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Abstract: Given the complex powertrain of fuel cell electric vehicles (FCEVs) and diversified vehicle
platooning synergy constraints, a control strategy that simultaneously considers inter-vehicle synergy
control and energy economy is one of the key technologies to improve transportation efficiency and
release the energy-saving potential of platooning vehicles. In this paper, an energy-oriented hybrid
cooperative adaptive cruise control (eHCACC) strategy is proposed for an FCEV platoon, aiming to
enhance energy-saving potential while ensuring stable car-following performance. The eHCACC
employs a hybrid cooperative control architecture, consisting of a top-level centralized controller
(TCC) and bottom-level distributed controllers (BDCs). The TCC integrates an eco-driving CACC
(eCACC) strategy based on the minimum principle and random forest, which generates optimal
reference velocity datasets by aligning the comprehensive control objectives of the platoon and
addressing the car-following performance and economic efficiency of the platoon. Concurrently, to
further unleash energy-saving potential, the BDCs utilize the equivalent consumption minimization
strategy (ECMS) to determine optimal powertrain control inputs by combining the reference datasets
with detailed optimization information and system states of the powertrain components. A series of
simulation evaluations highlight the improved car-following stability and energy efficiency of the
FCEV platoon.

Keywords: energy-oriented hybrid cooperative adaptive cruise control (eHCACC); fuel cell electric
vehicle platoon; energy management strategy (EMS)

1. Introduction

With the rapid growth in travel demand, issues that hinder emissions reduction, fuel
efficiency, congestion reduction, and safety improvements have significantly increased,
drawing attention to the development of sustainable transportation systems [1,2]. Fuel
cell electric vehicles (FCEVs) are widely recognized for their environmental friendliness
and the broad substitutability of hydrogen energy [3], increasingly considered an effective
tool for sustainable transportation. Although FCEVs exhibit impressive emissions and
range performance, their power components display complex non-linear characteristics
and poor dynamic response [4,5], making it challenging to fully utilize their energy-saving
potential. Additionally, with the rapid development of intelligent transportation systems
(ITS) [6] and vehicle-to-everything (V2X) technology [7], FCEVs in platoons can achieve
significant sustainability improvements through information sharing and coordinated opti-
mization [8]. However, co-optimization with the simultaneous consideration of following
performance and the intricacies of energy-saving and inter-vehicle coordinated control
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limit the economic, safety, and stability improvements [9–11]. Therefore, it is urgent to
develop an energy-efficient inter-vehicle coordinated control method for FCEV platoons.

Energy management strategies (EMSs) for FCEVs are generally classified into three
categories: rule-based, learning-based strategies, and optimization-based [12]. Rule-based
EMS, such as state machine control [13], are developed based on expert experience. While
rule-based EMS offer excellent real-time performance and stability [14], their fixed rules
limit adaptability and effectiveness in diverse driving conditions, restricting the collabora-
tive energy-saving potential of FCEV platoons. Learning-based EMS, such as reinforcement
learning methods [15], dynamically optimize control sequences through numerous itera-
tions, ensuring optimal control performance in specific driving scenarios. However, these
methods require extensive data preparation, detailed hyperparameter tuning, and offline
training under predefined driving conditions [16], posing challenges for practical applica-
tions aimed at improving economic performance. Optimization-based EMS can be divided
into global optimization EMS and instantaneous optimization EMS [17]. Representative
methods of global EMS include dynamic programming (DP) [18] and Pontryagin’s min-
imum principle (PMP) [19], which obtain the optimal control sequence by traversing all
control variables based on pre-acquired global driving information. The high computa-
tional resource requirements and unknown future driving information hinder real-time
applications in energy management [20]. As an instantaneous EMS, model predictive
control (MPC) [21] captures system states within a specific predictive horizon for rolling
optimization to solve for the optimal control sequence. While MPC balances global con-
trol performance and real-time requirements through short-term future state predictions,
even though generating future reference datasets can improve control performance, the
generation of highly accurate datasets is challenging [22], and the accuracy of state obser-
vations significantly impacts control performance [23]. Another primary instantaneous
approach is the equivalent consumption minimization strategy (ECMS) [24], which intro-
duces equivalent factors to convert electrical energy consumption into fuel consumption,
solving for the optimal control input at a given transient state. This approach significantly
reduces dependence on computational resources [25], making it more suitable for scenarios
involving multiple electric vehicles. Therefore, ECMS is considered a superior solution for
tapping into the energy-saving potential of fuel cell vehicle powertrain components. Even
so, the effectiveness of energy management strategies in scenarios involving multiple FCEV
platoons is influenced by inter-vehicle coordinated control [26,27]. Consequently, a strategy
that simultaneously considers inter-vehicle coordinated control and energy management is
essential for fully realizing the energy-saving potential of FCEV platoons while maximizing
car-following performance, safety, and stability.

