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Abstract: Froth flotation is a widespread and important method for mineral separation, significantly
influencing the purity and quality of extracted minerals. Traditionally, workers need to control chem-
ical dosages by observing the visual characteristics of flotation froth, but this requires considerable
experience and operational skills. This paper designs a deep ensemble learning-based sensor for
flotation froth image recognition to monitor actual flotation froth working conditions, so as to assist
operators in facilitating chemical dosage adjustments and achieve the industrial goals of promoting
concentrate grade and mineral recovery. In our approach, training and validation data on flotation
froth images are partitioned in K-fold cross validation, and deep neural network (DNN) based
learners are generated through pre-trained DNN models in image-enhanced training data, in order to
improve their generalization and robustness. Then, a membership function utilizing the performance
information of the DNN-based learners during the validation is proposed to improve the recognition
accuracy of the DNN-based learners. Subsequently, a technique for order preference by similarity to
an ideal solution (TOPSIS) based on the F1 score is proposed to select the most probable working
condition of flotation froth images through a decision matrix composed of the DNN-based learners’
predictions via a membership function, which is adopted to optimize the combination process of
deep ensemble learning. The effectiveness and superiority of the designed sensor are verified in a
real industrial gold–antimony froth flotation application.

Keywords: flotation froth; deep ensemble learning; image recognition; membership function; TOPSIS

1. Introduction

Froth flotation is one of the most widespread and significant methods for mineral
separation, applicable to nearly all types of ores. In the traditional flotation unit, skilled
operators adjust chemical dosages by examining visual characteristics on the surface of the
flotation froth to achieve more precise separation of minerals from impurities [1]. This not
only improves the recovery of minerals, but also avoids wastage of chemicals. Therefore,
the recognition of production conditions in the flotation process is of great significance for
improving concentrate grade and mineral recovery. However, in actual production, relying
on the naked eye to observe the froth condition on the surface of the flotation tank is costly
and laborious, and manual errors can easily occur due to workers’ slightest carelessness,
which can lead to frequent fluctuations in flotation generation indexes, serious loss of raw
materials, high consumption of chemicals, and low resource recovery [2]. Thus, researchers
began to develop machine vision-based froth flotation working condition recognition
systems to automatically monitor the working condition of the flotation process [3], where
the working condition is reflected by flotation froth in the flotation cell.

Machine vision is used to automatically extract visual features from flotation froth
images and classify them accordingly. Since the surface state of the froth is closely related
to the flotation performance index, researchers have developed some statistical distribu-
tion feature representations of flotation froth images, such as color features [4], texture
features [5], bubble size [6], and a machine learning sensor can be used to classify the
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working condition based on the statistical distribution features of the flotation froth images.
However, the traditional method is often targeted and not robust enough [7]. Deep learning
is the latest progress in machine learning, which can mine deeper feature information from
flotation froth images. So deep neural network (DNN) sensors are increasingly applied to
the problem of flotation froth working condition recognition [8]. Incorporating state-of-the-
art deep learning methods into flotation froth image recognition applications can provide
performance improvement. Liu et al. [9] used AlexNet and GoogLeNet in flotation froth
image recognition, and they found that the deep learning models AlexNet and GoogLeNet
had higher accuracy than the local binary patterns under the same number of synthetic
and real images. Zarie et al. [10] employed a convolutional neural network (CNN) sensor
to classify flotation froth images captured at different air flow rates, and found that the
classification accuracy of the CNN sensor was higher than that of a traditional ANN sensor,
which shows the great potential of DNN in the flotation froth image classification task.
With the development of transformer in machine vision [11], the ViT model has also been
employed in the flotation froth image recognition [12]. It has been shown that froth image
features extracted from the customized ViT have good discrimination of froth image classes.

Although deep learning sensors already have good performance in flotation froth im-
age recognition, deeper DNN models are often considered when exploring better predictive
performance. They also increase training time and the risk of overfitting of DNNs, which is
not expected. At this point, deep ensemble learning is a pretty good solution that decreases
the performance requirements for DNN models. In [13], a deep ensemble learning sensor is
employed in sintering state recognition, and has superior recognition accuracy compared to
DNNs such as VGG16, Inception-v3, ResNet50, and ResNeXt50. Zhou et al. [14] proposed
an ensemble learning method based on group decision making. They categorized the
working condition into eight different classes on the gold–antimony froth flotation problem,
and combined the predictions of the trained LeNet, AlexNet, VGGNet, and GoogLeNet
through a group decision-making method.

