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Abstract: Hypertension is a major risk factor for many serious diseases. With the aging population
and lifestyle changes, the incidence of hypertension continues to rise, imposing a significant medical
cost burden on patients and severely affecting their quality of life. Early intervention can greatly
reduce the prevalence of hypertension. Research on hypertension early warning models based on
electronic health records (EHRs) is an important and effective method for achieving early hypertension
warning. However, limited by the scarcity and imbalance of multivisit records, and the nonstationary
characteristics of hypertension features, it is difficult to predict the probability of hypertension
prevalence in a patient effectively. Therefore, this study proposes an online hypertension monitoring
model (HRP-OG) based on reinforcement learning and generative feature replay. It transforms
the hypertension prediction problem into a sequential decision problem, achieving risk prediction
of hypertension for patients using multivisit records. Sensors embedded in medical devices and
wearables continuously capture real-time physiological data such as blood pressure, heart rate, and
activity levels, which are integrated into the EHR. The fit between the samples generated by the
generator and the real visit data is evaluated using maximum likelihood estimation, which can reduce
the adversarial discrepancy between the feature space of hypertension and incoming incremental
data, and the model is updated online based on real-time data using generative feature replay. The
incorporation of sensor data ensures that the model adapts dynamically to changes in the condition
of patients, facilitating timely interventions. In this study, the publicly available MIMIC-III data are
used for validation, and the experimental results demonstrate that compared to existing advanced
methods, HRP-OG can effectively improve the accuracy of hypertension risk prediction for few-shot
multivisit record in nonstationary environments.

Keywords: hypertension risk prediction; reinforcement learning; generative replay; online learning;
electronic health records

1. Introduction

Hypertension is a leading cause of early demise and debility globally [1]. It is respon-
sible for around 7.5 million deaths per year, accounting for 12.8% of all deaths worldwide
and about 18% of global deaths from cardiovascular disease [2]. Timely detection of the
preclinical or high-risk stage of hypertension, namely, hypertension risk prediction, is very
important. Clinical studies have shown that for individuals in the preclinical or at-risk
stage, significant reductions in the progression of hypertension can be achieved through
lifestyle changes or effective drug treatments [3]. However, due to limited medical re-
sources, relying solely on healthcare workers to achieve hypertension risk prediction is not
an easy task. Related research shows that about 1.13 billion people in the world are troubled
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by elevated blood pressure, but only about 50% are aware that they are hypertensive [4].
Hypertension is a gradual process, and specific symptoms may manifest before the onset
of the disease. In this case, by analyzing EHRs, medical AI is able to understand the
physical condition of patients to determine their future risk of developing hypertension [5].
Therefore, hypertension risk prediction assisted by artificial intelligence (AI) has become
an urgent need and is one of the current research hotspots in medical AI.

Electronic health records (EHRs) are digital records that contain complete personal
and health information of patients along with their medical history [6]. With the rapid
development of EHRs, various medical AI applications based on EHRs have received
widespread attention, including disease risk prediction systems [7–9], clinical knowledge
question answering systems [10–12], drug recommendation systems [13,14], etc. Chronic
disease risk prediction based on EHRs is an important way to achieve AI-assisted chronic
disease warning, including hypertension risk prediction. Existing studies focus on develop-
ing complex models [15,16], especially deep neural networks, to extract feature information
from multivisit EHR data for accurately predicting chronic disease risk. They depend on
large-scale and high-quality multivisit EHRs.

However, although hospitals worldwide have established sophisticated hospital in-
formation systems, there are still differences in the storage methods and the data quality of
EHRs between different hospitals [17]. At the same time, there are also challenges such as
data ownership and privacy protection [18]. Therefore, it is difficult to integrate long-term
data from multiple hospitals at once, to build a large-scale and high-quality multivisit EHRs
dataset. In practical settings, chronic disease risk prediction modeling based on EHRs is
often conducted in a few-shot and nonstationary environment. Few-shot EHR data are
gradually generated and collected in batches. There are also significant differences in the
distribution of data attributes for each batch. Figure 1 shows the statistics of EHR data
of hypertensive patients from two hospitals in Hainan Province, China, demonstrating
the distribution of the age of patients examined in each of the 5 years. It can be seen that
the age characteristics of patients continuously change over five years. In subplot a of
Figure 1, the age of patients ranged from 67.5 to 72.5 in 2014, increased in 2015, and then
dropped significantly to 56–67 in 2016, before gradually rising again to 66–73. In subplot b
of Figure 1, the age of patients consistently decreased from 70.6–75.8 to 66.5–73. In both
datasets, the age distribution of patients is different in each year, and such changes lead to a
fixed hypertension prediction model being unable to meet the actual needs of the patients.
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Figure 1. Distribution of age over 5 years. (a) Distribution of age in hospital 1; (b) distribution of age
in hospital 2.

