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Abstract: In this paper, we propose a Local Global Union Network (LGUN), which effectively
combines the strengths of Transformers and Convolutional Networks to develop a lightweight and
high-performance network suitable for Single Image Super-Resolution (SISR). Specifically, we make
use of the advantages of Transformers to provide input-adaptation weighting and global context
interaction. We also make use of the advantages of Convolutional Networks to include spatial
inductive biases and local connectivity. In the shallow layer, the local spatial information is encoded
by Multi-order Local Hierarchical Attention (MLHA). In the deeper layer, we utilize Dynamic Global
Sparse Attention (DGSA), which is based on the Multi-stage Token Selection (MTS) strategy to model
global context dependencies. Moreover, we also conduct extensive experiments on both natural and
satellite datasets, acquired through optical and satellite sensors, respectively, demonstrating that
LGUN outperforms existing methods.

Keywords: image super-resolution; efficient global interaction; fine-grained local modeling

1. Introduction

Single Image Super-Resolution (SISR) is a prominent research field in computer vision
that focuses on enhancing the visual details and overall appearance of low-resolution (LR)
images by generating high-resolution (HR) versions. It has diverse applications across
domains such as surveillance [1–4], medical imaging [5,6], satellite imagery [7,8], and moni-
toring [9,10]. Recent advancements in SISR techniques have leveraged advanced algorithms
and deep learning models to effectively recover missing high-frequency details and textures
from LR inputs, enabling significant improvements in resolution and visual quality.

Convolutional Networks are widely adopted for various visual tasks, including
SISR [11,12]. The inherent properties of convolutional operations, such as the ability
to aggregate information from adjacent pixels or regions, e.g., 3 × 3 windows, make them
effective at capturing spatially local patterns. These properties, including translation in-
variance, local connectivity, and the sliding-window strategy, provide valuable inductive
biases. However, Convolutional Networks suffer from two main limitations. Firstly, they
have a local receptive field, restricting their ability to model global context. Secondly, the
interaction between spatial locations is fixed through a static convolutional kernel during
inference, limiting their flexibility to adapt to varying input content. Transformers, on
the other hand, offer a solution to address these limitations. By introducing self-attention
(SA) in Vision Transformers (ViTs), global interactions can be explicitly modeled, and the
importance of each token can be dynamically adjusted through attention scores computed
between all pairs of tokens during inference. However, the computational complexity of
Transformers, which grows quadratically with the token length N (or spatial resolution
HW), poses challenges for real-world applications on resource-constrained hardware. This
leads to the following natural question: How can we effectively combine the strengths of
Convolutional Networks and ViTs to develop a lightweight and high-performance network
suitable for resource-constrained devices?
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In this work, we address the aforementioned question by focusing on the design
of a lightweight and high-performance network for SISR tasks. The performance of our
work is shown in Figure 1 compared with others. Our proposed approach, named LGUN,
leverages the advantages of Convolutional Networks, such as spatial inductive biases and
local connectivity, as well as Transformers, which offer input-adaptation weighting and
global context interaction. Therefore, our core concept is illustrated in Figure 2. Compared
to uni-dimensional information communication, e.g., spatial-only communication such as
EIMN [13] or channel-only communication such as Restormer [14], our method can achieve
local spatial-wise aggregation and global channel-wise interaction simultaneously, both
of which are crucial for SISR tasks. As commonly known, in Convolutional Networks,
the shallow layers of a network employ convolutional filters with smaller receptive fields,
capturing local patterns and features like edges, corners, and textures. These low-level
features are extracted in the initial layers, providing local information about the input data.
By stacking multiple building blocks, Convolutional Networks gradually enlarge their
receptive fields, enabling the capture of large-range spatial context information. Based
on this prior knowledge, as shown in Figure 3, we divide the core modules, named Local
Global Union (LGU), into two stages: Multi-order Local Hierarchical Aggregation (MLHA)
and Dynamic Global Sparse Attention (DGSA). In the shallow layers, we employ MLHA to
encode local spatial information efficiently. This approach feeds each sub-branch with only
a subset of the entire feature, facilitating the explicit learning of distinct feature patterns
through the Split–Transform–Fusion (STF) strategy. In the deep layers, we introduce
DGSA to model long-range non-local dependencies while obtaining an effective receptive
field of H × W. DGSA operates across the feature dimension, utilizing interactions based
on the cross-covariance matrix between keys and queries. Considering the potential
negative impact of irrelevant or confusing information in the attention matrix, which
other methods [14] fail to consider, we incorporate the Multi-stage Token Selection (MTS)
strategy into DGSA, which selects multiple top-k similar attention matrices and masks out
insignificant elements allocated with lower weights. This reduces redundancy in attention
maps and suppresses interference from cluttered backgrounds. The proposed design is
robust to changes in the input token length and decreases the computational complexity to
O(NC2), where C ≪ N.

Our contributions can be summarized as follows:

(1) We propose LGUN, a hybridization structure designed for resource-constrained de-
vices. It combines the strengths of Convolutional Networks and ViTs, allowing for
effective encoding of both local processing and global interaction throughout the
network by the proposed LGU.

(2) In the shallow layer, we employ MLHA to focus on encoding local spatial information.
By using the STF strategy, MLHA promotes the learning of different patterns while also
saving computational resources. In the deep layer, we utilize DGSA based on the MTS
strategy to model global context dependencies. This enhances the network’s ability to
model complex image patterns with high adaptability and representational power.