In this paper, a deep ensemble learning-based sensor is designed for froth flotation
condition recognition, which is crucial to guide workers in the control of mineral separation
dosages. The practicability and effectiveness of our method is verified on a gold–antimony
flotation froth image recognition application. Specifically, pre-trained models of ViT, Swin
Transformer, and EfficientNet are used to generate heterogeneous base learners in par-
titioned and image-enhanced training sets from collected flotation froth images. Then,
DNN-based learners predict the flotation froth working condition of the images and their
output goes through a membership function according to their performance on the vali-
dation set. This improves the recognition accuracy of DNN-based learners. Finally, these
members construct the decision matrix and select the most probable working condition
by the technique for order preference by similarity to an ideal solution (TOPSIS) based
on the F1 score, which is regarded as our combination method in deep ensemble learning.
Compared to other methods, our approach has the highest recognition accuracy. Therefore,
we build such a deep ensemble learning-based sensor in the approach, so as to achieve
industrial purpose of improving concentrate grade and mineral recovery in flotation froth
image recognition.

The main contributions of this paper are summarized as follows.

(1) Heterogeneous base learners are generated with several deep learning algorithms on
different training sets from images of flotation froth, which can have better diversity
and accuracy.

(2) Taking advantage of the DNN-based learners’ performance differences on the valida-
tion set, a membership function of the DNN-based learners’ prediction is proposed
to form a decision-making problem. It also enhances the recognition accuracy of the
base learners.

(3) The TOPSIS method based on F1 score is put forward to select the most probable
flotation froth working condition, which further improves recognition accuracy.
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The rest of the study is organized as follows. In Section 2, preliminaries about deep
ensemble learning are introduced. In Section 3, the proposed method is described in
detail. In Section 4, experiments are conducted and the results are discussed. Finally, the
conclusions are summarized in Section 5.

2. Preliminaries
2.1. Deep Neural Network

Recently, deep neural networks (DNNs) have become an important research field in
artificial intelligence, and show excellent performance in many tasks [15]. As a branch of
deep learning, CNNs play an important role in improving prediction performance in image
classification, and significantly promote the development of DNNs. To deploy CNNs in
practical applications more easily, Tan [16] proposed EfficientNet in 2019 and explored
model scaling methods for convolutional neural networks (ConvNets) to achieve better
performance with the lightweight network, which reduced the deployment requirements
for applications. To make DNN models understand the overall structure and content of
the image [17], researchers started to apply transformers to computer vision [18–20], since
transformers can capture long-distance dependencies between pixels in the images. ViT [21]
was one of the first successful studies to apply transformers to image classification. It
divides and encodes an image into a set of fixed-size blocks, and then, handles these blocks
through a transformer model, so as to complete image classification tasks. To achieve local
sensing and deal with image information at different scales more effectively, Liu et al. [22]
proposed Swin Transformer, that applied a hierarchical structure and designed a windowed
self-attention mechanism on top of ViT. Finally, it achieved a good trade-off between
accuracy and recognition speed. Since then, visual transformer has become an important
branch of deep neural networks in image classification as well.

2.2. Deep Ensemble Learning

Deep ensemble learning refers to a methodology that combines multiple DNN-based
learners to build a more powerful single model than its constituents, and improves the
generalization ability of models [23]. The main process in deep ensemble learning is to
train a few DNN-based learners, and then, fuse their outputs in a combination method.

Suppose we let {li}i=1,...,m denote a set of labels, K is the number of base learners, and
m is the number of classes. For an observation sample x, let Pk(yi|x) be the probability that
the k-th classifier estimates for label ym. Then, the predictions of the base learners can be
summarized as three output forms as follows [24]. In this paper, we adopt the fuzzy labels
predicted by DNN-based learners for the combination process of deep ensemble learning.

• Crisp label: This represents a type predicted by the base classifier with Pk(yi|x) ∈

{0, 1} and
K
∑

k=1
Pk(yi|x) = 1;

• Fuzzy label: This is a probabilistic explanation of the type of output of the base

classifier with
K
∑

k=1
Pk(yi|x) = 1;

• Possibilistic label: This relaxes the restriction of the sum of probabilities in the fuzzy

label, and just needs to be greater than 0, namely,
K
∑

k=1
Pk(yi|x) > 0.