Such a few-shot and nonstationary environment leads to adversarial differences be-
tween the feature space of disease prediction models and the continuously inputted incre-
mental EHR data, which brings about the need for online learning of the model. However,
the factors affecting hypertension risk are often multifaceted, requiring high-dimensional
data for prediction [19]. Existing online learning methods struggle with learning high-
dimensional data features. For examples, Ning et al. [20] proposed a robust algorithm
using polar decomposition for derivation, transforming the learning problems into optimal
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feedback control problems for a group of low-dimensional linear systems and using optimal
control to achieve learning from high-dimensional online data. However, such complex
deep learning models tend to overfit to noisy data when the data are small [21]. When
data distribution changes significantly, excessive adaptation to new data will also lead to a
decrease in the generalization ability of the model.

Based on the above observations, this paper proposes a new hypertension risk predic-
tion model, called HRP-OG, which combines reinforcement learning and generative feature
replay techniques to predict hypertension risk based on multivisit EHR data. The model can
be updated with incoming incremental data in a few-shot and nonstationary environment,
achieving more accurate prediction of hypertension risk. The main contributions are as
follows:

1. This paper transforms the hypertension risk prediction problem into a Markov de-
cision process problem and proposes a hypertension monitoring model based on
reinforcement learning. A new dual experience replay strategy is proposed to fur-
ther distinguish the high and low risk experiences for reducing the bias caused by
the imbalance distribution of multivisit EHRs and improving the few-shot learning
capability of the model.

2. A new generator updating strategy is proposed. By comparing the fitting degree
between the incremental data and historical data with the hypertension feature space,
the generator adopts different updating modes for reducing the adversarial differences
between the incremental EHR data and the feature space.

3. This paper constructs a 12-year continuous hypertension risk prediction dataset from
the public MIMIC-III dataset to simulate a few-shot, incremental, and nonstationary
EHR generation scenario. Experiments are conducted on this dataset and the results
demonstrate that the proposed HRP-OG can provide effective and continuously
updating hypertension risk prediction in a few-shot and nonstationary environment.

The rest of this paper is organized as follows. Section 2 reviews machine learning
methods for chronic disease prediction. Section 3 introduces the proposed HRP-OG model.
Section 4 describes the datasets and compares the performance of this model with the
baselines. In Section 5, the performance of this model is compared and analyzed with the
variants. Finally, Section 6 gives the conclusions and future work.

2. Related Work

Hypertension risk prediction is very important and effective for reducing the preva-
lence of hypertension. Traditional hypertension risk prediction is mostly achieved using
regression models [22]. These methods depend on high-quality medical resources and have
difficulty meeting the needs of a large population at high risk of hypertension. Medical AI
provides an effective way to alleviate the pressure on medical resources for chronic disease
(e.g., hypertension) risk prediction. Its typical application is EHR-based chronic disease
risk prediction.

EHR-based chronic disease risk prediction refers to predicting future disease risk
by analyzing previously observed EHR information [23,24]. Early researchers focused
only on the current health status of patients and tended to model single-visit EHR data for
predicting chronic disease risks. For example, Syed et al. [25] integrated neural network and
genetic algorithm to predict the probability of heart disease based on 12 factors, including
family history, diabetes, hypertension, smoking status, obesity, etc. They used the genetic
algorithm for a global search to optimize network initialization weights. Sayali et al. [26]
combined Bayesian and K-nearest neighbor (KNN) algorithms to predict whether a patient
has heart disease based on symptoms. Based on this, they proposed a Convolutional Neural
Networks-based Uni-Modal Disease Risk Prediction (CNN-UDRP) algorithm that uses a
convolutional neural network to further predict the disease risk of the patient.

However, the development of chronic diseases is a long-term process, and it is difficult
to obtain more accurate prediction results by only focusing on the current health status of
patients. Therefore, more and more researchers no longer focus solely on the horizontal
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features of EHRs but begin to combine the current and historical EHRs of patients to extract
longitudinal EHR features [27,28]. Multivisit EHRs are used to predict chronic disease risks.
For example, Gao et al. [29] used a phase-aware neural network to extract disease stage
information from the time series of EHR data for health risk prediction. Zhao et al. [30]
developed a model to extract and utilize the uncertainty between multiple visit intervals
of EHRs for improving disease prediction. Nancy et al. [31] integrated recursive neural
network and bidirectional long short-term memory (Bi-LSTM) to manage continuous EHR
time series and build a model for predicting heart disease risks. Most of these studies
adopted complex deep learning models, which depended on large-scale and high-quality
multivisit EHR data.

In practical settings, it is difficult to obtain large-scale and high-quality multivisit
EHR data at once. Therefore, online learning of models is gradually gaining attention for
EHR-based chronic disease risk prediction. Online learning is a particular incremental
learning method [32] that refers to the paradigm where a model is updated iteratively and
adaptively over time as new data become available in a sequential manner [33]. For chronic
disease risk prediction, the main methods of online learning can be broadly classified into
three categories: regularization-based methods, dynamic network structure-based methods,
and replay-based methods [34]. Regularization-based methods [35] mitigate catastrophic
forgetting by imposing constraints to enable the updating of network parameters. However,
because of penalizing changes to important parameters, the regularization term may lead to
poor adaptability of the model, making it difficult to adapt to new tasks with different data
distributions and features. Dynamic network structure-based methods [36] dynamically
adapt the network to new tasks. However, due to the continuous complexity of the model
structure, this kind of method is unstable during the model update process and is prone to
overfitting on few-shot data. Therefore, these two kinds of online learning methods are not
suitable for hypertension risk prediction in a few-shot and nonstationary environment.

