In-Shoe Sensor Measures of Loading Asymmetry during Gait as a Predictor of Frailty Development in Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Assessment of Loading Asymmetry
CT asymmetry (%) = | abs (Mean CT Right − Mean CT Left) | × 100 |
Mean CT Right + Mean CT Left | ||
PF asymmetry (%) = | abs (Mean PF Right − Mean PF Left) | × 100 |
Mean PF Right + Mean PF Left | ||
Lr asymmetry (%) = | abs (Mean Lr Right − Mean Lr Left) | × 100 |
Mean Lr Right + Mean Lr Left | ||
Impulse asymmetry (%) = | abs (Mean Impulse Right − Mean Impulse Left) | × 100 |
Mean Impulse Right + Mean Impulse Left |
2.4. Evaluation of Frailty
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Loading Asymmetry and Frailty Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ofori-Asenso, R.; Chin, K.L.; Mazidi, M.; Zomer, E.; Ilomaki, J.; Zullo, A.R.; Gasevic, D.; Ademi, Z.; Korhonen, M.J.; LoGiudice, D.; et al. Global Incidence of Frailty and Prefrailty Among Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e198398. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Masel, M.C.; Ostir, G.V.; Ottenbacher, K.J. Frailty, mortality, and health-related quality of life in older Mexican Americans. J. Am. Geriatr. Soc. 2010, 58, 2149–2153. [Google Scholar] [CrossRef]
- Rula, E.Y.; Pope, J.E.; Hoffman, J.C. Potential Medicare savings through prevention and risk reduction. Popul. Health Manag. 2011, 14, S35–S44. [Google Scholar] [CrossRef] [PubMed]
- Vavasour, G.; Giggins, O.M.; Doyle, J.; Kelly, D. How wearable sensors have been utilised to evaluate frailty in older adults: A systematic review. J. Neuroeng. Rehabil. 2021, 18, 112. [Google Scholar] [CrossRef] [PubMed]
- Mugueta-Aguinaga, I.; Garcia-Zapirain, B. Is Technology Present in Frailty? Technology a Back-up Tool for Dealing with Frailty in the Elderly: A Systematic Review. Aging Dis. 2017, 8, 176–195. [Google Scholar] [CrossRef] [PubMed]
- Dasenbrock, L.; Heinks, A.; Schwenk, M.; Bauer, J.M. Technology-based measurements for screening, monitoring and preventing frailty. Z. Gerontol. Geriatr. 2016, 49, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, M.; Howe, C.; Saleh, A.; Mohler, J.; Grewal, G.; Armstrong, D.; Najafi, B. Frailty and technology: A systematic review of gait analysis in those with frailty. Gerontology 2014, 60, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.U.; Ling, S.M.; Schreiber, C.; Nesbitt, M.; Ferrucci, L. Gait patterns during different walking conditions in older adults with and without knee osteoarthritis—Results from the Baltimore Longitudinal Study of Aging. Gait Posture 2011, 33, 205–210. [Google Scholar] [CrossRef]
- Watt, J.R.; Franz, J.R.; Jackson, K.; Dicharry, J.; Riley, P.O.; Kerrigan, D.C. A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin. Biomech. 2010, 25, 444–449. [Google Scholar] [CrossRef]
- Browne, M.G.; Franz, J.R. Ankle power biofeedback attenuates the distal-to-proximal redistribution in older adults. Gait Posture 2019, 71, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Burns, G.T.; Deneweth Zendler, J.; Zernicke, R.F. Validation of a wireless shoe insole for ground reaction force measurement. J. Sports Sci. 2019, 37, 1129–1138. [Google Scholar] [CrossRef]
- Peebles, A.T.; Maguire, L.A.; Renner, K.E.; Queen, R.M. Validity and Repeatability of Single-Sensor Loadsol Insoles during Landing. Sensors 2018, 18, 4082. [Google Scholar] [CrossRef] [PubMed]