To balance vehicle coordination and energy economy, the interaction between follow-
ing and leading vehicles in a dual-vehicle scenario has been widely studied [28]. For mixed
traffic scenarios involving electric vehicles, connected vehicles, and human-driven vehicles,
a series of eco-driving adaptive cruise control (Eco-ACC) systems have been proposed [29].
Eco-ACC has achieved excellent inter-vehicle coordination and energy-saving control [30].
However, large velocity and acceleration fluctuations of leading vehicles can cause stability
loss and reduced energy efficiency for following vehicles in a platoon of three or more
electric vehicles. Cooperative adaptive cruise control (CACC) [31] for multiple electric
vehicles is considered an effective solution to this problem. However, the integration of
energy-saving controls and existing inter-vehicle coordination including car-following
errors [32], comfort [33], stability [34], topology [35], and communication failures [36] is
complex, increasing difficulty for the economic coordination of the platoon. Recently, ad-
vanced eco-CACC [37] has emerged to address the issue of economic driving inter-vehicle
coordination in multi-vehicle scenarios. The mainstream implementation of eco-CACC is
velocity planning [38], aiming at optimizing platoon velocity by integrating road network
information from ITS [39], inter-vehicle communication [40], and aerodynamic theory [41]
to reduce energy consumption under complex constraints. In eco-CACC, velocity planning
methods mainly include rule-based, optimization-based, and reinforcement learning-based
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approaches [42]. Rule-based methods adjust velocity through predefined rules [43,44],
achieving simplicity and fast computation but poor adaptability, resulting in unsuitable
for complex and diverse traffic conditions. Optimization-based methods, such as tra-
jectory optimization for connected autonomous vehicles at signalized intersections [45]
and hierarchical reinforcement learning-based eco-driving optimization [46], use dynamic
programming algorithms to find optimal velocity sequences within given time and space
constraints, but have high computational complexity and poor real-time performance.
Reinforcement learning-based methods, such as multi-agent deep reinforcement learning
for eco-driving [47] and cooperative multi-agent reinforcement learning for adaptive cruise
control [48], offer superior adaptability and can handle complex traffic scenarios, but have
complex and time-consuming training processes. Furthermore, even if the reference ve-
locity dataset generated from velocity planning is accurate enough, the eco-CACC control
architecture still affects the effectiveness and efficiency of coordinated control [49]. Conse-
quently, a customized cooperative framework combining high-precision velocity planning
and energy management strategies is needed for economic driving coordination. To sum
up, detailed literature reviews emphasize the urgent need to develop a superior eco-CACC
strategy that integrates precise inter-vehicle coordinated control and energy management,
ensuring the safety, stability, and economy of FCEV platoons.

In light of the discussion, an energy-oriented hybrid cooperative adaptive cruise
control (eHCACC) strategy is proposed for an FCEV platoon, targeting improving energy-
saving potential and ensuring stable car-following performance. In eHCACC, a hybrid
cooperative control architecture is employed, including a top-level centralized controller
(TCC) and bottom-level distributed controllers (BDCs). The TCC of the proposed eHCACC
integrates an eco-driving CACC (eCACC) strategy based on the minimum principle and
random forest, which achieves the generation of optimal reference velocity datasets by
integrating the comprehensive control objectives of the platoon during longitudinal follow-
ing, thereby accommodating both the car-following performance and the economy in the
perspective of the vehicle platoon. In the BDCs, the ECMS solves for the optimal control in-
puts to the powertrain by combining the generated reference datasets with comprehensive
optimization information and the operating states of the powertrain components, achieving
a complete release of energy-saving potential from the perspective of the individual vehicle.
The contributions are illustrated in:

1. An energy-oriented hybrid cooperative adaptive cruise control strategy is proposed
for an FCEV platoon. This hybrid control architecture combines a novel eco-driving
CACC with superior energy management, harmonizing the car-following perfor-
mance and economy of the platoon.

2. The eco-driving CACC strategy generates optimal reference velocity datasets by
integrating the comprehensive control objectives during longitudinal following of the
platoon, including spacing error, speed error, and economy error, thus realizing the
co-optimization of the following error and the energy efficiency.

3. By parsing the comprehensive reference information, the superior energy management
based on ECMS realizes the rational control of multiple energy sources of individual
vehicles, thus completely releasing the energy-saving potential of the vehicle platoon.

The remainder of this paper is organized as expressed. Section 2 introduces the
modeling of an FCEV platoon. The eHCACC strategy is proposed in Section 3. The
simulation and discussion are provided in Section 4. Finally, conclusions are presented in
Section 5.

2. System Modeling

Consider a homogeneous vehicle platoon consisting of three fuel cell electric vehicles
(FCEVs) as shown in Figure 1, where the leading vehicle is labeled 1 and the following
vehicles are named 2 to 3. Moreover, due to the superior performance of anti-interference,
the vehicle platoon adopts the predecessor–leader–following (PLF) communication topol-
ogy [50]. The displacement, velocity, and acceleration information of neighboring or leading
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vehicle is obtained by using on-board sensors, radars and vehicle-to-vehicle (V2V), to plan
movement of following vehicles at the next moment. To ensure the effectiveness and consis-
tency of economic performance verification, the velocity of leading vehicle is determined by
a standard driving cycle. Moreover, in each individual, the studied FCEV consists of a fuel
cell system, a battery pack, a motor and its reducer, a unidirectional DC/DC converter, and
a bidirectional DC/AC converter. The fuel cell system and battery pack provide energy to
the motor through DC/AC converter, thereby driving the vehicle. The detailed parameters
are shown in Table 1.
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Table 1. The detailed parameters of FCEVs in the vehicle platoon.