Replay-based methods rely on memory replay, meaning that samples from previous
tasks are replayed when the samples from the current task are used for learning [37]. It can
effectively retain historical samples while not requiring adjustments to the model structure.
Therefore, it does not have the aforementioned drawbacks and is currently a research
hotspot in online learning for chronic disease prediction models. For example, Wang
et al. [38] proposed a novel method named embedding episodic memory and consolidation
to prevent catastrophic forgetting on disease diagnosis tasks. This method retrieved a
replay batch from the memory set and leveraged medical domain knowledge, incorporat-
ing both context and medical entity features to transfer knowledge to new stages. Gao
et al. [39] proposed a brain disease prediction method that combines a multiloop learning
algorithm with a generative adversarial network. The method combines evidence with
better sample contribution ranking during training processes, selecting 1/2 of the samples
each time for learning and generating samples to input into the database. In chronic disease
risk prediction, EHR data are characterized by continuous changes and interconnections.
Combining historical data with current data can achieve better predictions, making the
replay-based methods highly suitable.

However, when there is a significant difference in the feature distribution between
new data and historical data, the accuracy of replay-based methods will be poor. The phys-
iological characteristics of high-risk individuals for hypertension are influenced by various
factors such as climate and psychology. Therefore, there are significant differences in the
distribution of attributes between different batches of data in few-shot and nonstationary
environments. In this case, using existing replay-based methods for online learning of
the model may cause differences between the generated samples and the feature space
of hypertension, thereby affecting the accuracy of the model. Therefore, it is necessary to
innovate existing replay-based methods to achieve online learning of the hypertension risk
prediction model in the few-shot and nonstationary environment.
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3. Methods
3.1. The Model Framework of HRP-OG

This study proposes an online hypertension risk monitoring model based on reinforce-
ment learning and generative feature replay. The overall framework consists of three parts:
the input representation module, the hypertension risk prediction module, and the model
online updating module. The specific model framework is illustrated in Figure 2.
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3.2. The Input Representation Module

The input representation module converts each visit record into a multidimensional
input embedding that serves as the input to subsequent modules. In EHR data, each visit
record is represented as Pn = {An, IS− HYPERn}, where n represents the n-th patient
and IS-HYPER represents the sample tag. A represents the input embedding of record
containing the above 20 attributes, which can be expressed as follows:

A = |||M|i item[i] (1)

where item[i] is the input embedding corresponding to the i-th attribute of the visit record,
|M| represents the number of attributes, and || represents the concatenation of item[1],
item[2] . . . item[|M|].

3.3. The Risk Prediction Module

The hypertension risk prediction module pools all attribute embedding sequences
transformed from longitudinal EHR data, which are based on the reinforcement learning
framework, to perform the hypertension risk warning task and record the changes in
prediction states for patients. In addition, the unique reward, penalty functions, and
sample selection strategies can further improve prediction accuracy.

This study abstracts the hypertension risk prediction module as an agent, in which the
visit record of each patient serves as a state and all EHR data as the environment. The choice
of predicting hypertension risk for patients is considered as an action, and the accuracy of
hypertension risk prediction is the reward. Ultimately, the agent provides hypertension
risk predictions based on the current environment.
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At the beginning, we set the state of the patient as 0 vector. At time t, we update the
state vector of the patient by connecting the historical visit records with the current visit
record of the patient; the state can be calculated as follows:

staten
t =

|M|

∑
i=0

item[i]ni ||
1

t− 1

t−1

∑
i

Pn
i (2)

The agent will predict the hypertension risk of the patient. The actions of the agent are
divided into two categories, which can be expressed as follows:

at =

{
1 is_hyper
0 no_hyper

(3)

After the agent performs the action, the environment evaluates whether the hyperten-
sion risk prediction for the patient is correct and provides a reward signal to the agent. The
reward function consists of two parts, which can be expressed as follows:

reward = reward1 + reward2 (4)

where reward1 represents the judgement of whether the hypertension risk prediction is
correct, and it can be calculated as follows:

reward1 =

{
−1 i f a! = lable
1 i f a == lable

(5)

where label represents the sample tag of visit record. reward2 represents the reciprocal of
the distance between the predicted and true results, and it can be calculated as follows:

reward2 = Sigmoid

 1
2
√
(le f t− is_hyper)2 − (right− no_hyper)2

 (6)

where left and right values are obtained through the DQN network and represent the
probabilities of the patient having hypertension and not having hypertension, respectively.
The agent predicts the risk of hypertension by comparing these probabilities and selecting
the larger one.