(3) Experimental results on popular benchmark datasets demonstrate the superiority
of our method compared to other recently advanced Transformer-based approaches.
Our method outperforms in both quantitative and qualitative evaluations, providing
evidence for the effectiveness of the MLHA-with-STF strategy and the DGSA-with-
MTS strategy.
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Figure 1. Trade–off between performance and model complexity on Set5 ×4 dataset. Multi-Adds are
calculated on 1280 × 720 HR images.

Figure 2. Compared to uni-dimensional information communication, e.g., spatial-only or channel-
only, our method can achieve local spatial-wise aggregation and global channel-wise interaction
simultaneously, both of which are crucial for SISR tasks.

Figure 3. The architecture of our proposed method, LGUN, consists of three main parts: feature
extraction, nonlinear mapping, and image reconstruction. The core modules, named LGU, include
two stages: MLHA and DGSA. In the shallow layers, MLHA efficiently encodes local spatial information
by utilizing subsets of the entire feature, enabling explicit learning of distinct feature patterns through
the STF strategy. In the deep layers, DGSA is employed to model long-range non-local dependencies
while achieving a global effective receptive field. DGSA operates across the feature dimension and
leverages interactions based on the cross-covariance matrix between keys and queries. Moreover, we
incorporate the MTS strategy into DGSA, which selects multiple top-k similar attention matrices and
masks out elements with lower weights. This reduces redundancy in attention maps and suppresses
interference from cluttered backgrounds. LGUN exhibits robustness to changes in the input token
length and significantly reduces the computational complexity to O(NC2), where C ≪ N.
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2. Related Work
2.1. Convolutional Networks

Classical SISR. Since the introduction of SRCNN [15], Convolutional Networks have
emerged as superior solutions for SISR tasks [16]. Over the past decade, numerous novel
ideas have been proposed or introduced in this field. These include residual learning [11],
densely connected networks [17], neural architecture search (NAS) [18], knowledge distil-
lation [19], channel attention [20], spatial attention [21], non-local attention [22], SA [23],
etc. The general trend towards achieving higher performance in SISR is to design deeper
and more complex networks. However, these methods often come at the cost of increased
computational requirements, making it challenging to deploy them on resource-constrained
mobile devices for practical applications.

Efficient SISR. To make Convolutional Networks suitable for computationally limited
platforms such as mobile devices, methods such as pruning, NAS, knowledge distillation,
reparameterization, and efficient design of convolutional layers have been proposed. Prun-
ing technology involves removing insignificant connections or neurons from a network to
reduce its size and complexity, thereby improving generalization ability and computational
speed. NAS technology [24], on the other hand, automates the search for the optimal
neural structure by exploring various combinations of structures across different platforms
with varying computational capabilities. Knowledge distillation technology [19], a method
for training smaller models, transfers knowledge from larger, more complex models to
enhance performance while reducing computational requirements. Structural reparameter-
ization [25] technology utilizes a multi-branch architecture during training and switches to
a plain network during testing to achieve faster inference speed. Efficient convolutional
layers, such as depth-wise convolution [26] and convolutional factorization [27], reduce
computational resources while maintaining high performance. These design concepts have
significantly contributed to the advancement of SISR. However, many existing methods
either focus on local spatial information and lack global context understanding, or have
high computational complexity that limits their applicability to edge devices. In this work,
we propose a hybrid structure called LGUN that combines the strengths of Convolutional
Networks (e.g., spatial inductive biases and local connectivity) and Transformers (e.g.,
input-adaptive weighting and global context processing). Notably, our approach achieves
a superior trade-off between complexity and performance (Parameters/Multi-Adds @
PSNR/SSIM: 675K/141G @ 38.24/0.9618).

2.2. Transformers

Pioneer work. Recently, Transformers have attracted significant interest in the com-
puter vision community, thanks to their success in natural language processing (NLP)
field. Several studies have explored the benefits of using a Transformer in vision tasks,
e.g., FAT [28] and RISTRA [29]. The seminal work, Vision Transformer (ViT) [30], applies a
standard Transformer architecture directly to 2D images for visual recognition and demon-
strated promising results. The Image Processing Transformer (IPT) [23] leverages the power
of the Transformer to achieve superior performance on various image restoration tasks,
such as SR, denoising, and deraining. However, the quadratic computational cost make it
difficult to apply the SA mechanism to the SISR task.

Efficient Transformers. Numerous efforts have been made to reduce complexity and
maintain performance in order to make Transformers more suitable for vision tasks. For in-
stance, Swin Transformer [31] and SwinIR [32] limit the SA calculation to non-overlapping
local windows instead of the global scope and introduce a shift operation for cross-window
interaction. This approach significantly reduces computational complexity on HR feature
maps while capturing local context. Similarly, shuffle Transformer [33] and HaloNet [34]
utilize spatial shuffle and halo operations, respectively, instead of shifted window partition-
ing. MobileViT [35] employs element-wise operations as replacements for computationally
and memory-intensive operations, such as batch-wise matrix multiplication and softmax,
to compute context scores. Linformer [36] substitutes self-attention with low-rank approx-
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imation operations. Axial self-attention [37] achieves longer-range dependencies in the
horizontal and vertical directions by performing SA within each single row or column of
the feature map. CSWin [38] proposes a cross-shaped window SA region that includes
multiple rows and columns, while Pale Transformer [39] performs SA within a pale-shaped
region composed of the same number of interlaced rows and columns of the feature map.
Although these methods achieve a trade-off in performance across various vision tasks, the
dependencies in the SA layer are limited to local regions to reduce computational complex-
ity, resulting in insufficient context modeling. This limitation restricts the modeling capacity
of the entire network. In this study, we propose DGSA, which models long-range non-local
dependencies while achieving an effective receptive field of H × W that operates across the
feature dimension. The interactions are based on the cross-covariance matrix between keys
and queries. Importantly, the computational complexity is only linear, O(NC2), rather than
quadratic, O(N2C), where C is much smaller than N.

