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Abstract: In the context of autonomous driving, the augmentation of existing data through simula-
tions provides an elegant solution to the challenge of capturing the full range of adverse weather
conditions in training datasets. However, existing physics-based augmentation models typically
rely on single scattering approximations to predict light propagation under unfavorable conditions,
such as fog. This can prevent the reproduction of important signal characteristics encountered in a
real-world environment. Consequently, in this work, Monte Carlo simulations are employed to assess
the relevance of multiple-scattered light to the detected LiDAR signal in different types of fog, with
scattering phase functions calculated from Mie theory considering real particle size distributions.
Bidirectional path tracing is used within the self-developed GPU-accelerated Monte Carlo software to
compensate for the unfavorable photon statistics associated with the limited detection aperture of the
LiDAR geometry. To validate the Monte Carlo software, an analytical solution of the radiative transfer
equation for the time-resolved radiance in terms of scattering orders is derived, thereby providing an
explicit representation of the double-scattered contributions. The results of the simulations demon-
strate that the shape of the detected signal can be significantly impacted by multiple-scattered light,
depending on LiDAR geometry and visibility. In particular, double-scattered light can dominate the
overall signal at low visibilities. This indicates that considering higher scattering orders is essential
for improving AI-based perception models.

Keywords: LiDAR; autonomous driving; adverse weather; augmentation; Monte Carlo simulation;
analytical solution; radiative transfer equation; time-resolved radiance

1. Introduction

As the optical counterpart to radar, a light detection and ranging (LiDAR) system
enables the precise determination of distances by emitting light pulses with time-resolved
detection of the reflected pulse response. In addition to applications such as topographic
mapping [1,2], the characterization of atmospheric properties [3,4] and other areas where 3D
mapping of the environment is of interest [5,6], LiDAR has become increasingly important
in the field of autonomous driving [7]. Complementing established sensor technologies
that only yield angular resolution, such as cameras, the additional depth information
provides critical value for reliable AI-based object recognition. However, a major deficiency
relates to the functionality of LiDARs under adverse weather conditions such as rain,
snow, or fog, where the potential for accidents is particularly elevated, necessitating special
attention to ensure optimal operational safety. The presence of scattering particles in
the air results in the attenuation of the light beam which, in turn, reduces the detected
signal. Furthermore, the backscattered light from the surrounding environment introduces
spurious peaks and additional noise [8]. This can lead to erroneous object detection and,
in the worst case, may even trigger an unintended braking maneuver. The primary issue
relates to the fact that most existing datasets do not adequately reflect the full spectrum of
adverse weather conditions required for training the machine learning algorithms utilized
for autonomous navigation. Moreover, the labeling of adverse weather data is subject to a
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high potential for error. To address these limitations, the augmentation of existing datasets
through simulation, for instance, calculating the signal’s appearance in the presence of
meteorological phenomena such as fog, offers an effective method for incorporating all
weather scenarios pertinent to the real-world application into a training dataset. A variety
of approaches can be found in the literature [9], including physics-based augmentation
models for snow [10] and fog [8], which build upon the LiDAR model presented by
Rasshofer et al. [11]. In this context, the propagation of the pulse through a scattering
medium is described by a linear model, where the detected power is represented by a time-
wise convolution of the emitted pulse with the pulse response of the scene [8]. However,
concerning the so-called soft target contribution, this model offers only an approximate
solution for the single-scattered radiance. To ensure an accurate representation of reality,
it is important to investigate physical plausibility, in particular, whether and to what
extent multiple-scattered light may be relevant, to assess if accounting for higher scattering
orders could further improve the quality of the augmented data. Contrary to the field of
autonomous driving, the influence of multiple scattering on the LiDAR signal has already
been extensively investigated theoretically within the scope of atmospheric science using
the Monte Carlo (MC) method [12], which provides the numerical solution to the radiative
transfer equation (RTE) and is regarded the gold standard for the computational modeling
of light propagation in turbid media. Further, in atmospheric applications, approximate
models based on the LiDAR equation have already been proposed to account for the higher
scattering orders [13], confirming its relevance. Regarding the exact analytical solutions of
the time-dependent RTE in infinite space, to the best of our knowledge, the solution for the
single-scattered radiance caused by an isotropic point source [14] and, from our previous
work, the solution for the total radiance induced by an unidirectional light source [15] are
available. Furthermore, for second-order solutions, expressions for specific configurations,
e.g., the LiDAR geometry, are presented in [16]. However, no explicit representation for
the infinite-space Green’s function, i.e., the fundamental solution to the double-scattered
radiance in terms of a single quadrature has been given.