2.2.1. Generation of DNN-Based Learners

Generating a base learner is the first step in ensemble learning. Generally speaking,
the better the accuracy and diversity of the base learners are, the more obviously the
ensemble improves the prediction performance. Deep neural networks usually have
excellent accuracy in image classification, so they can be used as base learners to effectively
guarantee the initial performance of ensemble learning. As for the diversity requirements
of base learners, scholars have carried out a lot of studies on the generation of base learners.
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In terms of the generation of base learners, it can be categorized as either serial
(boosting [25]) or parallel (bagging [26]). The base learners in the two approaches are
homogeneous since a single machine learning algorithm is adopted to generate the base
learners. However, the models are still structured similarly, which is not conducive to
further improvement of base learner diversity. It is the same for the generation of DNN-
based learners [27]. Therefore, an approach to improving the diversity of base learners
further is training DNN-based learners with different structures, namely, heterogeneous
base learners, where the DNN-based learner can be the classical CNN or the latest ViT
based on transformer structures.

Dividing the dataset into training and testing sets is a common aspect of deep learning
on datasets, where the training set is mainly provided to train the model to obtain a model
with better predictive ability, while the testing set is used to evaluate the generalization per-
formance of the model. The studies by Li et al. [28], Zheng et al. [29], and Thakkar et al. [30]
adopted additional bootstrapping to partition of the dataset. This obtains different training
sets to train the base learner and further expand the differences between the generated base
learners. Then, the dataset on which the base learner is not chosen in the training set is
used as the validation set to evaluate the weights of the base learner. Akyol adopted K-fold
cross validation on an EEG dataset, splitting it into certain proportions for the training
and validation sets, so that the meta-classifier could be trained on the validation set [31].
Zhou et al. [14] split a fixed proportion of one part of the dataset for training, and the other
part as a validation set in order to compute the combination weights of the trained base
learner. Therefore, the partition method plays an important role in the generation of base
learners, and it also guides the combination process of the models.

2.2.2. Combination Methods of Deep Ensemble Learning

After generating the DNN-based learners, their outputs are combined to obtain the
final hypothesis in deep ensemble learning. Many combination methods for deep ensemble
learning have been researched and developed in recent years, and a complete theoretical
system is beginning to be formed [23,32]. The combination method affects the performance
of deep ensemble learning to a certain extent, and is mainly summarized in three forms, as
follows, in this paper.

(1) Methods based on meta-classifiers: To obtain the ensemble prediction results, a meta-
learner can fuse base learners’ predictions and provide final results. This approach
performs as a two-stage procedure in the image classification task, and is shown in
Figure 1. Firstly, base learners are trained to predict target class labels. Secondly,
the predictions of base learners in the validation set are taken as input of a meta-
classifier, and then, the meta-classifier is trained with the input and true labels, so that
it can predict the final class label accordingly. Consequently, when the deep ensemble
model tests new samples, the meta-learner is able to combine the predictions of the
previous DNN-based learners and obtain the final class label. In addition, the meta-
learner can theoretically be any machine learning model. In this paper, the Gaussian
naïve Bayes classifier is used as the meta-learner to facilitate the comparison of the
prediction performance in the flotation froth image recognition application [27].

(2) Methods based on voting: Voting among DNN-based learners themselves is a common
combination method, shown in Figure 2. We categorize combination methods based
on voting into simple majority voting and weighted majority voting according to
whether additional base learner information is used or not. Simple majority voting
combines base learners by calculating the number of votes of the base learners of
each class label and selecting the one with the most votes as the final class label.
Due to its robustness [33], many studies on ensemble learning still use it as the
combination method. Simple majority voting can be regarded as using the same
voting weight, but weighted majority voting assigns different weights to the base
learners, which reflect the reliability of the base learners’ predictions based on their
performance during training or validation. Therefore, when there is performance
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difference between the base learners, weighted majority voting performs better. In this
paper, the weights for the base learners are based on the evaluation measures, such
as accuracy and precision. In addition, the voting methods are again differentiated
based on the soft and hard labels predicted by the base learners, namely, fuzzy labels
and crisp labels, which are defined in Section 2.2. They can both obtain final ensemble
class labels through voting rules, and simple majority voting uses hard labels, while
weighted majority voting can apply any of them.

(3) Methods based on aggregation rules: In this case, the process is similar to simple
majority voting because there is no external information or base learner information
during combination. However, instead of using the crisp label output of the base
learner in simple majority voting, the fuzzy label output of the base learner is aggre-
gated according to a rule in this approach, which is as shown in Figure 3. In this paper,
we use the average, minimum, and medium aggregation methods as comparison
methods, and verify the effectiveness of our proposed method in flotation froth image
recognition experiments.

Figure 1. Combination methods based on meta-classifiers.