Sparse Transformers. In addition, the utilization of global-based attention involves
computing attention matrices that consider all image patches (tokens), prompting the
question of whether it is necessary for all elements in the sequence to be attended. The
answer to this query is: NO! The inherent dense calculation pattern of the SA mechanism
amplifies the weights of relatively lower similarities, rendering the feature interaction
and aggregation process susceptible to implicit noise. Consequently, redundant or irrele-
vant representations continue to influence the modeling of global feature dependencies.
Numerous studies have demonstrated that the adoption of sparse attention matrices can
enhance model performance while reducing memory usage and computational require-
ments. For instance, Sparse Transformer [40] employs a factorized operation to mitigate
complexity and suggests reducing the spatial dimensions of attention’s key and value
matrices. Explicit Sparse Transformer [41] improves attention concentration on the global
context by explicitly selecting the most relevant segments in natural language processing
(NLP) tasks. EfficientViT [42] further addresses redundancy in attention maps by explicitly
decomposing the computation of each head and feeding them with diverse features. In
this study, instead of computing the attention matrix for all query–key pairs as in the
conventional SA mechanism, we adopt a selective approach in the proposed DGSA. Specif-
ically, we choose the top-k most similar keys and values for each query. However, the
use of predefined k values can be seen as a form of hard coding, potentially impeding the
relational learning between pairwise pixels. To mitigate this issue, we generate multiple
attention matrices with different degrees of sparsity by employing multiple k values. These
matrices are then weighted by adaptively learned coefficients for fusion. Our approach can
give higher attention to high-contributing regions while giving stronger suppression to
low-contributing regions.

2.3. Combination of Transformers and Convolutional Networks

Several works have incorporated classical design principles of Convolutional Net-
works into Transformers. These include (1) preserving locality property [43–48] and (2)
adopting specific network architectures such as U-Net [14,49–51], hierarchical pyramid-like
structures [52–54], and two-stream architectures [55]. On the other hand, MobileViT [35]
and MobileFormer [56] successfully combine MobileNet [57] and ViT [30] to achieve com-
petitive results on mobile devices. HAT [58] introduces a hybridized network with parallel
branches for channel attention and multi-head self-attention (MHSA) to reconstruct individ-
ual pixels or small regions. ACT [59] utilizes both Transformer and convolution branches
and implements a fuse–split strategy to efficiently aggregate local–global information at
each stage. In this work, we propose a novel hybridization structure, named LGUN, which
leverages the advantages of Convolutional Networks, such as spatial inductive biases and
local connectivity, and combines them with Transformers’ input-adaptive weighting and
global context processing. By encoding shallow, fine-grained local information and effec-
tively interacting with deep global contextual information, our approach achieves a higher



Sensors 2024, 24, 5098 6 of 21

complexity–performance trade-off (Parameters/Multi-Adds @ PSNR/SSIM: 542K/113G
@ xxx).

3. Methods
3.1. Overall Architecture

The proposed network architecture consists of three primary components: (1) feature
extraction FE(·), (2) nonlinear mapping NLM(·), and (3) reconstruction REC(·). The
input and output of the model are denoted as ILR ∈ RH×W×3 and ISR ∈ RH×W×3, respec-
tively. In the initial stage, ILR undergoes an overlapped image patch embedding process,
where a 3 × 3 convolution layer is applied at the beginning of the network. This results
in Fembed ∈ RH×W×C feature maps. Subsequently, Fembed passes through N stacked blocks
to facilitate the learning of local and global relationships. The final reconstructed result is
obtained as follows: ISR = REC(NLM(Fembed) + Fembed).

3.2. LGU

The core modules of LGU, as depicted in Figure 3, include Multi-order Local Hierar-
chical Aggregation (MLHA) and Dynamic Global Sparse Attention (DGSA). The MLHA
module efficiently encodes local spatial information by feeding each sub-branch with a
subset of the entire feature, facilitating the explicit learning of distinct feature patterns.
On the other hand, the DGSA module aims to model long-range non-local dependencies
by leveraging interactions across feature dimensions, resulting in an effective global re-
ceptive field. This design ensures robustness to changes in the input token length while
reducing computational complexity to O(NC2), where C ≪ N. More specific details are
provided below:

Shallow Layer

{
X

′
= X + MLHA(Norm(X))

X
′′
= X

′
+ FFN(Norm(X

′
))

(1)

Deep Layer

{
Z

′
= Z + DGSA(Norm(Z))

Z
′′
= Z

′
+ FFN(Norm(Z

′
))

(2)

3.3. Multi-Order Local Hierarchical Aggregation (MLHA)

In the shallow layer of our method, we employ MLHA to focus on encoding local
spatial information. By using the Split–Transform–Fusion (STF) strategy, MLHA promotes
the learning of different patterns while also saving computational resources.

Given the input feature X ∈ RH×W×C, it passes through three consecutive units:
Linear–MLHA–Linear. The specific details of MLHA are as follows:

Firstly, split. The input feature Fin ∈ RH×W×C is divided into m subparts denoted by
xi. Each subpart has the same spatial size of H × W and a channel number of 1

s C, where
i ∈ {1, 2, ..., m}.