This study uses a DQN network to receive the current visit data status of the patient
transmitted by the agent. The DQN stores the current health status of the patient, predicted
disease condition, reward value, and the last health status in a dual replay buffer. The dual
replay buffer stores data in the corresponding buffer based on whether the current versus
the last visit has changed. The main network is trained by sampling data samples from
the buffer according to the sampling strategy, aiming to fit the real hypertension condition
as closely as possible after training. Finally, the loss function is calculated based on the
Q-values of the main network and the target network, and the network parameters are
updated using historical data.

To expedite the model training process, we design a time-based priority allocation
strategy and a priority-based sampling strategy. In the allocation strategy, the DQN network
calculates the difference between the estimated value of the action and the current function
output value. The priority increases as the error grows larger. The gap value can be
calculated as follows:

gap(st, at, rt, st+1) = rt + y
max

at
Q(st+1, at+1)−Q(st, at) (7)
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where y represents the discount factor, y
max

at
Q(st+1, at+1) represents the target value, and

Q(st, at) represents the current value.
After calculating the priority scores of the samples, the model uses the softmax function

to map the gap values, converting the priority scores of the data samples into probabilities
of being selected from the buffer. The value can be calculated as follows:

P(n) =
egapn

∑n
i=1 egapi (8)

where P(n) represents the probability of the n-th data sample being selected from the buffer.
After assigning sampling probabilities to each sample in the buffer, the DQN network
selects a batch of data samples for learning based on these probabilities. To better extract
sample data, we propose a dual experience replay strategy, establishing two buffers to store
the samples predicted correctly and incorrectly. We define the loss function as follows:

L = φ1 ∑
t∈Pa==lable

gap(st, at, rt, st+1)
2 + φ2 ∑

t∈Pa!=lable

gap(st, at, rt, st+1)
2 (9)

where φ1 and φ2 represent the weights used to select data samples from the double experi-
ence buffer. When selecting data samples from the first buffer, we set φ1 = 1 and φ2 = 0.
Conversely, when selecting data samples from the second buffer, we set φ1 = 0 and φ2 = 1.
t ∈ Pa==lable represents the buffer where data samples have the same action values and
label values, while t ∈ Pa!=lable represents the buffer where data samples have different
action values and label values.

3.4. The Model Updating Module

The model online updating module uses maximum likelihood estimation to evaluate
the distance between old data features and new data features. By utilizing a genera-
tor, discriminator, and replay alignment strategy, the generalization ability of the model
is enhanced.

When the t-th batch of data arrives, the model does not directly feed the data into the
hypertension risk warning module for learning. Instead, it generates a new generator Gt to
learn the feature distribution of the new data. At the same time, it calls the old generator
that has been updated t − 1 times. Both generators generate sample data to be fitted to the
real data. In order to evaluate the fitting degree of the generated samples to real data, we
propose a maximum likelihood estimation and the negative-log-likelihood (NLL) function,
as follows:

NLL = − 1
Nt

[
N

∑
i=1

logGθ

(
Pf ate

∣∣∣Pi

)]
(10)

where Nt represents the number of samples arriving at the t-th time, Pf ate represents the
generated data samples by the generator, and Pi represents the medical examination data
of the i-th patient in the data arriving at the t-th time. If the condition NLLnew < NLLt−1 is
met, the data will enter the online updating framework of the model; otherwise, the model
will directly learn from the new data.

This study designs an experience replay strategy similar to generative adversarial
networks. It integrates generated data samples with new visit data to form a fusion dataset.
In the generative adversarial networks, the generator attempts to capture the distribution
of EHR data from the patients, while the discriminator tries to assess the probability that
input samples come from real data rather than the generator.

In order to enable the model to use the features learned from previous tasks to train
the new tasks, we propose a feature distillation strategy to extract features generated from
previous tasks. Before starting a new task, we freeze the feature extractor and create a
new identical feature extractor. After the two feature extractors perform feature extraction
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separately, the loss function is computed between them to prevent forgetting. The loss
function can be calculated as follows:

LFt =
1
N ∑

rec∈RECt

||Ft(rec)− Ft−1(rec)||2 (11)

where Ft represents the t-th feature extractor, RECt represents the collection of multivisit
EHR for patients in task t, and rec represents the multivisit EHR of the patient.

In this study, the generator consists of three linear layers, and each is followed by an
activation function. It concatenates random noise vectors and is-hyper vectors to form
the input vectors, which are then passed through the network composed of linear layers
and activation functions to generate normalized output features. The loss function of the
generator can be calculated as follows:

LGt = −Ez∼qz ,is−hyper∈label [D t(is− hyper, Gt(is− hyper, z))] (12)

where Gt represents the generator incrementally generated at the t-th time, and qz is a
randomly generated noise variable, which is input together with the sample label into the
generator to obtain the generated data sample. Dt represents the discriminator incremen-
tally generated at the t-th time. The discriminator calculates the probability of the sample
coming from real data or the generator by, respectively, receiving the generated data from
Gt and the visit record data from the patient. It consists of two linear layers, and each
is followed by an activation function. It receives real data and generated data, extracts
hidden features from the data, and calculates the real probability and class classification
probability of the generated data through validity scores. Through adversarial learning,
both the generator and discriminator are alternately updated to continuously improve
the quality of the generated data. The loss function of the discriminator can be calculated
as follows:

LDt = Ez∼qz ,is−hyper∈label [D t(is− hyper, Gt(is− hyper, z))]
−E[D t(is− hyper, Ft(rec))]

(13)

By training the discriminator Gt to maximize the probability of discriminating between
samples from real data and training samples, we achieve alternating updates of the genera-
tor and discriminator in the t-th incremental process in an adversarial learning manner.