Figure 2. Combination methods based on voting.
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Figure 3. Combination methods based on aggregation rules.

3. Methodology
3.1. Proposed Deep Ensemble Learning-Based Sensor

The flotation froth working condition is one of the important criteria affecting the
mineral flotation process, so we recognize the working condition through the captured
flotation froth images. A deep ensemble learning-based sensor is used to predict the
flotation froth working condition type and guide operators to adjust the chemical dosage
in order to improve the separated mineral grade. The scheme of our deep ensemble
learning-based sensor is shown in Figure 4.

Figure 4. Scheme of flotation froth image recognition in our deep ensemble learning-based sensor.

In the flotation froth image recognition task, we ensemble multiple heterogeneous
deep neural networks trained on different training sets, and improve their prediction by a
membership function and TOPSIS weighted on the F1 score. This deep ensemble learning
approach is proposed to improve the generalization ability in the flotation froth application,
and its main steps are as follows.

1. Categorize the flotation froth working condition into m class labels according to actual
demand, and use experienced workers to label the flotation froth images.

2. Obtain the training sets and validation sets from the images by the K-fold partition-
ing, so that the deep neural network can be trained on different training sets via
image enhancement.
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3. Fine-tune the models with S kinds of pre-trained deep neural networks, then one
DNN model with the highest accuracy rate on the validation set is selected to be used
to form a total of K × S DNN-based learners.

4. Obtain fuzzy labels of the DNN-based learners on the flotation froth testing set,
and calculate the corrected prediction of the DNN-based learners through a member-
ship function.

5. Construct the decision matrix with corrected prediction and rank the working con-
dition by TOPSIS weighted based on the F1 score. Then, select the most probable
flotation froth working condition category.

The flowchart of our deep ensemble learning method for flotation froth image recogni-
tion is shown in Figure 5.

Figure 5. The flowchart of our deep ensemble learning method for flotation froth image recognition.

3.2. Generation of DNN Trained in Partitioned and Enhanced Flotation Froth Images

Training data are one of the most important factors to obtain accurate and diverse
DNN-based learners. To ensure that the training data vary as much as possible, we adopt
the K-fold cross validation to split the training and validation sets as in stacking, as shown
in Figure 6. Specifically, there is a total of K subsets (D1, . . . , DK), all of which can be used
as validation sets for the DNN-based learners. Meanwhile, the validation set is not only
used to select the best DNN model in the iterative process, but also plays an important
role in the membership function for the DNN model’s prediction correction, because a
confusion matrix is obtained in the process of verification. Therefore, the K-fold partition
to split flotation froth images is an essential part of our proposed deep ensemble learning
method to improve the prediction performance of our deep ensemble learning sensor.

After the k-th subset Dk is selected as the validation set, the subsets, except Dk, are
processed for image enhancement (probabilistic flipping, probabilistic clipping, and weak
changes in picture attributes). Then, enhanced subsets D′

i(i ̸= k) are obtained that constitute
a training set together for DNN training. This reduces the sensitivity of the base learner to
the flotation froth images, thus improving the robustness of the trained DNN-based learner
for the flotation froth application. In addition, the pre-trained model has extracted generic
features through a wide variety of images, so using and fine-tuning it on our training
data can lead to obtaining a sufficiently satisfactory DNN-based learner in fewer epochs,
and the trained DNN models have better generalization ability. Therefore, our trained
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DNN models can also perform well when predicting an unknown testing set, even though
there are probably some deviations or biases from the training set.

Figure 6. Partitioning of training, validation, and testing sets.

3.3. Combination Method Based on Membership Function and TOPSIS
3.3.1. Design of Membership on Flotation Froth Working Condition

Assuming that li is the predicted label and pks(li|x) is the fuzzy label of the test sample
x from the DNN-based learner Tks, the confusion matrix CMks is obtained on the validation
set Dk from DNN-based learner Tks.

CMks =

 L11 · · · L1m
...

. . .
...

Lm1 · · · Lmm

 (1)

where m is the number of flotation froth class labels, Tks represents the s-th pre-trained
DNN model, and the DNN is validated on the k-th subset as the validation set.