In this study, the influence of multiple scattering on the detected LiDAR signal in
the context of autonomous driving is investigated theoretically for different fog types,
visibility ranges and beam geometries using the MC method as a numerical solution
to the RTE. To this end, the LiDAR configuration, together with the bidirectional path
tracing technique [17], has been implemented into a self-developed GPU-accelerated MC
software [18] to enable the efficient computation of the statistically unfavorable detection
geometry. In addition, the analytical solution of the RTE for the time-resolved radiance is
derived in terms of scattering orders in infinite space and an explicit representation for the
double-scattered radiance is provided. This allows the flexibility of the MC method to be
exploited while establishing a physical ground truth through validation, thereby meeting
best practice standards for simulative studies. Furthermore, to ensure representative
numerical results, real particle size distributions from the literature [19] were used to
calculate the scattering phase functions for fog via Mie theory. The analysis of the individual
scattering acts reveals that higher scattering orders can have a significant effect on the
overall signal. In particular, the fog-induced peaks are mainly due to single and double-
scattered light. Under low visibility conditions, the maximum caused by the double-
scattered contributions can even become clearly dominant in the overall signal. Models
based on single scattering would, therefore, be unable to capture both of these peaks,
resulting in artificially generated training data lacking critical features of the real-world
LiDAR response. Finally, since distance determination is primarily based on peak detection
in the LiDAR signal, object recognition in real-world applications is likely to be degraded,
ultimately leading to less robust autonomous navigation in fog.

The remainder of the paper is structured as follows. In Section 2, the derivation
of the analytical solution is presented, and the particularities of the MC methodology
are discussed in brief. Subsequently, in Section 3, the validation of the MC software is
demonstrated using the analytical solution of the time-resolved double-scattered radiance.
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Subsequently, the influence of the individual scattering orders on the LiDAR signal based
on the MC method is theoretically evaluated. In conclusion, in Section 4, a summary of
the key findings is provided and an outlook is given on how further improvement of the
extended datasets can potentially be achieved.

2. Materials and Methods
2.1. Green’s Function in Terms of Scattering Orders

This section considers the time-resolved radiance in terms of scattering orders caused
by a unidirectional point source, providing an explicit representation of the double-scattered
radiance. Furthermore, an infinitely extended anisotropic scattering medium is assumed
with absorption and scattering coefficients denoted by µa and µs, respectively. The total
attenuation coefficient is defined as µt = µa + µs and the effect of anisotropic scattering is
described by a rotationally invariant and normalized phase function of the form f = f (ŝ · ŝ′)
with an anisotropy factor g := 2π

∫ 1
−1 f (µ)µ dµ. In this context, the direction vector ŝ ∈ S2

is given by the representations

ŝ =

s1
s2
s3

 =

sin θ cos ϕ
sin θ sin ϕ

cos θ

 =


√

1 − µ2 cos ϕ√
1 − µ2 sin ϕ

µ

. (1)

The fundamental solution (Green’s function) for the time-resolved RTE can be formally
expanded in terms of the Neumann series G = ∑n≥0 Gn, with Gn = Gn(x, ŝ, ŝ0, t) being the
solution of the recursively defined transport equation

1
c

∂Gn

∂t
+ ŝ · ∇Gn + µtGn = µs

∫
S2

f (ŝ · ŝ′)Gn−1(x, ŝ′, ŝ0, t) dŝ′, n ∈ N, (2)

where x ∈ R3, c is the speed of light and ŝ0 ∈ S2 indicates the direction of the unidirectional
point source. The first term G0 which corresponds with the ballistic contribution is given by