Secondly, transform. Each subpart feature xi is individually processed by a large
kernel convolutional sequence (LKCS) denoted as LKCSi(·), which performs self-adaptive
recalibration of the subpart features. Each LKCSi(·) has a similar structure: DW-Convk1×k1 ,
DW-D-Convk2×k2 , and Convk3×k3 .

Finally, fusion. The MLHA integrates multiple re-weighting LKCSi(·) processes,
enabling the modeling of spatial pixel relationships and the interaction of multi-order
context information for input content self-adaptation. Specifically, each subpart feature
xi (i > 1) is added to the output of LKCSi−1(·) and then passed to the next branch
LKCSi(·) for further processing. The output feature yi of LKCSi(·) corresponds to the
input xi and is passed to the concatenation layer. The concatenation layer aggregates
large-range spatial relationships and multi-order context information, treating them as
weight matrices for self-adaptive modulation of the input feature Fin. By effectively mining



Sensors 2024, 24, 5098 7 of 21

the underlying relevance of Fin, positions with high scores receive adequate attention while
insignificant positions are suppressed. This flexible and effective modulation of the feature
representation promotes the modeling of complex image patterns with high adaptability
and representational power. The process can be expressed as follows:

FMLH A = Fin ⊙ Concat(y1, ..., ys) (3)

yi =

{
xi, i = 1;
LKCSi(xi + yi−1), 1 < i ≤ s

(4)

3.4. Dynamic Global Sparse Attention (DGSA)

The token-based SA mechanism calculates the weight matrix along the token dimen-
sion. However, the quadratic increase in computational complexity as the sequence length
N grows makes it unsuitable for long sequences and high-resolution images. To address
this, compromise solutions have been proposed with two approaches: (1) replacing global
SA with local SA, which restricts the SA calculation to local windows, and (2) reducing the
sequence length of the key and the value through pooling or stride convolution. However,
the former method can only capture dependencies within a limited local range, thus con-
straining the modeling capacity of the entire network to a local region. The latter method,
on the other hand, may result in excessive downsampling, leading to information loss or the
confusion of relationships, which contradicts the purpose of SISR. In this work, we present
an efficient solution that enables global interactions in SA with linear complexity. Instead of
considering global interactions between all tokens, we propose the use of Dynamic Global
Sparse Attention (DGSA), which operates across feature channels rather than tokens. In
DGSA, the interactions are based on the cross-covariance matrix computed over the key
and query projections of the token features. The specific details are as follows:

Consider an input token sequence, X ∈ RN×D, where N and D denote the length and
dimension of the input sequence, respectively. DGSA first generates the query Q, key K,
and value V using linear project layers from X,

Q = XWq, K = XW k, V = XWv (5)

where Wq, W k, and Wv ∈ RD×Dh are learnable weight matrices and Dh is the number of
project dimensions. Next, the output of DGSA is computed as a weighted sum over N
value vectors,

A(Q, K, V) = V · So f tmax(
K⊤ · Q√

dh
) (6)

Importantly, DGSA has a linear complexity of O(N) rather than O(N2) in vanilla SA.
As mentioned in the Introduction, to address the potential negative impact of irrelevant

or confusing information in the SISR task, we introduce a Multi-stage Token Selection (MTS)
strategy. As shown in Figure 4, this strategy involves selecting the top-k similar tokens from
the keys for each query in order to compute the attention weight matrix. To achieve this,
we employ multiple different k values parallelly, resulting in multiple attention matrices
with varying degrees of sparsity. The final output is obtained by combining these matrices
through a weighted sum. The DGSA with MTS can be expressed as follows:

DGSA(Q, K, V) = ∑3
n=1 wn ∗ DGSAkn(Q, K, V) (7)

DGSAkn(Q, K, V) = V · So f tmax

(
Tkn(

K⊤ · Q√
dh

)

)
(8)
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where w1, w2, and w3 represent the assigned weight, which is obtained through dynamic
adaptation learning by the network, with an initial value of 0.1, and Tkn(·) is the dynamic
learnable row-wise top-k selection operator:

[Tk(A)]ij =

{
Aij Aij ∈ top-k(row j

)
−in f otherwise

(9)

We set Multi-stage Token Selection thresholds k1, k2, and k3 to 1
2 , 2

3 , and 3
4 , respectively.

In conclusion, DGSA offers two significant advantages. Firstly, it enables the modeling
of global correlations by selecting the most similar tokens from the entire attention matrix
while effectively filtering out irrelevant ones. Secondly, by employing a weighted sum of
multiple attention matrices with varying degrees of sparsity, the model can adequately
capture the underlying relevance between all pairs of positions. This approach assigns
higher weights to positions of greater importance while suppressing insignificant positions.
Consequently, it facilitates the identification of crucial features and their effective utilization
in subsequent processing steps. Through this mechanism, our method adaptively selects
high-contributing scores from input elements, promoting the modeling of complex image
patterns with enhanced adaptability and representational power.

Figure 4. Multiple attention matrices. Take a head as an example (D = Dh), where w1, w2, w3, and
w4 represent the assigned weight, which is obtained by dynamic adaptation learning of the network.
We set Multi-stage Token Selection thresholds k1, k2, k3, and k4 to 1

2 , 2
3 , 3

4 , and 4
5 , respectively.