Parameters Value Unit

Mass 1860 kg
Tire Rolling Radius 0.35 m

Rolling Resistance Coefficient 0.015 /
Aerodynamic Drag Coefficient 0.3 /

Frontal Area 2 m2

Air Density 1.18 kg/m3

Motor Speed Range 0~14,000 rpm
Motor Torque Range −137~137 Nm

Maximum Power of FC Stack 61.56 kW
Battery Capacity 40 Ah

2.1. Vehicle Platoon Modeling
2.1.1. Spacing Policy

Considering the motion information of leading vehicle, the spacing policy based on
constant time headway (CTH) is employed. Hence, the reference position of following
vehicles can be expressed as: {

Sre f ,i(t) = S1(t)− Dre f ,i(t)

Dre f ,i(t) = h ·Vi(t) + L
(1)
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where Sre f ,i, Dre f ,i, and Vi are the reference displacement, reference spacing, and velocity of
following vehicle i, respectively. S1 is the displacement of leading vehicle. L is the fixed
reference spacing, and h is the time headway.

2.1.2. Longitudinal Dynamics Model

For the studied vehicle platoon, lateral motion, vertical motion, and tire slip are
ignored. Hence, the nonlinear longitudinal dynamics model of the vehicle platoon is
written as: 

.
Si(t) = Vi(t)
.

Vi(t) = 1
mi

(
Ti(t)
ηi ·ri
−mig fi −

CD,i AiV2
i (t)

21.15

) (2)

where S and V represent as the displacement and velocity, respectively. T is the actual
torque of vehicle, η is the transmission system efficiency, r is the tire rolling radius, m is
the vehicle mass, g is the gravitational acceleration, f is the rolling resistance coefficient,
CD is the aerodynamic drag coefficient, and A is the vehicle frontal area. The subscript i
represents the vehicle i.

Considering the inertia hysteresis of vehicles, the actual vehicle torque can be ex-
pressed as:

.
Ti(t) = (TMotor,i(t) · ii − Ti(t))/τi (3)

where TMotor,i is the motor torque, ii is the transmission ratio, and τi is the time-delay
constant of the longitudinal dynamical system.

2.2. Powertrain Modeling

In the homogeneous vehicle platoon, FCEV individuals have the same powertrain.
The powertrain demand power can be expressed as:

Pload(t) = γMotor(t) · PMotor(t)

γMotor =

{
1/ηMotor(t) , Driving

ηMotor(t) , Braking

(4)

where Pload is the powertrain demand power. γMotor is the efficiency factor. PMotor and
ηMotor are mechanical power and efficiency of the motor, respectively.

When driving the vehicle, the powertrain demand power is provided by the fuel cell
system and the battery, and their coordination relationship is determined by an energy
management strategy, therefore, using the following equation:{

PFC(t) = uES(t) · Pload(t)

PBatt(t) = (1− uES(t)) · Pload(t)
(5)

where PFC and PBatt are output power of the fuel cell and the battery, respectively. uES is
the power distribution coefficient between the fuel cell system and the battery.

2.2.1. Fuel Cell Model

One proton exchange membrane fuel cell (PEMFC) is employed for each FCEV in-
dividual. Since the focus of this study is on the car-following performance and economy
of the vehicle platoon, the influence of external factors such as gas pressure and ambient
temperature on the performance of the fuel cell system is ignored. Therefore, look-up tables
are used to reflect the efficiency and energy consumption characteristics of the fuel cell
system, as shown in Figure 2.
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Theoretically, the hydrogen consumption of the fuel cell system can be expressed as
its relation to power and efficiency:

mH2(t) =
1

LHVH2

∫ PFC(t)
ηFC(PFC(t))

dt (6)

where mH2 is the hydrogen consumption of the fuel cell system, LHVH2 is the hydrogen
low calorific value, here taken as 120 MJ/kg. ηFC is the fuel cell system efficiency, which is
a function of output power of the fuel cell system.

After simplification, the hydrogen consumption of the fuel cell system is expressed as
a relationship with the hydrogen consumption rate as given below:

mH2(t) =
∫

PFC(t) · CH2(PFC(t))dt (7)

where CH2 is the hydrogen consumption rate shown in Figure 2, which is also a function of
output power of the fuel cell system.

2.2.2. Battery Model

The battery mounted on each FCEV individual is modeled as a first-order resistance-
capacitance (RC) model, ignoring electrochemical characteristics. Therefore, the dynamic
characteristics of the battery are written as:

UBatt(t) = UBattOCV − RBatt(t)IBatt(t)

IBatt(t) =
UBattOCV−

√
U2

BattOCV−4RBatt(t)PBatt(t)
2RBatt(t)

RBatt(t) = f (Temp, SOC(t))

SOC(t) = SOC(t0)−
∫ tend

t0
IBatt(t)dt

3600CBatt

(8)

where UBatt is the battery terminal voltage, UBattOCV is the battery open circuit voltage,
and IBatt is the battery current. RBatt is the battery internal resistance, which is a function
of battery temperature and battery SOC, as shown in Figure 3. SOC is the battery SOC, and
CBatt is the battery capacity.

Due to the power loss of the battery internal resistance, the battery power and power
loss are expressed as:  PBatt(t) = UBatt(t)IBatt(t)

PBattLoss(t) = I2
Batt(t)RBatt(t)

(9)
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Battery efficiency is defined by the charging and discharging processes of the battery
and is expressed as:

ηBatt(t) =



PBatt(t)
PBatt(t)+PBattLoss(t)

, PBatt(t) > 0

1 , PBatt(t) = 0

PBatt(t)+PBattLoss(t)
PBatt(t)

, PBatt(t) < 0

(10)

where ηBatt is the battery efficiency, and PBatt and PBattLoss are power and its loss of the
battery, respectively.