In order to avoid model overfitting on new data when using old knowledge to predict
new data, we design a replay alignment mechanism. This mechanism generates a replay
generator Gs with the exact same network structure as the current generator Gt. Before
the start of the t-th incremental task, the noise variables, parameter space, and conditional
space of the two generators are aligned.

During the training of the generator, EHR data features are generated by inputting
the same hypertension category and noise variables as the generator. The loss function is
minimized to align the medical examination record features of the current generator as
closely as possible with those of the replay generator, thereby preventing the hypertension
monitoring model from overfitting to the training data completely. The loss function of the
replay alignment mechanism can be calculated as follows:

LRA = Ez∼qz ,is−hyper∈label [||G t(is− hyper)− Gs(is− hyper, z)||22
]

(14)

3.5. The Pseudo-Code of Model

Algorithm 1 presents the core algorithm for the proposed model. At the beginning of
the algorithm, the feature extractor and generator are initialized. As the segmented dataset
is continuously fed into the algorithm, the generator, discriminator, and feature extractor
are continuously updated. Ultimately, the agent will predict the hypertension risk of the
patient and produce the output.
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Algorithm 1: Online Learning with Generative Feature Replay for Hypertension Risk Prediction.

1: Input: Sequence D1, . . . ..,DT
2: Require: Feature extractor F0, Generator G0
3: for t = 1, . . ., T
4: if t == 1 then
5: train F1 ← F0 with D1
6: train G1 ← G0 with F1
7: else
8: If NLLt ≤ NLLt−1 then
9: train Ft ← Ft−1 with Dt
10: train Gt ← Gt−1 with Ft
11: else
12: set Gt = Gt−1
13: Repeat
14: staten

t ← item[i]ni and Pn
i

15: choose action at and provide reword
16: gap← record + Q(st+1, at+1)−Q(st, at)
17: put sample into replay buffer
18: LRA ← Gt − Gs
19: end Repeat
20: end for

4. Experiments
4.1. Dataset

This study uses personal physical examination records obtained from the public
dataset MIMIC-III as the dataset for our experiments. The MIMIC-III dataset is widely used
and contains clinical data from tens of thousands of patients spanning from 2001 to 2012.
According to the 2023 edition of the Chinese Guidelines for Prevention and Treatment of
Hypertension, hypertension is associated with various risk factors such as “daily blood
pressure fluctuations”, “abnormal heart rate”, “obesity”, “irregular lifestyle”, and “age”.
Based on these risk factors, 20 attributes were chosen from the MIMIC-III dataset and all
attributes are listed in Table 1. The attribute “age” corresponds to the risk factor “age”.
The attributes “heart rate”, “respiratory rate”, “heart rhythm”, “low heart rate (LHR)”,
“high heart rate (HHR)”, “low respiratory rate (LRR)”, “high respiratory rate (HRR)”, and
“respiratory pattern” correspond to the risk factor “abnormal heart rate”. The attributes
“low blood oxygen saturation (LBOS)”, “high blood oxygen saturation (HBOS)”, “systolic
blood pressure (SBP)”, “diastolic blood pressure (DBP)”, “mean arterial blood pressure
(MBP)”, “central venous blood pressure (CVBP)”, “low arterial blood pressure (LABP)”,
and “high arterial blood pressure (HABP)” correspond to the risk factor “daily blood
pressure fluctuations”. The attribute “life pattern” corresponds to the risk factor “irregular
lifestyle” and the attribute “weight” corresponds to the risk factor “obesity”. In addition,
these attributes and “temperature” reflect the basic lifestyle and physical state of the patient.

Table 1. Statistical information of hypertension dataset.

Features Is-Hyper = 0 Is-Hyper = 1

mean # of age 67.9 70.1
mean # of heart rate 88.9 84.7

mean # of respiratory rate 19.0 18.9
mean # of heart rhythm None None

mean # of LHR 54.6 54.4
mean # of HHR 121.8 121.4
mean # of LBOS 89.7 89.7
mean # of HBOS 99.0 99.2
mean # of LRR 9.2 9.3
mean # of HRR 33.4 33.0
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Table 1. Cont.