3.5. Feed-Forward Network (FFN)

The original Feed-Forward Network (FFN) has limitations in modeling local pat-
terns and spatial relationships, which are crucial for SISR. The inverted residual block
(IRB) incorporates a depth-wise convolution between two linear transform layers. This
design enables the aggregation of local information among neighboring pixels within
each channel. Building upon this idea, we adopted the IRB’s design paradigm, and the
point-wise convolutional layers in the vanilla FFN were replaced with a combination of
depth-wise convolutions and excitation-and-squeeze modules. This modification captures
local patterns and structures effectively. Further details are provided below.

FFN(X) = Linear(σ(SAL(Linear(X)))) (10)

where σ indicates the nonlinear activation function GELU. SAL indicates the spatial aware-
ness layer.
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3.6. Discussion

As mentioned earlier, our method combines the strengths of Convolutional Networks,
such as spatial inductive biases and local connectivity, with Transformers, which provide
input-adaptive weighting and global context processing. This integration allows us to
achieve a favorable balance between complexity and performance. The advantages of our
approach can be summarized as follows:

(1) Fine-grained local modeling. The MLHA incorporates a re-weighting process into
both the sub-branch and entire features. By utilizing the extracted convolutional features
as weight matrices, we can self-adaptively re-calibrate the input representations, effectively
capturing spatial relationships and enabling multi-order feature interactions. This approach
ensures that important positions receive appropriate focus while suppressing insignificant
positions. It is worth noting that each sub-branch feature xi can receive features from all
subparts xi, j ≤ i, and passes through large kernel convolutional sequences, resulting in a
larger receptive field.

(2) Efficient global interaction. The DGSA is capable of modeling long-range non-local
dependencies while obtaining an effective global receptive field. The interactions in DGSA
operate across feature dimensions and are based on the cross-covariance matrix between
keys and queries. To avoid interference with subsequent super-resolution tasks, our MTS
strategy selects multiple top-k similarity scores between queries and keys for attention
matrix calculation. This strategy masks out insignificant elements with lower weights,
reducing redundancy in attention maps and suppressing clutter background interference,
thereby facilitating better feature aggregation.

(3) Linear complexity. Our method remains robust to changes in the input token length
while achieving linear computational complexity of O(NC2), where C ≪ N. This enables
flexible and effective modeling of feature representation, promoting the capture of complex
image patterns with high representational power.

4. Experiments
4.1. Implementation Details

Our proposed method comprises 16 fundamental building blocks, with each block
having 64 channels. Minor channel adjustments are made only in the image reconstruc-
tion part for the ×2, ×3, and ×4 scales. To evaluate the effectiveness of our proposed
method, we tested it on five common benchmark datasets: Set5 [60], Set14 [61], BSD100 [62],
Urban100 [63], and Manga109 [64]. We measured the average peak-signal-to-noise ratio
(PSNR) and the structural similarity (SSIM) on the luminance (Y) channel of YCbCr space.
Our method was implemented using Pytorch 1.12.0 and trained on a single NVIDIA RTX
3090 GPU. More hyper-parameters of the training process are shown in Table 1.

Table 1. Hyper-parameters of the training process.

Training Config Settings

Random rotation (90◦, 180◦, 270◦)
Random flipping Horizontal

Patch size 64 × 64
Batch size 16

Base learning rate 5 × 10−4

Optimizer momentum β1 = 0.9, β2 = 0.999
Weight decay 1 × 10−4

Learning rate schedule Cosine decay
Learning rate bound 1 × 10−7

4.2. Comparison with State-of-the-Art (SOTA) Methods

To validate the effectiveness of our method, we present the reconstruction results
obtained by various SR models on both natural and satellite remote sensing images. These
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images were captured using common optical sensors (e.g., CMOS) as well as satellite
sensors (e.g., millimeter-wave sensors). First, we verify the effectiveness of our proposed
method on natural images. In Section 4.2.3, we verify the effectiveness of the method on
satellite remote sensing images.

4.2.1. Quantitative and Qualitative Results

In Table 2, we compare the proposed method with recent SOTA efficient SISR ap-
proaches for upscale factors of ×2, ×3, and ×4 on five benchmark datasets. For in-
stance, we used SRCNN [15], VDSR [11], DRCN [65], LapSRN [66], MemNet [67], SRFBN-
S [68], IDN [69], CARN [70], EDSR [12], FALSR-A [18], SMSR [71], A2N [72], LMAN [26],
DRSDN [24], SwinIR [32], and NGswin [73]. Notably, SwinIR [32] and NGswin [73] are re-
cently advanced Transformer-based methods. Specifically, in Set5, the average PSNR value
at ×2 scale is improved by 0.63 and the average SSIM value of ×2 scale is improved by 0.0036
on average over other methods; the average PSNR value at ×4 scale is improved by 0.89 and
the average SSIM value at ×4 scale is improved by 0.0144 on average over other methods.
In Set14, the average PSNR value at ×2 scale is improved by 0.64 and the average SSIM
value at ×2 scale is improved by 0.0079; the average PSNR value at ×4 scale is improved by
0.64 and the average SSIM value at ×4 scale is improved by 0.0165 on average over other
methods. Obviously, with a lower complexity, our method (Parameters/Multi-Adds @
PSNR/SSIM: 542K/113G @ 38.24/0.9618) obtains better PSNR/SSIM results compared to
recently improved Transformer-based and Convolutional Network-based methods, such as
SwinIR (878K/243.7G @ 38.14dB/0.9611) and NGswin (998K/140.4G @ 38.05dB/0.9610).