2.2.3. Motor Model

Owing to the rapid torque response of the motor, the powertrain inertial lags are not
considered in this paper. Hence, the motor efficiency is written as a function of its torque
and speed:

ηMotor(t) = f (TMotor(t), nMotor(t)) (11)

where ηMotor, TMotor, and nMotor are the efficiency, torque, and speed of the motor, respec-
tively. The mapping relationship is shown in Figure 4.
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Meanwhile, the motor mechanical power is expressed as:

PMotor(t) =
TMotor(t) · nMotor(t)

9550
(12)

where PMotor represents the motor mechanical power.
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3. Energy-Oriented Hybrid CACC

In order to maximize the energy-saving potential of the FCEV platoon while ensur-
ing stable car-following, an energy-oriented hybrid cooperative adaptive cruise control
(eHCACC) method tailored for the FCEV platoon is proposed. This hybrid cooperative con-
trol architecture consists of a top-level centralized controller and bottom-level distributed
controllers, as shown in Figure 5.
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In the top-level centralized controller, a novel car-following method considering
economic optimization is proposed for the FCEV platoon, aiming at improving following
stability and economy in longitudinal dynamics. Specifically, eco-driving CACC (eCACC)
implements the generation of optimal reference datasets based on minimum principle and
random forest by radar signal acquisition and processing, comprehensively considering
control objectives during the longitudinal following process, which enables the provision
of accurate reference sequences for the bottom-level distributed controllers to release the
energy-saving potential with the guarantee of the car-following performance.

In the bottom-level distributed controller, energy management strategy (EMS) based
on equivalent consumption minimization strategy (ECMS) is proposed to further improve
energy-saving performance. To be specific, by receiving reference sequences with compre-
hensive optimization information sent by the top-level centralized controller, the ECMS
solves the optimal control sequences of the powertrain by combining the operating states
of the system components, aiming at precisely realizing the control objectives of optimal
following and the economic performance of the vehicle platoon.

3.1. Minimum Principle for eCACC and EMS

As a method for solving optimal control problems under a nonlinear system of or-
dinary differential equations, Pontryagin’s minimum principle (PMP) [19] allows the
solving of the optimal control inputs to minimize the objective function and Hamiltonian
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function under given constraints. The mathematical equation of a control system can be
expressed as:

.
x(t) = f (x(t), u(t), t) (13)

where x is the state variables and u is the control inputs.
Furthermore, the objective function of the control system can be written as a combina-

tion of end states and transition costs:

J = h(x(tend)) +
∫ tend

t0

L(x(t), u(t), t)dt (14)

where h(x(tend)) is the end states, and
∫ tend

t0
L(x(t), u(t), t)dt is the transition costs.

In order to minimize the objective function, the corresponding Hamiltonian function
can be expressed as:

H(x(t), u(t), λ(t), t) = L(x(t), u(t), t) + λT(t) f (x(t), u(t), t) (15)

where λT(t) is the Lagrange multiplier vector. For the optimal control inputs u∗, the state
variables and Lagrange multiplier vector are required to satisfy the following regular
equations and boundary conditions:

.
x(t) = δH

δλ

∣∣∣
u∗(t)

= f (x∗(t), u∗(t), t)

.
λ
∗
(t) = − δH

δx

∣∣∣
u∗(t)

= − δL
δλ (x∗(t), u∗(t), t)− λ∗(t)

[
δ f
δλ (x∗(t), u∗(t), t)

]T

x∗(t0) = x0

x∗(tend) = xend

(16)

where x0 and xend are the initial and end states of the control system.
Therefore, under the above constraints, the control value that satisfies the Hamiltonian

function in a finite set achieving the minimum is the optimal control input, which is
expressed as:

u∗(t) = argmin
u(t)

[H(x∗(t), u(t), λ(t), t)] (17)

Therefore, the minimum principle can solve multi-objective optimization problems
under diverse constraints. In the optimal control problem of energy-oriented CACC, the
control objectives and constraints are fraught with diversity, thus affecting the optimal
control effectiveness.

3.2. Eco-Driving CACC in Top-Level Centralized Controller

eCACC is proposed for the FCEV platoon, designed to maximize the synergistic
economy of the vehicle platoon while ensuring car-following performance. Moreover,
eCACC provides reference datasets with comprehensive optimization information for the
bottom-level distributed controllers to further improve the energy efficiency of powertrain
components. The implementation of eco-driving CACC is shown in Figure 6.

To be specific, in the control architecture of eCACC, the system variables for vehicle i
in the vehicle platoon at moment k are defined as follows:

xi(k) = [Si(k), Vi(k), ai(k)]
T

yi(k) = [ErrS,i(k), ErrV,i(k), ErrMotor,i(k)]

ui(k) = ∆ai(k)

(18)

where x, y, and u represent the state variables, measurements, and control inputs, respec-
tively. S, V, and a are the displacement, velocity, and acceleration, respectively. ErrS, ErrV ,
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and ErrMotor are the spacing error, velocity error, and economy error, respectively. ∆ai
denotes the acceleration correction.
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The discrete longitudinal dynamics model of following vehicles in the platoon can be
represented by the following state-space equation:

xi(k + 1) = A1xi(k) + B1x1(k) + C1ui(k)

A1 =

 0 TS T2
S/2

0 1 TS
0 0 1− TS/τi



B1 =

 0 · · · 0
...