Features Is-Hyper = 0 Is-Hyper = 1

mean # of SBP 118.2 123.4
mean # of DBP 62.2 64.6
mean # of MBP 79.1 82.3

mean # of life pattern None None
mean # of weight 93.1 95.5
mean # of CVBP 10.9 11.0
mean # of LABP 83.1 83.3
mean # of HABP 147.5 149.6

mean # of breathing pattern None None
mean # of temperature 37.9 36.0

This study uses a multivisit dataset based on the number of personal physical exami-
nation records. Table 2 shows the statistics of the multivisit samples; as the number of visits
increases, the number of patients decreases. Clearly, the availability of multivisit samples
for patients each year remains scarce.

Table 2. Statistics of the multivisit samples.

Number of Visits Number of Patients Number of Records

2 4479 8958
3 1124 3372

4–6 672 2915
6–8 137 871

8–10 47 397
10–15 41 457
>15 15 350
all 6515 17,320

In order to simulate a few-shot, incremental, and nonstationary EHR generation
scenario, this study divides the MIMIC-III dataset into 12 batches of continuous dataset
based on the year of data generation. Table 3 shows the number of patients and the number
of records for each of the 12 years. It can be seen that the number of EHRs available
per year does not exceed 610, and records of multivisit are scarce. Taking age, diastolic
blood pressure, systolic blood pressure, and weight as examples, the distribution of the
characteristics of patients examined in each of the 12 years is shown in Figure 3. It can be
observed that regardless of the examination value, there is a consistent range of distribution.
However, the examination values of most patients still undergo changes, which are irregular
and present in each batch of data. Therefore, a fixed hypertension prediction model is
insufficient to meet the needs of patients in real-world scenarios. And an adaptive updating
model that can adapt to continuous data streams is still of significant research value.

Table 3. Distribution of the multivisit samples over 12 years.

Year Number of Patients Number of Records

2001 538 1247
2002 610 1585
2003 601 1639
2004 612 1638
2005 607 1652
2006 576 1551
2007 562 1493
2008 569 1509
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Table 3. Cont.

Year Number of Patients Number of Records

2009 600 1596
2010 588 1518
2011 572 1470
2012 79 421
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4.2. Baselines

In this study, the proposed model HRP−OG is compared with the following baselines.
All methods are implemented in Pytorch and trained on an NVIDIA GeForce RTX 3070Ti.
Their source codes are available in original papers:

(1) LSTM [40] is a predictive model based on sequential data that can handle irregular
time intervals in patient examination records. In the experiment, the learning rate is
set to 1 × 10−3, the hidden layer size is set to 100, and the number of hidden layers is
set to 2.

(2) KNN-SVM [41] is a model that utilizes grid search technique for hyperparameter
tuning and can handle imbalanced data for prediction. In the experiment, the regular-
ization parameter is set to 1, and the kernel function is set to radial basis function.

(3) ConCare [42] is a multichannel longitudinal disease risk prediction model. It adopts
improved multihead self-attention to extract the interdependencies among time series
of dynamic features as well as static baseline information for disease prediction. In
the experiment, the learning rate was set to 1 × 10−3, the input feature dimension
was 76, and the number of heads in the multihead attention mechanism was set to 4.

(4) LightGBM [43] is a gradient boosting framework that builds multiple decision trees
and learns from the gradients to handle few-shot learning. In the experiment, the
learning rate is set to 0.1, the boosting type is set to gradient boosting decision tree,
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the number of trees built is set to 10, and the maximum number of leaf nodes is set
to 31.

(5) KNN-LightGBM [44] is a disease risk prediction model based on deep learning. It
predicts hypertension using a hybrid deep neural network combining KNN and
LightGBM based on single-instance EHR. In this experiment, the number of nearest
neighbors is set to 5, the learning rate is set to 1 × 10−3, and the distance metric used
Minkowski.

(6) SACNN-SOA [45] is a chronic disease diagnosis based on the Self-Attention Convolu-
tional Neural Network optimized with Season Optimization Algorithm, which uses
IoT and cloud computing in the Smart Medical Big Data health care system. In this
experiment, the learning rate is set to 1 × 10−5, batch size is set to 20, and the number
of convolutional layers is 9.

4.3. Metrics

This paper uses the accuracy, precision recall AUC (PR-AUC), and ROC-AUC to
measure experimental results.

Accuracy quantifies the proportion of correct predictions in the overall test set, which
can demonstrate the reliability of the model’s prediction results. It can be calculated
as follows:

Accuracy =
TN + TP

TN + TP + FN + FP
(15)

where TP represents the true positive, FP represents the false positive, TN represents true
negative, and FN represents the false negative.

