rainfall estimates for light-rain events also showed better results when compared
with the GPM rain estimates. As Figure 13 shows, the rainfall estimates based on the input
Himawari data with a brightness temperature of 260 ◦K and radar data with a reflectivity
of 15 dBZ produced a rainfall estimate of 3.9 mm/h, close to the rain gauge measurement of
4.2 mm/h. Physically, rain can, indeed, occur when the cloud top temperature approaches
260 ◦K [132]. However, at this temperature, the number of droplets is not very significant,
as measured by the radars. Therefore, light rain occurred in a relatively short time. These
estimation results reflect the model’s ability to utilize input data from radars and Himawari
satellites to produce rainfall estimates that are close to observed values, including during
light-rain events.
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Very-light-rain conditions can be seen in Figure 14. The Himawari satellite data
showed a brightness temperature that was quite cold, namely, 260 ◦K, but the radar
measurements showed no reflectivity. However, very light rainfall was detected by the rain
gauge. This was also detected by the model and GPM. Physically, this condition shows a lot
of water vapor in the atmosphere, but very little is condensed into droplets because more is
evaporating than condensing, and this condition is not measurable by radars. This could
be due to the lack of aerosols in the atmosphere, which act as condensation nuclei [124].
These few droplets still become raindrops through collision and coalescence processes and
fall to the Earth’s surface, even though they only become very light rain [133,134].
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Based on the rainfall estimation images and the evaluation results of the rainfall
estimation model, the XGBoost ensemble learning model in this research can be effectively
applied to produce very accurate spatial rainfall estimates with a temporal resolution
of every 10 min. Even though the training data correlation was not very good, and
the data were not balanced, the XGBoost model was able to produce a low RMSE with
reasonable accuracy. This demonstrates that the XGBoost model was proven to be accurate
in estimating rainfall, even when it used training data, some of which had zero or no value.
This is a result of the splitting process employed by XGBoost when building a decision
tree during the training process. XGBoost treats non-valuable data as separate elements
in the tree. If a feature has no value, the algorithm separates the data into the following
two groups: one group with no value and the other group with a known value. This is
the reason XGBoost does not lose information from worthless data. In fact, XGBoost is
able to select the split point with the highest gain. In other words, the algorithm chooses
the best way to separate data that have no value from those that have value so that the
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gain or profit (decrease in the loss function) is maximized. This technique is referred to as
“sparsity-aware split finding” [65,135].

XGBoost can process data in parallel to handling large-scale spatial data, as well
as meeting short-time resolution requirements [136]. This is known as parallel learning
because XGBoost relies on an ensemble of decision trees. Each tree is built independently
of the others, meaning that the building process of each tree does not depend on the
results of the other trees. The data can be divided into smaller subsets, which are then
processed separately. Additionally, XGBoost applies independent regularization to each
tree. Therefore, each tree can be constructed separately without requiring information from
the other trees. The characteristic of the independent decision tree in the XGBoost model is
that it is stump-shaped, namely, it is a tree with only one level or one branch. The fact that
the tree has a limited depth helps prevent overfitting and makes the tree more general and
helpful in understanding the linear relationships between features and targets.

4. Conclusions

This study produced a model and a rainfall estimation product that use various data
from different instruments, including rain gauges, weather radars, and weather satellites.
In the process of model development, data preprocessing was conducted, which involved
techniques such as resampling, intersection, and bilinear interpolation. Additionally, bias
correction techniques were applied to the GPM satellite data, using rain gauge data as a
reference. Furthermore, several weather radars were combined into an integrated weather
radar network. The incorporation of the XGBoost model played a crucial role in ensuring
the accuracy of rainfall estimates. Based on the discussion and analysis of the results, the
rainfall estimates in this research can be applied throughout Indonesia, including areas with
monsoonal, local, and equatorial rainfall patterns with near-real-time resolution, providing
the latest information every 10 min. This product has the potential to accurately capture
diverse rainfall patterns in Indonesia at high spatial and temporal scales. Future work
will focus on estimation techniques capable of strengthening confidence levels. It not only
produces a single estimation value but can also provide an overview of the uncertainty of
the estimate.
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