Given that Lji is the number of flotation froth images in the validation set when the
true label is lj and simultaneously the predicted label is li, then its prior frequency is
calculated as follows:

pks(l̂j|li) = Lji/
m

∑
k=1

Lki (2)

where pks(li|x) is the fuzzy labels predicted by the DNN-based learnerTks.
If there is a sufficiently large number of samples in the validation set, we can regard

the frequency as a probability, and then, use a membership function on fuzzy labels of this
DNN-based learner in Equation (3).

pks(l̂j|x) = fmembership(pks(l1|x), pks(l2|x) . . . pks(ln|x))

=
n

∑
i=1

pks(l̂j|li)pks(li|x)
(3)

The computation of the membership function on fuzzy labels in this paper draws on
the advantage of the weight in the weighted voting method and becoming more flexible. It
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not only utilizes all the performance information of the DNN-based learners’ confusion ma-
trix, but also considers the original fuzzy label potential links between different categories,
in order to represent a better prediction of every DNN-based learner. Finally, the fuzzy
labels, via the membership function, construct a decision matrix in Equation (4), which can
be solved by means of decision theory.

Xm×B =

 x11 · · · x1B
...

. . .
...

xm1 · · · x1B

 =

 p1(l̂1|x) · · · pB(l̂1|x)
...

. . .
...

p1(l̂m|x) · · · pB(l̂m|x)

 (4)

where B is the number of DNN-based learners and B = K × S.

3.3.2. Decision-Making Method for Flotation Froth Working Condition

TOPSIS is a decision-making method commonly used in the decision-making field,
and its core idea is the distance between each solution and the positive and negative ideal
solutions [34]. We sort the working condition by calculating the proximity of each category
to the positive and negative ideal solution according to the membership decision matrix.
The closest one has the largest evaluation value and is determined as the final predicted
working condition.

The steps of our proposed ranking method based on TOPSIS weighted by the F1 score
of the DNN-based learners are as follows.

1. Fuzzy labels, via the membership function, can constitute the decision matrix Xm×t,
which is shown in Equation (4).

2. Compute the positive ideal solution C+
i and the negative ideal solution C−

i :

C+
i = max

j=1,...,KS
(xij) (5)

C−
i = min

j=1,...,KS
(xij) (6)

3. Calculate of the distance from the working condition li to the positive and nega-
tive ideal solutions, taking the F1 score for each category of the DNN-based learner
as weights.

s+i =

√√√√ KS

∑
j=1

Fij(cij − c+i )
2

(7)

s−i =

√√√√ KS

∑
j=1

Fij(cij − c−i )
2

(8)

where Fij represents the F1 score of DNN-based learner j in the flotation froth working
condition li.

4. Calculate the value of the ranking indicator fi for each working condition li.

fi =
s−i

s−i + s+i
(9)

5. Let io = arg max fi
i

, and choose lio as the final working condition label.

4. Experimental Results
4.1. Data Description

Gold–antimony froth flotation is an important process that utilizes the principle of
bubble buoyancy to separate gold–antimony material from ore slurry [35]. In this pa-
per, gold–antimony froth flotation images were collected to validate the effectiveness
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of the proposed method. We set up a computer, lamp, camera, and other devices in a
gold–antimony flotation industry in Hunan, China, and then, collected flotation froth im-
ages from the flotation tanks for experiments. Workers experienced with flotation froth
evaluated the working condition according to the characteristics of the images, and cat-
egorized them into eight different types, which are shown in Figure 7. These categories
reflect the gold–antimony production condition so as to assist in adjusting the chemical
dosages, which can improve the recovery of minerals and reduce the cost. Each category
is uniformly distributed in order to verify the effectiveness of the method proposed in
this paper.

In addition, each captured flotation froth image is 800 px × 600 px and clear enough
to present its working condition in Figure 7. There are a total of 2400 flotation froth images
and a testing set of 480 images is split off. The rest of the images are used for DNN training
and verification.

Figure 7. Flotation froth under eight different working conditions.

4.2. Experiment Setting

In our experiment, the pre-trained EfficientNet [16], ViT [21], and Swin Transformer [22]
were each used to train a total of 12 heterogeneous DNN-based learners on 4-fold-partitioned
flotation froth data, and the trained DNN-based learners were used as our deep ensemble
learning sensor. The 4-fold partitioning of the flotation froth data resulted in a quarter of
the images being used as the validation set, which could sufficiently represent unknown
flotation froth samples and ensure the base learners’ generalization ability. In addition, our
training set was flipped probabilistically, clipped probabilistically, rotated probabilistically,
and jittered in color attributes to enhance the flotation froth images.

The deep neural network settings for training are shown in Table 1. As is shown in
Table 1, we attempted to set the same parameters in different DNNs, such as epoch and
batch size. Then, we fine-tuned these pre-trained DNNs, and the DNN with the highest
accuracy in the validation set in its training epoch process was taken as the DNN-based
learner for the deep ensemble learning-based sensor.