In Figure 5, we present the qualitative comparison results for different methods at
upscale factors of ×4. For the images “img 024”, “img 067”, “img 071”, “img 073” and
“img 076” in the Urban100 dataset, our method demonstrates superior reconstruction of
lattice and text patterns with minimal blurriness and artifacts compared to other methods.
This observation confirms the usefulness and effectiveness of our approach. Taking the
image “img 024” as an example, our method accurately generates stripes with the correct
direction and minimal blurring, while the other methods produce incorrect stripes and a
noticeable blur over a wide range.
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Table 2. Quantitative comparison with SOTA methods on five popular benchmark datasets. Thicker text indicates the best results. ‘Multi-Adds’ is calculated with a
1280 × 720 HR image. The bold font shows the best value in every group.

Method Scale #Params (K) Multi-Adds (G) Set5 Set14 BSDS100 Urban100 Manga109

Bicubic ×2 \ \ 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN (TPAMI’14) [15] ×2 57 52.7 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0 9663

VDSR (CVPR’16) [11] ×2 665 612.6 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750
DRCN (CVPR’16) [65] ×2 1774 9788.7 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732

LapSRN (CVPR’17) [66] ×2 813 29.9 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740
MemNet (ICCV’17) [67] ×2 677 623.9 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740

IDN (CVPR’18) [69] ×2 553 127.7 37.83/0.9600 33.30/09148 32.08/0.8985 31.27/0.9196 38.01/0.9749
CARN (ECCV’18) [70] ×2 1592 222.8 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765

EDSR-baseline (CVPR’19) [12] ×2 1370 316 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769
SRFBN-S (CVPR’19) [68] ×2 282 574.4 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757
FALSRA (ICPR’21) [18] ×2 1021 234.7 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256 -
SMSR (CVPR’21) [71] ×2 985 131.6 38.00/0.9601 33.64/09179 32.17/0.8990 32.19/0.9284 38.76/0.9771
A2N (arXiv’19) [72] ×2 1036 247.5 38.06/0.9608 33.75/09194 32.22/09002 32.43/0.9311 38.87/0.9769

LMAN (TBC’21) [26] ×2 1531 347.1 38.08/0.9608 33.80/0.9023 32.22/0.9001 32.42/0.9302 38.92/0.9772
SwinIR (ICCV’21) [32] ×2 878 243.7 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783

B-GSCN 10 (KBS’21) [74] ×2 1490 343 38.04/0.9606 33.64/0.9182 32.19/0.8999 32.19/0.9293 38.64/0.9771
DRSDN (KBS’21) [24] ×2 1055 243.1 38.06/0.9607 33.65/0.9189 32.23/0.9003 32.40/0.9308 -

FPNet (TCSVT’22) [75] ×2 1615 - 38.13/0.9619 33.83/0.9198 32.29/0.9018 32.04/0.9278 -
NGswin (CVPR’23) [73] ×2 998 140.4 38.05/0.9610 33.79/0.9199 32.27/0.9008 32.53/0.9324 38.97/0.9777

LGUN (Ours) ×2 675 141.1 38.24/0.9618 33.93/0.9208 32.34/0.9027 32.65/0.9322 39.38/0.9786

Bicubic ×3 \ \ 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN (TPAMI’14) [15] ×3 57 52.7 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

VDSR (CVPR’16) [11] ×3 665 612.6 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340
DRCN (CVPR’16) [65] ×3 1774 9788.7 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.14/0.8279 32.24/0.9343

MemNet (ICCV’17) [67] ×3 677 623.9 34.09/0.9248 30.01/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
IDN (CVPR’18) [69] ×3 553 57 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 3271/0.9381

CARN (ECCV’18) [70] ×3 1592 118.8 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
EDSR-baseline (CVPR’19) [12] ×3 1555 160 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439

SRFBN-S (CVPR’19) [68] ×3 375 686.4 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404
SMSR (CVPR’21) [71] ×3 993 67.8 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
A2N (arXiv’19) [72] ×3 1036 1175 34.47/0.9279 30.44/0.8437 29.14/0.8059 28.41/0.8570 33.78/0.9458

LMAN (TBC’21) [26] ×3 1718 173.8 34.56/0.9286 30.46/0.8439 29.17/0.8067 28.47/0.8576 34.00/0.9470
SwinIR (ICCV’21) [32] ×3 886 109.5 34.60/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/090978

B-GSCN 10 (KBS’21) [74] ×3 1510 154 34.30/0.9271 30.35/0.8425 29.11/0.8035 28.20/0.8535 33.54/0.9445
DRSDN (KBS’21) [24] ×3 1071 109.8 34.48/0.9282 30.41/0.8445 29.17/0.8072 28.45/0.8589 -

FPNet (TCSVT’22) [75] ×3 1615 - 34.48/0.9285 30.53/0.8454 29.20/0.8086 28.19/0.8534 -
NGswin (CVPR’23) [73] ×3 1007 66.6 34.52/0.9282 30.53/0.8456 29.19/0.8078 28.52/0.8603 33.89/0.9470

LGUN (Ours) ×3 684 63.5 34.60/0.9292 30.54/0.8458 29.25/0.8102 28.53/0.8586 34.26/0.9480
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Table 2. Cont.