. . .
...

0 · · · TS/τi


C1 = [0, 0, TS/τi]

T

(19)

where TS denotes the sampling time. A1, B1, and C1 are coefficient matrices.
Under the CTH spacing policy, several critical errors are defined to improve economy

of the vehicle platoon while ensuring the car-following performance, which are expressed
as: 

ErrS,i(k) = S1(k) + ∆S1(k)− Si(k)− ∆Si(k)− Dre f ,i(k)

ErrV,i(k) = V1(k)−Vi(k)− ∆Vi(k)

ErrMotor,i(k) = TMotorηmax,i −miri/ii · (a1(k) + ∆ai(k))

(20)

where ∆S1 and ∆Si are represent the displacement correction of vehicles 1 and i, respectively.
∆V1 and ∆Vi are the velocity correction of vehicle 1 and i, respectively. TMotorηmax,i denotes
the motor torque of vehicle i corresponding to the maximum efficiency at the current motor
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speed. Note that following vehicles enable access to the operational status of the leading
vehicle through vehicle-to-vehicle communication.

Hence, the observation equation can be expressed as:

yi(k) = A2xi(k) + B2x1(k) + C2ui(k) + D2

A2 =

 −1 −TS − h 0
0 −1 0
0 0 0


B2 =

 1 TS 0
0 1 −TS
0 0 −miri/ii


C2 = −

[
T2

S/2, TS, miri/ii
]T

D2 =
[
−L, 0, TMotorηmax,i

]T

(21)

where A2, B2, C2, and D2 are coefficient matrices.
In order to prevent the acquisition of the velocity of the leading vehicle in case of

communication delay or even failure, a random forest velocity prediction method is applied
to eCACC based on the fusion of historical and sensor information, including the historical
velocity and acceleration of leading vehicle as well as workshop spacing obtained from
radar. On this basis, the velocity of the leading vehicle 1 can be accurately estimated in
case of sudden communication failure. Random forest is a learning model integrated based
on classification and regression trees (CARTs), which constructs multiple decision trees
with randomly selected features and data samples and makes predictions using voting or
averaging. In a random forest, the information entropy and information gain of a decision
tree can be expressed as:

E = −
C
∑

i=1
pi log2(pi)

IG(D, A) = E(D)−
V
∑

v=1

|Dv|
|D| E(Dv)

(22)

where C is the number of categories, and pi is the probability of category i. IG(D, A) is
the information gain obtained by dividing the dataset D over the feature A, E(D) is the
information entropy of the dataset D, v is the possible values of the feature A, and Dv is
the sub-dataset when the value of the feature A is v.

Thus, the prediction result of a random forest is:

ŷ =
1
m

m

∑
i=1

yi (23)

where ŷ is the prediction result of the random forest, yi is the prediction result of each
decision tree, and m is the number of decision trees.

To solve the optimal control problem involving spacing error, velocity error, and
economy error, the objective function can be written as:

J =
∫ t0

0 [JS,i(t) + JV,i(t) + JMotor,i(t)]dt
JS,i(t) = K1‖ErrS,i(ai(t), t)‖2

JV,i(t) = K2‖ErrV,i(ai(t), t)‖2

JMotor,i(t) = K3‖ErrMotor,i(ai(t), t)‖2

(24)
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The corresponding Hamiltonian function can be expressed as:

H(ai(t), t) = K1‖ErrS,i(ai(t), t)‖2 + K2‖ErrV,i(ai(t), t)‖2 + K3‖ErrMotor,i(ai(t), t)‖2 (25)

where K1, K2, and K3 are weight coefficients.
Consequently, the optimal solution can be obtained by satisfying the minimum of the

Hamiltonian function in a finite set under constraints, which can be written as:

∆a∗i (t) = argmin
∆ai

[H(ai(t), t)]

s.t.



Si(t)− Si−1(t) ≥ Lmin

Vmin ≤ Vi(t) ≤ Vmax

amin ≤ ai(t) ≤ amax

TMotormin ≤ TMotor,i(t) ≤ TMotormax

nMotormin ≤ nMotor,i(t) ≤ nMotormax

PMotormin ≤ PMotor,i(t) ≤ PMotormax

(26)

where ∆a∗i is the optimal acceleration correction for vehicle i. Lmin is the minimum spacing.
TMotor,i, nMotor,i, and PMotor,i, respectively, represent the torque, speed, and power of motor
employed on vehicle i. min and max denote the minimum and maximum limits of the
corresponding variables, respectively.

Further, the reference datasets that eCACC feeds back to the FCEV platoon and the
bottom-level distributed controllers can be written as: a∗i (t) = a1(t) + ∆a∗i (t)

Pload,i(t) = γMotor(t) · mi ·ai(t)·Vi(t)
3600

(27)

where a∗i is the demand acceleration for vehicle i. Pload,i is the powertrain demand power
sequence of vehicle i, containing the comprehensive optimization information of eCACC.