Table 1. Experimental settings of DNN.

DNN EfficientNet [16] ViT [21] Swin Transformer [22]

Epoch 50 50 50
Batch size 20 20 20
Optimization
function Adam Adam AdamW
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Table 1. Cont.

DNN EfficientNet [16] ViT [21] Swin Transformer [22]

Input dimension 224 × 224 224 × 224 224 × 224
Model efficientnet_v2_s vit_b_16 swin_tiny_patch4_window7_224
Last layer Linear(1280,8) Linear(768,8) Linear(768,8)

4.3. Comparison with Base Learners

The recognition accuracy of 12 DNN-based learners for the gold–antimony froth flota-
tion application is shown in Figure 8. We can find that it is the same in the validation and
testing set of each base learner, which indicates that the data distribution is basically consis-
tent. In addition, the accuracy of the base learners mostly reaches 90% on the validation
and testing sets. This illustrates that our K-fold partitioning and image enhancement are
useful for training good DNN-based learners.

Figure 8. Accuracy in base learners in flotation froth image recognition task.

In Figure 8, the symbols of the DNN-based learner signify which deep learning
network was trained under which fold in the flotation froth data. For example, ViT1/
SwinT1/ EfficientNet1 indicates that ViT/ Swin Transformer/ EfficientNet is evaluated in
first fold of the validation set; after, it is trained on the rest of the subsets. Other DNN-based
learners trained on other subsets are also represented in the same way. The best base
learner performance on the validation set is EfficientNet3, with the accuracy of 94.38%.
However, if the base learner with the highest accuracy on the validation set is selected to
be used in the testing set, it has a lower recognition accuracy of 93.75% compared to the
other DNN-based learners, one of which achieves 96.67% accuracy in the testing set. This
shows that if one of these base learners is selected for the application of gold–antimony
froth flotation condition recognition, it is difficult to pick out a DNN with sufficiently
good generalization ability according to its performance on the validation set, because an
overfitted DNN-based learner is easily chosen, which decreases the recognition accuracy
on the testing set.

Therefore, we combine these DNN-based learners using deep ensemble learning, and
then, apply the ensemble model to the testing set of gold–antimony froth flotation image
recognition. In our method, the membership of the flotation froth working condition
constructs the decision matrix and TOPSIS weighted by the F1 score is applied to combine
the base learners; its confusion matrix is shown in Figure 9. According to Figure 9, there
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are only a total of eight misclassified flotation froth images, and we can calculate that the
accuracy of our proposed deep ensemble learning approach reaches 98.33%, which is better
than any of the base learners. This demonstrates that our deep ensemble learning-based
sensor improves the generalization ability of the model and verifies the effectiveness of
our method.

Figure 9. Confusion matrix of our method.

4.4. Comparison with Classic Ensemble Learning Methods

We compare the proposed method with classic ensemble learning methods such as
Adaboost [36], gradient boosting [37], bagging [26], XGBoost [38], and random forest [39].
The inputs in the classical ensemble learning method are 38 statistical features extracted
from the froth flotation images referring to [40], including the mean of gray, bubble size
distribution, length–width ratio, and so on. Finally, the experimental results are shown in
Figure 10.

Figure 10. Accuracy of classical ensemble learning.
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According to Figure 10, the recognition accuracy of the classical ensemble learning
method on the gold–antimony froth flotation testing set is not more than 90%, which is
even lower than that of the DNN-based learner shown in Figure 8, indicating that the DNN
is more suitable for the recognition task. Classic ensemble learning does not perform well
because the extracted statistical features may lose some important information about the
flotation froth image or mix with a lot of redundant information, which results in worse
generalization ability of the trained ensemble model. This is also an important reason why
most studies prefer deep learning methods in image classification.