- Renner, K.E.; Williams, D.S.B.; Queen, R.M. The Reliability and Validity of the Loadsol® under Various Walking and Running Conditions. Sensors 2019, 19, 265. [Google Scholar] [CrossRef] [PubMed]
- Seiberl, W.; Jensen, E.; Merker, J.; Leitel, M.; Schwirtz, A. Accuracy and precision of loadsol((R)) insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters. Eur. J. Sport Sci. 2018, 18, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Renner, K.; Queen, R. Detection of age and gender differences in walking using mobile wearable sensors. Gait Posture 2021, 87, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Nakanowatari, T.; Hoshi, M.; Sone, T.; Kamide, N.; Sakamoto, M.; Shiba, Y. Detecting differences in limb load asymmetry during walking between older adult fallers and non-fallers using in-shoe sensors. Gait Posture 2023, 107, 312–316. [Google Scholar] [CrossRef]
- Bolam, S.M.; Batinica, B.; Yeung, T.C.; Weaver, S.; Cantamessa, A.; Vanderboor, T.C.; Yeung, S.; Munro, J.T.; Fernandez, J.W.; Besier, T.F.; et al. Remote Patient Monitoring with Wearable Sensors Following Knee Arthroplasty. Sensors 2021, 21, 5143. [Google Scholar] [CrossRef]
- Tanaka, T.; Takahashi, K.; Hirano, H.; Kikutani, T.; Watanabe, Y.; Ohara, Y.; Furuya, H.; Tetsuo, T.; Akishita, M.; Iijima, K. Oral Frailty as a Risk Factor for Physical Frailty and Mortality in Community-Dwelling Elderly. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1661–1667. [Google Scholar] [CrossRef]
- Iwasaki, M.; Yoshihara, A.; Sato, N.; Sato, M.; Minagawa, K.; Shimada, M.; Nishimuta, M.; Ansai, T.; Yoshitake, Y.; Ono, T.; et al. A 5-year longitudinal study of association of maximum bite force with development of frailty in community-dwelling older adults. J. Oral Rehabil. 2018, 45, 17–24. [Google Scholar] [CrossRef]
- Satake, S.; Senda, K.; Hong, Y.J.; Miura, H.; Endo, H.; Sakurai, T.; Kondo, I.; Toba, K. Validity of the Kihon Checklist for assessing frailty status. Geriatr. Gerontol. Int. 2016, 16, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Comfortable and maximum walking speed of adults aged 20-79 years: Reference values and determinants. Age Ageing 1997, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed "Up & Go": A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [PubMed]
- Maki, B.E. Gait changes in older adults: Predictors of falls or indicators of fear. J. Am. Geriatr. Soc. 1997, 45, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Pinloche, L.; Zhang, Q.; Berthouze, S.E.; Monteil, K.; Hautier, C. Physical ability, cervical function, and walking plantar pressure in frail and pre-frail older adults: An attentional focus approach. Front Aging 2022, 3, 1063320. [Google Scholar] [CrossRef] [PubMed]
- Anzai, E.; Ren, D.; Cazenille, L.; Aubert-Kato, N.; Tripette, J.; Ohta, Y. Random forest algorithms to classify frailty and falling history in seniors using plantar pressure measurement insoles: A large-scale feasibility study. BMC Geriatr. 2022, 22, 746. [Google Scholar]