By comprehensively considering the spacing error, velocity error and economy error
of the vehicle platoon, the dual optimization control of can be achieved, thus improving the
car-following effectiveness and economic performance of the vehicle platoon. In addition,
the generated reference datasets with comprehensive optimization information can be used
in the bottom-level control to further explore the energy-saving potential.

3.3. EMS Based on ECMS in Bottom-Level Distributed Controllers

In order to reduce the energy consumption of power components and thereby further
improve the economy of the FCEV platoon, optimal control for multiple energy sources
is necessary. In the bottom-level distributed controllers for each FCEV individual, the
proposed EMS optimizes the operation of multiple energy sources by analyzing reference
datasets so as to further improve economy, and the implementation is shown in Figure 7.

In the framework of EMS, four control modes are categorized according to the battery
SOC, including modes of high SOC, relatively high SOC, relatively low SOC, and low
SOC. Since the special control of the power components is not required when the vehicle is
braking, each control mode is only applicable in driving condition. In order to minimize
the energy consumption of multiple power sources including the fuel cell and the battery,
the objective function can be expressed as:

J =
∫ t0

0 [JFC,i(t) + JBatt,i(t)]dt{
JFC,i(t) =

.
mFC,i(Pload,i(t), uES,i(t), t)

JBatt,i(t) =
.

mBatt,i(Pload,i(t), uES,i(t), t)

(28)
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where
.

mFC is the hydrogen consumption rate of the fuel cell.
.

mBatt is the equivalent hydro-
gen consumption rate of the battery. They can be determined by the following equation:

.
mFC,i(Pload,i(t), uES,i(t), t) = CH2(Pload,i(t) · uES,i(t))

.
mBatt,i(Pload,i(t), uES,i(t), t) =

λ·(Pload,i(t)·(1−uES,i(t)))
LHVH2

(29)

where Pload is the reference datasets generated by eCACC. uES is the power distribution
coefficient between the fuel cell and the battery. λ is the equivalent factor for converting
the battery electricity consumption rate into the hydrogen consumption rate.
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The corresponding Hamiltonian function can be written as:

H(Pload,i(t), uES,i(t), t) =
.

mFC,i(Pload,i(t), uES,i(t), t) +
.

mBatt,i(Pload,i(t), uES,i(t), t) (30)

Therefore, the optimal solution can be gained by satisfying the minimum of the
Hamiltonian function under constraints, which can be expressed as:

u∗ES,i(t) = argmin
uES,i

[H(Pload,i(t), uES,i(t), t)]

s.t.



uESmin ≤ uES,i(t) ≤ uESmin

PFCmin ≤ PFC,i(t) ≤ PFCmin

PBattmin ≤ PBatt,i(t) ≤ PBattmin

∆PFCmin ≤ ∆PFC,i(t) ≤ ∆PFCmin

(31)

where u∗ES,i is the optimal distribution coefficient for vehicle i. PFC,i and PBatt,i, respectively,
represent the fuel cell power and the battery power of vehicle i. ∆PFC,i is the fuel cell
power variation of vehicle i. min and max denote the minimum and maximum limits of
the corresponding variables, respectively.
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Under the optimal control input, the demand power of the fuel cell system and the
battery can be written as follows:

PFC,i(t) = Pload,i(t) · u∗ES,i(t)

PBatt,i(t) = Pload,i(t) ·
(

1− u∗ES,i(t)
) (32)

By combining reference datasets and sophisticated EMS in the bottom-level distributed
controller, the operating states of the powertrain components are precisely optimized, thus
contributing to a further improvement in economy of the FCEV platoon.

Consequently, by integrating the eCACC in the top-level centralized controller and
EMS in the bottom-level distributed controllers, eHCACC can improve the car-following
performance of the FCEV platoon with the complete unleashing of the energy-
saving potential.

4. Simulation and Discussion

To verify the effectiveness of the proposed eHCACC, the comprehensive comparisons
of car-following performance and economic performance are evaluated by a series of
simulations. In terms of the evaluation index for validation, following errors and equivalent
hydrogen consumption are employed for the evaluation. To ensure the authenticity of
the validation, all driving conditions used for the leading vehicle in evaluations employ a
standard driving cycle named China Light-duty Vehicle Test Cycle (CLTC), as shown in
Figure 8. This standard driving cycle covers the common driving scenarios, including a
low-speed segment representing urban driving, a medium-speed segment characterizing
suburban driving, and a high-speed segment representing highway driving, thus ensuring
the effectiveness and diversity of the comprehensive evaluation.
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During the comparative validation process, a number of baselines are used. Specifi-
cally, methods for verifying economic car-following performance include:

• CACC: A vehicle platoon longitudinal control method considering spacing error and
velocity error. In this study, the weighting coefficients K1 and K2 are set to 10 and
1, respectively.

• eCACC: A method of longitudinal control of a vehicle platoon comprehensively
considering the spacing error, velocity error, and economy error, wherein the weighting
coefficients K1, K2, and K3 are set to 10, 1, and 4.23 × 10−6, respectively.

In addition, methods for verifying economic performance include:

• RB: A rule-based EMS competently distributing the power of the fuel cell and the
battery [51]. Twelve fuel cell system demand power levels are determined by dividing
the battery SOC into four levels: high SOC, relatively high SOC, relatively low SOC,
and low SOC, as well as dividing the vehicle demand power into three levels: high,
medium, and low. Note that key performance parameters of the fuel cell, includ-
ing the maximum power, the efficient power, and idle power are set to 50, 20, and
2 kW, respectively.