4.5. Comparison with Other Combination Methods

In order to further verify the superiority of our proposed method in flotation froth
image recognition applications, we compare our approach with other combination methods
in deep ensemble learning. Specifically, the minimum (MIN), product (PRO), and average
(AVR) aggregation rules [41], the soft voting method (SV) [42] and hard voting method
(HV) [42], weighted hard voting based on Fin (FHV) [14], weighted voting using global
accuracy (WVGA) [27], weighted voting using class precision (WVCP) [27], Bayesian meta-
classifier using predictions (PBAY) [27], and multilayer perceptron meta-classifier using
predictions (PMLP) [43] are taken as combination methods on the testing set and the exper-
imental results are shown in Figure 11. As shown in Figure 11, all of these combination
methods clearly improve the flotation froth image recognition accuracy on the testing set
compared to the DNN-based learner in Figure 8, which demonstrates the better gener-
alization performance of deep ensemble learning. In addition, the combination method
based on the aggregation rules essentially outperforms the voting method, implying that
the aggregation rules work well in this application. The stacking method using a Bayesian
classifier and MLP as the meta-learner has poor performance in this application, because the
meta-learner, with a complicated structure, produces an overfitting phenomenon due to
the quite good diversity and accuracy of the DNN-based learners. Therefore, the relatively
simpler combination method has better performance. Last, but not least, our approach has
the highest recognition accuracy, which verifies the superiority of our combination method
in the application.

Figure 11. Accuracy of different combination methods on testing data.

To further illustrate the improvement in our combination method, we display the
accuracy of the DNN-based learners on the testing set when using the membership function
or not in Figure 12. According to Figure 12, most of the 12 DNN-based learners via the
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membership function have higher accuracy on the testing set, verifying that the membership
function improves the prediction performance of the base learners.

Figure 12. Accuracy of base learners using membership function or not.

In addition, we analyzed a sample of gold–antimony flotation froth images in the
testing set for observation. It is hard to be categorized into “good”, but its real working
condition type is “good”, because the DNN-based learners prefer categorizing it as “fair”.
The fuzzy labels of the DNN-based learners are shown in Table 2, where the bold number
is the largest prediction. After the DNN-based learners’ predictions are put through
Equation (3), their predictions are closer to the real working condition, according to Table 3.
It can be found that most of the base learners do not regard it to be “good”, and thus,
cannot correctly predict its working condition even in the soft voting combination method.
Afterwards, the DNN-based learners’ predictions are put through Equation (3), and their
predictions are closer to the real working condition. Then, the TOPSIS method, weighted
by the F1 score, finally makes the evaluation value of the right type, “good”, larger than
that of the wrong type, “fair”, and thus, the right flotation froth working condition can be
determined successfully.

Finally, we carried out certain image attribute changes and rotations randomly on
the flotation froth testing data, which simulate the image interference in the real flotation
froth process. The results are shown in Figure 13. It can be found that the accuracy of our
proposed method does not decrease obviously and reaches 96.88%, while the accuracy
of the other combination methods is not better than it, which verifies the robustness of
our method.

Table 2. Original fuzzy labels of base learners.

Type ViT1 ViT2 ViT3 ViT4 SwinT1 SwinT2 SwinT3 SwinT4 EfficientNet1 EfficientNet2 EfficientNet3 EfficientNet4 AVR

Very bad 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
Bad 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Very poor 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Poor 0.011 0.149 0.038 0.075 0.000 0.000 0.001 0.047 0.001 0.006 0.005 0.000 0.028
Fair 0.125 0.821 0.146 0.666 0.983 0.001 0.659 0.941 0.034 0.933 0.075 0.006 0.449

Good 0.832 0.012 0.714 0.044 0.015 0.997 0.009 0.011 0.770 0.058 0.006 0.994 0.372
Excellent 0.027 0.017 0.089 0.210 0.002 0.000 0.332 0.001 0.194 0.002 0.912 0.000 0.149
Perfect 0.003 0.001 0.012 0.004 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.002

Table 3. Fuzzy labels of base learners via membership function.

Type ViT1 ViT2 ViT3 ViT4 SwinT1 SwinT2 SwinT3 SwinT4 EfficientNet1 EfficientNet2 EfficientNet3 EfficientNet4 Our
Method

Very bad 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
Bad 0.000 0.014 0.010 0.017 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000

Very poor 0.001 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Poor 0.042 0.191 0.044 0.251 0.249 0.016 0.088 0.053 0.005 0.090 0.013 0.017 0.027
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Table 3. Cont.

Type ViT1 ViT2 ViT3 ViT4 SwinT1 SwinT2 SwinT3 SwinT4 EfficientNet1 EfficientNet2 EfficientNet3 EfficientNet4 Our
Method

Fair 0.081 0.669 0.122 0.441 0.656 0.050 0.572 0.929 0.031 0.792 0.082 0.006 0.447
Good 0.756 0.052 0.628 0.089 0.082 0.884 0.008 0.011 0.733 0.052 0.006 0.977 0.491

Excellent 0.026 0.069 0.097 0.188 0.002 0.016 0.332 0.001 0.188 0.059 0.897 0.000 0.166
Perfect 0.092 0.004 0.098 0.013 0.000 0.033 0.000 0.000 0.044 0.006 0.000 0.000 0.003

Figure 13. Accuracy of different combination methods on testing data under image interference.