- Drzal-Grabiec, J.; Snela, S.; Rykala, J.; Podgorska, J.; Banas, A. Changes in the body posture of women occurring with age. BMC Geriatr. 2013, 13, 108. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Fusco, A.; Morone, G.; Paolucci, S. Development and decline of upright gait stability. Front. Aging Neurosci. 2014, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Kohls-Gatzoulis, J.; Angel, J.C.; Singh, D.; Haddad, F.; Livingstone, J.; Berry, G. Tibialis posterior dysfunction: A common and treatable cause of adult acquired flatfoot. BMJ 2004, 329, 1328–1333. [Google Scholar] [CrossRef]
- Sewo Sampaio, P.Y.; Sampaio, R.A.; Yamada, M.; Arai, H. Systematic review of the Kihon Checklist: Is it a reliable assessment of frailty? Geriatr. Gerontol. Int. 2016, 16, 893–902. [Google Scholar] [CrossRef]
- Ambagtsheer, R.C.; Thompson, M.Q.; Archibald, M.M.; Casey, M.G.; Schultz, T.J. Diagnostic test accuracy of self-reported screening instruments in identifying frailty in community-dwelling older people: A systematic review. Geriatr. Gerontol. Int. 2020, 20, 14–24. [Google Scholar] [CrossRef] [PubMed]
Developed Frailty | Non-Developed Frailty | p | |
---|---|---|---|
N | 14 | 33 | |
Age (y) | 76.5 ± 6.7 | 74.7 ± 5.4 | 0.325 |
Women (%) | 85.7 | 75.8 | 0.366 |
BMI (m2/kg) | 22.9 ± 3.2 | 22.5 ± 3.1 | 0.664 |
KCL score | 3.8 ± 1.6 | 2.6 ± 1.6 | 0.015 |
Fall history (%) | 28.6 | 27.3 | 0.596 |
Cerebrovascular disorder (%) | 3.0 | 0 | 0.702 |
Hypertension (%) | 42.8 | 42.4 | 0.613 |
Heart disease (%) | 14.2 | 3.0 | 0.208 |
Diabetes (%) | 14.2 | 9.1 | 0.427 |
Liver disease (%) | 0 | 0 | |
Kidney disease (%) | 0 | 0 | |
Lung disease or/and asthma (%) | 0 | 0 | |
Knee or/and foot pain (%) | 27.3 | 21.4 | 0.489 |
Number of medications | 2 ± 1 | 2 ± 1 | 0.852 |
Gait speed (m/s) | 1.47 ± 0.23 | 1.44 ± 0.16 | 0.620 |
TUG time (s) | 6.4 ± 0.9 | 6.5 ± 1.2 | 0.745 |
Variables | Adjusted OR | 95% CI | p |
---|---|---|---|
Net impulse asymmetry (per 1-point increase) | 1.269 | 1.016–1.585 | 0.036 |
KCL score (per 1-point increase) | 2.331 | 1.170–4.647 | 0.016 |
Sub-Regions | r | p | |
---|---|---|---|
Contact time asymmetry | Forefoot | 0.036 | 0.826 |
Midfoot | −0.004 | 0.979 | |
Rearfoot | 0.026 | 0.874 | |
Peak force asymmetry | Forefoot | 0.302 | 0.062 |
Midfoot | 0.323 | 0.045 * | |
Rearfoot | 0.123 | 0.457 | |
Impulse asymmetry | Forefoot | 0.246 | 0.126 |
Midfoot | 0.260 | 0.105 | |
Rearfoot | 0.263 | 0.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakanowatari, T.; Hoshi, M.; Asao, A.; Sone, T.; Kamide, N.; Sakamoto, M.; Shiba, Y. In-Shoe Sensor Measures of Loading Asymmetry during Gait as a Predictor of Frailty Development in Community-Dwelling Older Adults. Sensors 2024, 24, 5054. https://doi.org/10.3390/s24155054
Nakanowatari T, Hoshi M, Asao A, Sone T, Kamide N, Sakamoto M, Shiba Y. In-Shoe Sensor Measures of Loading Asymmetry during Gait as a Predictor of Frailty Development in Community-Dwelling Older Adults. Sensors. 2024; 24(15):5054. https://doi.org/10.3390/s24155054
Chicago/Turabian StyleNakanowatari, Tatsuya, Masayuki Hoshi, Akihiko Asao, Toshimasa Sone, Naoto Kamide, Miki Sakamoto, and Yoshitaka Shiba. 2024. "In-Shoe Sensor Measures of Loading Asymmetry during Gait as a Predictor of Frailty Development in Community-Dwelling Older Adults" Sensors 24, no. 15: 5054. https://doi.org/10.3390/s24155054
APA StyleNakanowatari, T., Hoshi, M., Asao, A., Sone, T., Kamide, N., Sakamoto, M., & Shiba, Y. (2024). In-Shoe Sensor Measures of Loading Asymmetry during Gait as a Predictor of Frailty Development in Community-Dwelling Older Adults. Sensors, 24(15), 5054. https://doi.org/10.3390/s24155054