• ECMS: A power distribution strategy for the fuel cell and the battery based on equiv-
alent consumption minimization. Specifically, the operation of the fuel cell and the
battery is categorized into four operating modes based on the battery SOC. And
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the optimal power distribution is solved by minimizing the equivalent hydrogen
consumption. The equivalent factor λ is set to 2.48.

Consequently, eHCACC for the FCEV platoon is comprehensively evaluated in multi-
ple scenarios. It is worth noticing that the simulations are conducted on MATLAB R2021b
and performed on a personal computer equipped with an Intel i5-6300HQ processor and
8 GB of memory. Note that the time headway used in the simulation is 0.8 s and the
time-delay constant is set to 0.5 s. Moreover, all simulations are conducted involving a
fixed simulation step of 0.01 s.

4.1. Evaluation of Car-Following Performance

The car-following performance of the top-level centralized controller directly affects
the stability of the vehicle platoon, as well as the quality of the reference datasets provided
to the bottom-level distributed controllers, and therefore, the validation of its effectiveness
is a prerequisite. Figures 9–11 present the evaluation in terms of vehicle velocity, velocity
error, and spacing error of the vehicle platoon, respectively.
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The actual velocity curves of all vehicles in the platoon under the CLTC driving
cycle are shown in Figure 9. It can be seen that in CACC and eCACC strategies, the
leading vehicle and following vehicles closely track the velocity curve for that standard
driving cycle.

To ensure string stability, it is important to maintain a small velocity error and spacing
error for the following vehicles and also ensure that the motion fluctuations of the leading
vehicle are not amplified along the vehicle platoon. From the diagrams of velocity error
and spacing error for vehicles 2 and 3, it can be observed that eCACC exhibits superior
car-following performance throughout the CLTC driving cycle. Specifically, Figure 10
illustrates the velocity error curves of the vehicles in the platoon. It can be seen that both
CACC and eCACC strategies for vehicles 2 and 3 exhibit stable velocity errors, with eCACC
even slightly outperforming CACC, and the absolute value of errors is controlled to be
below 5 km/h. Moreover, the magnitude of the vehicle velocity error along the platoon
diminishes, in other words, the magnitude of the vehicle velocity error for vehicle 2 is
smaller than that of vehicle 3. This indicates that the vehicle velocity error converges along
the platoon, thereby ensuring the string stability. Similarly, this conclusion also applies to
the spacing error.

From the spacing error curves in Figure 11, it can be noted that with the involvement
of the economic control, although the absolute value of the spacing error in eCACC is
slightly larger than that in CACC (about a 0.1 m gap), both of the error absolute values
are contained within 1 m. In addition, the spacing error also exhibits convergence along
the platoon consistent with the velocity error, thus adequately ensuring the car-following
performance and string stability of the vehicle platoon.

The comprehensive comparison verified the effectiveness of eHCACC in car-following
performance and string stability.

4.2. Evaluation of Economic Performance

In addition to verifying the car-following performance, the superior control perfor-
mance of eHCACC is also evaluated by considering economy, including energy efficiency
and state changes for individual components.

4.2.1. General Evaluation Results

In order to verify the economic performance in general, several static metrics for each
vehicle obtained from the simulation are presented, including the battery SOC curves in
Figure 12, the equivalent hydrogen consumption curves in Figure 13, and the economic
comparison results in Table 2.
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Table 2. General comparison of economic performance by different methods.

Vehicle
Individuals Methods Initial

SOC Ending SOC
EHC 2 per

100 km
(kg/100 km)

EHC 2

(g)
HC 1 of the
Fuel Cell (g)

EHC 2 of the
Battery (g)

Optimality
(%)

Vehicle 1

CACC-RB 0.400 0.403 0.906 149.693 159.564 −9.870 /
eCACC-RB 0.400 0.403 0.906 149.693 159.564 −9.870 /

CACC-ECMS 0.400 0.371 0.892 147.261 127.365 19.896 1.625
eCACC-ECMS 0.400 0.371 0.892 147.261 127.365 19.896 1.625

Vehicle 2

CACC-RB 0.450 0.401 0.902 148.924 115.128 33.796 /
eCACC-RB 0.450 0.394 0.891 147.077 107.759 39.318 1.547

CACC-ECMS 0.450 0.376 0.877 144.802 92.400 52.402 2.768
eCACC-ECMS 0.450 0.375 0.866 142.971 90.105 52.867 3.997

Vehicle 3

CACC-RB 0.500 0.401 0.906 149.493 79.026 70.467 /
eCACC-RB 0.500 0.400 0.895 147.682 76.460 71.223 1.211

CACC-ECMS 0.500 0.373 0.874 144.314 53.218 91.095 3.464
eCACC-ECMS 0.500 0.368 0.864 142.594 47.635 94.959 4.614

1 HC represents hydrogen consumption. 2 EHC represents equivalent hydrogen consumption.

As shown in Figure 12 and Table 2, the initial SOC is different for each of the three
vehicles; however, the different control methods in each vehicle result in different ending
SOCs. Specifically, compared to RB, ECMS embodies a lower ending SOC, with a difference
of almost 4% between them in vehicle 3. Meanwhile, such a difference in battery SOC leads
to less energy consumption by ECMS, as shown in Figure 13. This is because taking on more
of the power demand from the battery increases the chances of rationally regulating the
operating states of the fuel cell, leading to significant economic payoffs. Moreover, with the
eCACC strategy, the energy-saving efficiency of vehicles 2 and 3 is improved by about 1.5%
compared with CACC, and the comprehensive optimality reaches almost 5% for vehicle 3,
which fully verifies the effectiveness and strong impetus injected into the exploitation of
energy-saving potential by combining centralized and distributed controllers.