5. Conclusions

In this study, a deep ensemble learning-based sensor is designed to automatically
monitor the flotation working condition on the basis of the captured flotation froth images,
so that the chemical dosages can be adjusted accordingly. The K-fold partition is used
in partitioning training and validation data and image enhancement is performed on the
training data to generate DNN-based learners with diversity and accuracy in different
deep learning algorithms. With the predictions obtained from these DNN-based learners,
a membership function utilizing the performance information of the DNN-based learners
during the validation is proposed to improve the recognition accuracy of the DNN-based
learners. Then, membership of the flotation froth working condition constructs the decision
matrix and TOPSIS weighted by the F1 metric is proposed to combine the base learners.
Finally, the most probable working condition is selected to assist operators in adjusting the
chemical dosages.

The experimental results show that the sensor based on deep ensemble learning
method can effectively recognize the flotation froth working condition and achieves the
accuracy of 98.33% on the testing data of the gold–antimony flotation froth application,
which demonstrates the superiority of the proposed approach compared to other com-
mon methods.

In future work, we will explore different DNN models and more performance metrics
of base learners, as well as investigate more deep ensemble learning based on other decision-
making methods to improve the applicability and interpretability of our approaches. More-
over, different flotation froth applications under diverse industrial conditions will be
explored to enhance the generalizability of our approach, especially in variable flotation
froth working conditions. In addition, we also believe that this work has potential to be
applied to other recognition tasks like regression and object detection.
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39. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.

Remote. Sens. 2016, 114, 24–31. [CrossRef]
40. Wang, Q.; Huang, M.; Zhou, X. Feature selection in froth flotation for production condition recognition. IFAC-Pap. 2018,

51, 123–128. [CrossRef]
41. Kuncheva, L.I.; Bezdek, J.C.; Duin, R.P. Decision templates for multiple classifier fusion: An experimental comparison. Pattern

Recognit. 2001, 34, 299–314. [CrossRef]
42. Rao, S.; Verma, A.K.; Bhatia, T. Hybrid ensemble framework with self-attention mechanism for social spam detection on

imbalanced data. Expert Syst. Appl. 2023, 217, 119594. [CrossRef]
43. Di Nunno, F.; Giudicianni, C.; Creaco, E.; Granata, F. Multi-step ahead groundwater level forecasting in Grand Est, France:

Comparison between stacked machine learning model and radial basis function neural network. Groundw. Sustain. Dev. 2023,
23, 101042. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMM.2023.3242152
http://dx.doi.org/10.1016/j.neunet.2023.01.048
http://www.ncbi.nlm.nih.gov/pubmed/36774869
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1016/j.patcog.2015.06.016
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1016/j.asoc.2021.107689
http://dx.doi.org/10.1016/j.ymssp.2020.106752
http://dx.doi.org/10.1016/j.patcog.2019.107147
http://dx.doi.org/10.1109/JIOT.2023.3244810
http://dx.doi.org/10.1016/j.eswa.2020.113239
http://dx.doi.org/10.1016/j.jksuci.2023.01.014
http://dx.doi.org/10.1016/0169-2070(89)90012-5
http://dx.doi.org/10.1016/j.asoc.2024.111279
http://dx.doi.org/10.1016/j.jclepro.2023.140335
http://dx.doi.org/10.4310/SII.2009.v2.n3.a8
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1016/j.ifacol.2018.09.403
http://dx.doi.org/10.1016/S0031-3203(99)00223-X
http://dx.doi.org/10.1016/j.eswa.2023.119594
http://dx.doi.org/10.1016/j.gsd.2023.101042

	Introduction
	Preliminaries
	Deep Neural Network
	Deep Ensemble Learning
	Generation of DNN-Based Learners
	Combination Methods of Deep Ensemble Learning


	Methodology
	Proposed Deep Ensemble Learning-Based Sensor
	Generation of DNN Trained in Partitioned and Enhanced Flotation Froth Images
	Combination Method Based on Membership Function and TOPSIS
	Design of Membership on Flotation Froth Working Condition
	Decision-Making Method for Flotation Froth Working Condition


	Experimental Results
	Data Description
	Experiment Setting
	Comparison with Base Learners
	Comparison with Classic Ensemble Learning Methods
	Comparison with Other Combination Methods

	Conclusions
	References