Method Scale #Params (K) Multi-Adds (G) Set5 Set14 BSDS100 Urban100 Manga109

Bicubic ×4 \ \ 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN(TPAMI’14) [15] ×4 57 52.7 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.721 27.58/0.85555

VDSR(CVPR’16) [11] ×4 665 612.6 31.35/0.8830 28.02/0.7680 27 29/0.7260 25.18/0.7540 28.83/0.8870
DRCN(CVPR’16) [65] ×4 1774 9788.7 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.18/0.7524 28.93/0.8854

LapSRN(CVPR’17) [66] ×4 813 149.4 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900
MemNet(ICCV’17) [67] ×4 677 623.9 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942

IDN(CVPR’18) [69] ×4 553 32.3 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
CARN(ECCV’18) [70] ×4 1592 90.9 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084

EDSR-baseline(CVPR’19) [12] ×4 1518 114 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
SRFBN-S(CVPR’19) [68] ×4 483 852.9 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008

SMSR(CVPR’21) [71] ×4 1006 41.6 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
A2N(arXiv’19) [72] ×4 1047 72.4 32.30/0.8966 28.71/0.7842 27.61/0.7374 26.27/0.7920 30.67/0.9110

LMAN(TBC’21) [26] ×4 1673 122.0 32.40/0.8974 28.72/0.7842 27.66/0.7388 26.36/0.7934 30.84/0.9129
SwinIR(ICCV’21) [32] ×4 897 61.7 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151

B-GSCN 10(KBS’21) [74] ×4 1530 88 32.18/0.8950 28.60/0.7821 27.59/0.7364 26.12/0.7872 30.50/0.9080
DRSDN(KBS’21) [24] ×4 1095 63.1 32.28/0.8962 28.64/0.7836 27.64/0.7388 26.30/0.7933 -

FPNet(TCSVT’22) [75] ×4 1615 - 32.32/0.8962 28.78/0.7856 27.66/0.7394 26.09/0.7850 -
NGswin(CVPR’23) [73] ×4 1019 36.4 32.33/0.8963 28.78/0.7859 27.66/0.7396 26.45/0.7963 30.80/0.9128

LGUN (Ours) ×4 696 36.4 32.63/0.9008 28.94/0.7897 27.82/0.7458 26.88/0.8084 31.52/0.9183
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Figure 5. Qualitative comparison of state-of-the-art methods on Urban100 [63]. Our method achieves
better performance with fewer artifacts and less blur.
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4.2.2. Visualization Analysis

LAM Results. In Figure 6, we analyze the local attribution map (LAM [76]) results for
SwinIR [32], AAN [72], LMAN [26], and our method to investigate the utilization range
of pixels in the input image during the reconstruction of the selected area. We employ
the diffusion index (DI) as an evaluation metric to assess the model’s ability to extract
features and utilize relevant information. As illustrated in Figure 6, our method exhibits
the utilization of a larger range of pixel information in reconstructing the area outlined by a
red box. This observation demonstrates that our approach achieves a larger receptive field
through an efficient local and global interaction.

To facilitate intuitive comparisons, we present a heat map, as shown in Figure 7,
illustrating the differences in interest areas between the SR networks (referred to as “Diff”).
An observation can be made that the proposed LGUN exhibits a more extensive diffusion
region compared to CARN [70], EDSR [12], SwinIR [32], and AAN [72]. This observation
indicates that our designs enable the exploitation of a greater amount of intra-frame
information while maintaining limited network complexity. This is primarily attributed
to the MLHA and DGSA employed in LGUN, which facilitate the learning of diverse
information ranges and the selective retention of spatial textures deemed useful.

Figure 6. Results of local attribution maps. A more widely distributed red area and higher DI
represent a larger range of pixel utilization.
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Figure 7. The heat maps exhibit the area of interest for different SR networks. The red regions are
noticed by CARN [70], EDSR [12], SwinIR [32] and AAN [72], while the blue areas represent the
additional LAM interest areas of the proposed LGUN. (LGUN has a higher diffusion index).

4.2.3. Remote Sensing Image Super-Resolution

Satellite sensors play a vital role in remote sensing by capturing images and data of
the Earth’s surface from space. These sensors are mounted on Earth-orbiting satellites
and are specifically designed to gather information across multiple wavelengths of the
electromagnetic spectrum. Remote sensing images obtained from satellite sensors offer
valuable insights for a wide range of applications, including environmental monitoring,
land use classification, disaster management, and climate studies.

One crucial task of remote sensing is SISR, which aims to enhance the resolution of
satellite images. Higher-resolution images provide more accurate and detailed information
about the Earth’s surface, which is crucial for various applications. Therefore, SISR plays
a pivotal role in maximizing the usefulness of remote sensing data. To demonstrate the
effectiveness of our proposed method in enhancing remote sensing images obtained from
satellite sensors, we present the SISR results of different networks in Figure 8. Our network
exhibits clear advantages in recovering remotely sensed images, particularly in capturing
texture details, lines, and repetitive structures. In contrast, other contrast algorithms often
introduce artifacts and blending issues when dealing with remote sensing images that
have complex backgrounds. At the same time, our network effectively mitigates blurring
artifacts and reconstructs edge details with higher fidelity.

4.3. Ablation Study

In Table 3, we present the results of the ablation study for our method. Below, we
discuss the ablation results based on the following aspects:

The influence of the structure configuration. The primary objective of this study was
to efficiently encode local spatial information, model long-range non-local dependencies,
and achieve a global receptive field by leveraging the strengths of Convolutional Networks,
which provide spatial inductive biases and local connectivity, and Transformers, which
offer input-adaptive weighting and global context interaction. In order to validate the effec-
tiveness of the two core modules, namely MLHA and DGSA, we conducted experiments
where one module was removed while the other was retained. The results, as presented
in Table 3(a), demonstrate a significant decrease in model performance when either of the
modules is removed. These findings indicate that the model benefits from both the global
interaction introduced by the DGSA module and the fine-grained local modeling achieved
by MLHA.