4.2.2. Energy-Saving Mechanism

In order to explore the energy-saving mechanism of eHCACC, the component oper-
ating states of individual vehicles are further analyzed, including the distributions of the
motor operating states in Figures 14 and 15, the diagrams of the fuel cell operating states in
Figures 16–18, and the diagrams of the battery operating states in Figures 19 and 20.
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Figure 14 displays the distributions of the motor operating states. Note that the
darker the color of the motor’s operating point in the diagram, the greater its frequency. It
was found that compared to the leading vehicle, the following vehicles experience lower
peak motor torque, which benefits from smoother longitudinal operation of the following
vehicles under the car-following strategy. Meanwhile, for following vehicles, the motor in
eCACC operates more in its high-efficiency region, especially when the motor torque is
below 30 Nm. In order to more clearly express the distribution of the motor’s operating
state, Figure 15 shows the frequency distribution of its operating efficiency. It can be
noticed that the eCACC has the superior performance of transferring the operating state of
the motor with an efficiency between 78% and 85% to an efficiency of 85% or more, thus
exhibiting an average motor efficiency improvement of about 2%. As such, eCACC in
the centralized controller can offer reference datasets with comprehensive optimization
information for the distributed controllers, thus guaranteeing the economic improvement
of eHCACC.

Figure 16 shows the fuel cell power curves under different methods. In the following
vehicles, the ECMS-controlled fuel cell generally starts earlier than RB. Once the fuel cell
starts, the ECMS enables it to work stably in the efficient power region (approximately
12 kW), which is especially noticeable in the simulation range of 1430 s to 1630 s in vehicle
2. Moreover, the fuel cell efficiency and its average are shown in Figure 17. It can be seen
that for any individual vehicle, once the fuel cell has started and has been taken off idle
power, ECMS always maintains the fuel cell efficiency at a high level of around 40.5%. In
particular, the eCACC-ECMS achieves an average efficiency of about 41%. The reason for
this phenomenon is that the ECMS can maximize the stable operation in the high-efficiency
region while guaranteeing a full response to the demand power of powertrain, thus leading
to a superior economic performance.

Figure 18 expresses the distribution of the fuel cell efficiency explicitly. It can be
seen that the rear vehicles exhibit more concentrated fuel cell power distribution than the
front vehicles. In addition, the fuel cell power under ECMS is more concentrated in the
high-efficiency region, especially eCACC-ECMS in vehicle 2 and CACC-ECMS in vehicle
3, which delivers higher energy efficiency. The above simulation results fully validate the
effectiveness of eHCACC in fuel cell energy-saving control.

Figures 19 and 20 record the cell power and its efficiency. Since the battery is used
to respond to the power gap between the powertrain and the fuel cell, the battery power
exhibits a large fluctuation in vehicles 2 and 3, especially in the simulation range between
1430 s and 1630 s. Nevertheless, as can be seen in Figure 20, the battery carried by each
vehicle applying eCACC-ECMS exhibits a slight average efficiency advantage of around
1% to 3%. This provides a positive contribution to the realization of the energy-saving ad-
vantages of the fuel cell under eHCACC, leading to optimized overall energy consumption
and thus fully exploiting the energy-saving potential of the FCEV platoon.

Diverse perspectives suggest that the proposed eHCACC integrated by a top-level
centralized controller and bottom-level distributed controllers performs excellently with
impressive car-following stability and energy-saving performance for the cruising control
of the FCEV platoon.

5. Conclusions

An eHCACC strategy is proposed for an FCEV platoon through a novel hybrid con-
trol architecture, enhancing energy-saving potential while ensuring stable car-following
performance. Specifically, within the TCC of the hybrid control architecture, an eco-driving
car-following method with economic optimization is proposed for eHCACC, improving
following stability and economy in longitudinal dynamic and generating optimal reference
datasets with comprehensive optimization information. In BDCs, superior energy manage-
ment based on ECMS and comprehensive optimization information is employed, precisely
achieving the control objectives of optimal following and economic performance for the
FCEV platoon. Compared to the baselines, the equivalent fuel consumption of eHCACC
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can be reduced by approximately 5%, while maintaining approaching similar following
performance, demonstrating state-of-the-art performance in both car-following stability
and energy efficiency.

However, this study neglected to validate and evaluate the real-time performance
of the control methodology. In future work, more effort will be invested in realizing
hardware-in-the-loop and on-board controller real-time validation.
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resources, L.C. and Z.G.; data curation, S.L., L.C., Y.W. and S.P.; writing—original draft preparation,
S.L.; writing—review and editing, J.L. and Z.G.; visualization, S.L. and P.F.; supervision, P.F. and Y.W.;
project administration, L.C., J.L. and Z.G.; funding acquisition, L.C. All authors have read and agreed
to the published version of the manuscript.
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