Precision, recall, and FPR can be calculated as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, FPR =
FP

TN + FP
(16)

PR-AUC is the area under the precision–recall curve, which can provide a comprehen-
sive model evaluation that combines precision rate and recall rate. In the case of imbalanced
data, PR-AUC can effectively reflect the performance of the model. It can be calculated
as follows:

PR− AUC =
∫ 1

0
Precision(Recall)dRecall (17)

ROC-AUC is the area under the ROC (receiver operating characteristic) curve, which
can also provide a comprehensive model evaluation. Unlike PR-AUC, which focuses on the
accuracy of the model in predicting positive samples, ROC-AUC is suitable for scenarios
where the model is expected to perform well on both positive and negative samples (e.g.,
reducing the misdiagnosis rate). Therefore, it can provide a relatively robust evaluation for
imbalanced datasets. ROC-AUC can be calculated as follows:

ROC− AUC =
∫ 1

0
Recall(FPR)dFPR (18)

4.4. Results

In the experiments, the multivisit records are divided into 12 batches by year to
simulate the scenario of incremental data in a nonstationary environment. Each batch of
data is randomly split into training set, test set, and validation set in a ratio of 3:1:1. The
results of 5-fold cross-validation are shown in Tables 4 and 5, which present the accuracy
and PR-AUC values of different models, respectively. We recorded the performance changes
of the models over 12 stages and calculated the average performance over these 12 stages.
Despite fluctuations in the data, all models showed performance variations within a certain
range, indicating differences in their ability to learn hypertension features.
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Table 4. Accuracy value of comparison experiments.

Method LSTM KNN-SVM ConCare LightGBM KNN-LightGBM SACNN-SOA HRP-OG

1 0.5286 0.5938 0.5938 0.5781 0.5625 0.5000 0.8594
2 0.4818 0.5000 0.4922 0.5990 0.5938 0.4844 0.9010
3 0.5353 0.5588 0.6059 0.5588 0.5706 0.4971 0.9118
4 0.5673 0.5577 0.5577 0.5817 0.5625 0.4976 0.8990
5 0.6500 0.7043 0.7043 0.6783 0.6217 0.5000 0.9196
6 0.5807 0.6366 0.6211 0.7267 0.6708 0.4783 0.9379
7 0.5119 0.4908 0.4881 0.5381 0.5857 0.5000 0.8595
8 0.5601 0.5902 0.5847 0.5738 0.6066 0.4918 0.9344
9 0.6083 0.6178 0.4873 0.5414 0.5350 0.4873 0.9236

10 0.5497 0.5789 0.5819 0.5614 0.6082 0.4912 0.8830
11 0.6824 0.7044 0.6761 0.6855 0.6352 0.4937 0.9528
12 0.6675 0.6806 0.6780 0.6806 0.6073 0.4843 0.9424

average 0.5770 0.6012 0.5893 0.6086 0.5967 0.4921 0.9104

Table 5. PR-AUC value of comparison experiments.

Method LSTM KNN-SVM ConCare LightGBM KNN-LightGBM SACNN-SOA HRP-OG

1 0.7917 0.7970 0.7969 0.7891 0.7813 0.7057 0.9349
2 0.7370 0.7500 0.7448 0.7995 0.7969 0.7448 0.9453
3 0.8029 0.7765 0.8029 0.7794 0.7853 0.7176 0.9618
4 0.7813 0.7787 0.7788 0.7909 0.7813 0.7308 0.9567
5 0.8532 0.8521 0.8522 0.8391 0.8109 0.6630 0.9609
6 0.8106 0.8168 0.8106 0.8634 0.8354 0.6988 0.9752
7 0.7452 0.7453 0.7452 0.7690 0.7929 0.7476 0.9476
8 0.7951 0.7950 0.7951 0.7868 0.8033 0.7077 0.9699
9 0.8089 0.8089 0.8089 0.7707 0.7675 0.6975 0.9650

10 0.7895 0.7996 0.7895 0.7807 0.8041 0.7018 0.9474
11 0.8491 0.8522 0.8491 0.8427 0.8176 0.6730 0.9811
12 0.8403 0.8413 0.8403 0.8403 0.8036 0.6990 0.9738

average 0.8003 0.8011 0.8012 0.8043 0.7983 0.7073 0.9610

In all the experiments, SACNN-SOA showed the worst performance; both the accuracy
value and the PR-AUC value were the lowest among all the models. The reason for this is
related to the characteristics of the SACNN-SOA model; as described in its paper, the model
is based on big data and cloud computing platforms, and requires a large number of data
samples for training. However, due to the limited number of samples in our experiments,
this model could not accurately capture the feature distribution of hypertensive patients.

In contrast, LightGBM performed excellently in several comparative experiments,
achieving accuracy and PR-AUC values of 0.6086 and 0.8043, respectively, indicating its
ability to effectively learn hypertension features from multivisit records.

The KNN-LightGBM hybrid prediction model, which combines LightGBM and KNN,
is expected to perform better than LightGBM alone according to its paper. However, in
our experiment, KNN-LightGBM and LightGBM have similar predictive performance.
Comparing the accuracy and PR-AUC indicators across several experiments, it can be seen
that KNN-LightGBM achieved better performance in the seventh, eighth, and tenth stages,
while LightGBM performed better in the second, fourth, and sixth stages. Overall, the
accuracy and PR-AUC of LightGBM were slightly higher than those of KNN-LightGBM.
The reason why each of the two models can outperform the other in certain stages is
that KNN and LightGBM are trained simultaneously, and their final results are weighted
averages. In some data streams, the weights of the two models cannot be effectively
allocated, preventing the model from achieving better performance.