The influence of the MLHA part. In the initial layers of our model, we utilize MLHA
to efficiently encode local spatial information. This is achieved by feeding each sub-branch
with a specific subset of the complete feature. The effectiveness of the STF strategy is
demonstrated in Table 3(b), where it is shown to enhance the explicit learning of distinct
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feature patterns within the network, leading to improved performance compared to models
trained without the STF strategy.

Figure 8. Qualitative comparison of state-of-the-art methods on AID dataset.

The influence of the DGSA part. In the deeper layers of our model, we introduce
DGSA to effectively model long-range non-local dependencies and achieve a global recep-
tive field of H × W. To reduce redundancy in attention maps and mitigate interference
from cluttered backgrounds, we employ the MTS strategy, which selects multiple top-k
similar attention matrices and masks out elements with lower weights. In Table 3(c), we
display the results of a series of experiments to assess the effectiveness of the DGSA module.
These experiments include scenarios with no sparse attention (w/o top-k), sparse attention
(w/top-k), and sparse attention with the MTS strategy (top-k with MTS). The results of
these experiments indicate that employing sparse attention with the MTS strategy leads to
improved performance.

The influence of the design of LKCS in the MLHA part. We conducted an experiment
to verify the effectiveness of three LKCS modules in our MLHA. Specifically, each LKCS
module consists of three convolution layers: DW-Conv layer, DW-D-Conv layer, and Conv
layer. The three LKCS modules differ in the kernel size of the three convolution layers they
contain. In the first LKCS module, the kernel sizes of the three convolution layers are 3, 5,
and 1. In the second LKCS module, The kernel sizes of the three convolution layers are 5, 7,
and 1. And in the third LKCS module, the kernel sizes of the three convolution layers are 7,
9, and 1. We wanted to show the effectiveness of extracting features using different kernel
sizes. We conducted the experiments, in which the three LKCS modules were exactly the
same. The kernel sizes of the three convolution layers in all three LKCS modules were set
to 5, 7, and 1. The results are shown in Table 3(d), which shows the effectiveness of our
proposed LKCS module.
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Table 3. Ablation experiments on the micro structure design. The bold font shows the best value in
every group.

(a) Results for the MLHA and DGSA modules.

LGU
Set5 Set14 BSDS100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

w/o MLHA 38.19/0.9616 33.84/0.9199 32.28/0.9018 32.49/0.9307 39.31/0.9784
w/o DGSA 38.15/0.9612 33.65/0.9180 32.25/0.9014 32.18/0.9284 39.11/0.9780

w MLHA + DGSA (Ours) 38.24/0.9618 33.93/0.9208 32.34/0.9027 32.65/0.9322 39.38/0.9786

(b) Results for the STF strategy in MLHA.

MLHA
Set5 Set14 BSDS100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

w/o STF 38.20/0.9616 33.89/0.9200 32.30/0.9020 32.48/0.9309 39.28/0.9781
w STF (Ours) 38.24/0.9618 33.93/0.9208 32.34/0.9027 32.65/0.9322 39.38/0.9786

(c) Results for the MTS strategy in DGSA.

DGSA
Set5 Set14 BSDS100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

w/o top-k 38.21/0.9615 33.87/0.9201 32.32/0.9024 32.56/0.9316 39.30/0.9785
w top-k 38.22/0.9616 33.90/0.9203 32.32/0.9024 32.57/0.9317 39.34/0.9786

top-k with MTS (Ours) 38.24/0.9618 33.93/0.9208 32.34/0.9027 32.65/0.9322 39.38/0.9786

(d) Results for the effectiveness of LKCS modules in MLHA.

MLHA
Set5 Set14 BSDS100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Identical LKCS 38.11/0.9609 33.62/0.9175 32.19/0.9008 32.13/0.9277 39.05/0.9772
Different LKCS (Ours) 38.24/0.9618 33.93/0.9208 32.34/0.9027 32.65/0.9322 39.38/0.9786

4.4. Application

There are many potential applications of the Lightweight Image Super-Resolution
approach. For example, in surveillance, SR techniques can enhance video resolution,
making images sharper and clearer so that details, such as facial features and licence plate
numbers, can be more easily identified, thus enhancing security. In medical imaging, SR
technology can improve the clarity of medical images and help doctors diagnose conditions
more accurately. In the field of satellite imagery, SR technology can improve image quality
and make remote sensing data analysis more accurate, which is used in environmental
monitoring, urban planning, and other fields. The lightweight SR method is particularly
suitable for resource-constrained devices and real-time processing scenarios due to its low
computation and storage requirements.

5. Conclusions

The aim of this study is to develop a lightweight and high-performance network for
SISR by effectively combining the strengths of Transformers and Convolutional Networks.
To achieve this objective, we propose a novel lightweight SISR method called LGUN.
LGUN focuses on encoding local spatial information within MLHA and utilizes the Split–
Transform–Fusion (STF) strategy to facilitate the learning of diverse patterns. Additionally,
it models global context dependencies through the core module: DGSA. DGSA selects
multiple top-k similar attention matrices and masks out elements with lower weights,
thereby reducing redundancy in attention maps and suppressing interference from cluttered
backgrounds. The experimental results, evaluated on popular benchmarks, demonstrate
the superior quantitative and qualitative performance of our method.
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