KNN-SVM is also a predictive model that combines KNN. In our experiment, the
overall performance of the model is slightly better than KNN-LightGBM, and the model
achieves better predictive results in the first, ninth, eleventh, and twelfth stages. The
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reason is that this model uses a more complex ensemble learning method, which can better
integrate multiple modules.

LSTM does not perform well on either indicator, possibly because the model is
relatively simple and cannot effectively capture long sequence features from few-shot
EHR samples.

The ConCare model performs well on the PR-AUC indicator but poorly on the accuracy
indicator, suggesting that while the model does not predict overall physical examination
data well, it is better at identifying hypertensive patients, failing to effectively recognize
nonhypertensive samples.

Finally, the model we proposed achieves the best results across continuous testing of
12 data batches. In terms of the accuracy indicator, it outperformed other models by more
than 20% at each stage. In terms of the PR-AUC indicator, it outperformed other models
by more than 10% at each stage, and the average performance on both indicators is far
superior to that of other models, demonstrating the effectiveness in learning data features
from a few-shot and nonstationary environment.

5. Discussion

This study conducts ablation experiments on our model HRM − AR, and three
HRM− AR variants models are designed as follows:

1. HRP−OGretrain. Based on HRP−OG, this variant directly abandons the knowledge
learned from historical data, instead learning from new data and making predictions.
This variant is used to justify the need for model updates.

2. HRP−OGG−. Based on HRP−OG, the online updating module is removed. The
reinforcement learning module is directly used for training and testing. This variant
is used to demonstrate the necessity and effectiveness of the generative feature replay.

3. HRP−OGN−. Based on HRP−OG, the data evaluation module is removed. The
reinforcement learning module and generative feature replay module are directly
used for training and testing. This variant is used to demonstrate the necessity of the
sample evaluation module.

Figures 4 and 5 show the results of the ablation study, displaying the performance
of several models evaluated based on the accuracy and PR-AUC metrics, respectively.
The performance of the models demonstrated by both metrics is similar. The result of
HRP−OGG− is the worst, even worse than most of the instance-based baseline methods
shown in Tables 4 and 5. This indicates that using past models directly cannot make
good predictions on new data, as the old models cannot effectively capture the features
of hypertension patients on few-shot datasets. The result of HRP−OGretrain is close to
most of the instance-based baseline methods shown in Tables 4 and 5, indicating that the
ability of the model to capture features on few-shot datasets is relatively close. They can
predict the hypertension risk, but the accuracy of the predictions could not be compared to
the models incorporating historical visit records. This underscores the necessity of online
updates to the model in response to changes in the data. The result of HRP−OGN−
are comparable to HRP−OG, and even exceed it in some stages. This indicates that the
model can effectively extract feature distributions from the data. However, in few-shot
datasets, there are biases in the data features. Thus, continuous effective model updates are
impossible without assessing data quality. This highlights the necessity of sample selection
based on maximum likelihood estimation.
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Overall, in terms of the accuracy indicator, HRP−OG improves by 7% compared to
HRP−OGretrain, by 41% compared to HRP−OGG−, and by 4% compared to
HRP−OGN−. In terms of the PR-AUC indicator, HRP − OG improves by 14% com-
pared to HRP−OGretrain, by 25% compared to HRP−OGG−, and by 2% compared to
HRP−OGN−.

Figure 6 shows the ROC curves of the models, illustrating the overall ROC curves of the
HRP−OG model and its variants across 12 batches of data. The value for HRP−OG is the
highest, reaching 0.97, indicating that our model can effectively capture the characteristics
of hypertensive patients in a few-shot and nonstationary environment, achieving accurate
predictions for hypertensive patients. The ROC value for HRP−OGN− is 0.92. Although it
is not as high as HRP−OG, it still demonstrates effective prediction capabilities. However,
due to the lack of evaluation for new data, its overall performance is weaker. The ROC
value for HRP−OGretrain is only 0.82, indicating that it can achieve limited prediction
effectiveness, but its accuracy is still constrained by the few-shot size. The ROC value for
HRP−OGG− is the lowest, at only 0.79, which is even lower than that of the retrained
model. This also indicates that directly using an old model to train new data is not feasible,
as it can lead to overfitting under few-shot conditions and affect prediction accuracy.
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6. Conclusions

This study designed and implemented an online hypertension risk monitoring model,
HRP-OG, based on few-shot multivisit data. Based on a reinforcement learning framework,
we constructed the hypertension risk prediction model, enabling it to extract hypertension
features and perform risk prediction. A generative feature replay module was designed
to apply knowledge learned from historical data to new data domains, facilitating model
updates. Furthermore, a data quality assessment method was proposed to avoid bias
due to large gaps between the feature distribution of historical and new data, further
enhancing the effectiveness of model updates. Experimental results on the MIMIC-III
dataset validated our model, and the average accuracy of each stage reached 0.96, which
can effectively identify hypertensive patients. In the future, we plan to incorporate a wider
range of diseases into our model to improve its practicality. Meanwhile, more advanced
deep learning methods [46] will be considered to further improve the performance of
the model.
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