G0(x, ŝ, ŝ0, t) = ce−µtctΘ(t)δ(x − ctŝ0)δ(ŝ − ŝ0), (3)

where Θ(·) denotes the Heaviside step function. Henceforth, c = 1 is set due to convenience.
To proceed further, both sides of (2) are multiplied by eµtt and the resulting equation is
integrated along the path

γ : [0, t] −→ R4, ℓ −→ γ(ℓ) :=
(

x − (t − ℓ)ŝ
ℓ

)
, (4)

under consideration of Gn|t=0 = 0 for n > 0. As a result, we obtain

Gn(x, ŝ, ŝ0, t) = µs

∫ t

0
e−µtℓ

∫
S2

f (ŝ · ŝ′)Gn−1(x − ℓŝ, ŝ′, ŝ0, t − ℓ) dŝ′dℓ, n ∈ N. (5)

In the case of n = 1, the single-scattered radiance can be expressed in the form

G1(x, ŝ, ŝ0, t) = µse−µtt f (ŝ · ŝ0)
∫ t

0
δ(x − ℓŝ − (t − ℓ)ŝ0) dℓ, t > 0. (6)

Inserting this expression into the recursion (5) for n = 2 leads to the double-scattered
radiance

G2(x, ŝ, ŝ0, t) = µ2
s e−µtt

∫ t

0

∫
|y|≤(t−ℓ)

f (ŝ · ŷ) f (ŷ · ŝ)δ(x − ℓŝ − y − (t − ℓ− |y|)ŝ0) dydℓ. (7)
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By expanding the Dirac delta function according to

δ(x − ℓŝ − y − (t − ℓ− |ŷ|)ŝ0) =
δ(|x − ℓŝ − (t − ℓ− |ŷ|)ŝ0| − |ŷ|)

|x − ℓŝ − (t − ℓ− |ŷ|)ŝ0|2

× δ

(
x − ℓŝ − (t − ℓ− |ŷ|)ŝ0

|x − ℓŝ − (t − ℓ− |ŷ|)ŝ0|
− ŷ

)
(8)

and reconsidering the speed of light c, we obtain the representation

G2(x, ŝ, ŝ0, t) = 2cµ2
s e−µtct

∫ ℓ∗

0

f (ŝ · ŝ0 + ŝ · v) f (1 + ŝ0 · v)
|x − ℓŝ − (ct − ℓ)ŝ0|2

dℓ, (9)

defined for t > r/c and

v := 2
(ct − ℓ− (x − ℓŝ) · ŝ0)(x − ℓŝ − (ct − ℓ)ŝ0)

|x − ℓŝ − (ct − ℓ)ŝ0|2
. (10)

Furthermore, the upper limit of integration is given by

ℓ∗ :=
1
2
(ct)2 − |x|2

ct − x · ŝ
. (11)

2.2. Monte Carlo Simulation

For the most representative comparison between the analytical and numerical solution
of the RTE, it is desirable to detect the radiance at exactly one point in space and a discrete
detection direction within the MC simulation, as in its analytical counterpart. However,
conventional MC methods often use a finite spatial and angular range for detection in
this type of comparison, since the probability of an energy packet, referred to as a photon
in MC terminology, contributing to the signal in the case of an infinitely small detection
area and solid angle is zero. Unfortunately, such binning leads to deviations, especially
in the presence of abrupt changes in radiance, since integration is formally performed
in the spatial angular domain. To compensate for this effect, the detector sizes must be
exceptionally small in both spatial and angular dimensions, resulting in poor statistics
and consequently, enormous computing times. In order to circumvent this limitation,
bidirectional path tracing [17], a technique frequently employed in computer graphics, was
implemented into a self-developed GPU-accelerated MC software [18]. In our adapted
scheme, for the calculation of the n-fold scattered radiance, a photon is always started
simultaneously from the detector and the light source, whereby the detector photon is
propagated only up to the first and the light source photon up to the (n − 1)th scattering
event. At this point, the two sub-paths are connected by a so-called shadow ray, which can
be used to calculate the contribution w to the total radiance via

w =
1

ls2 wd f (cos θd)wl f (cos θl)e−µt ls , (12)

where ls is the length of the shadow ray, wd and wl are the current photon weights of
the detector or light source path, and θd and θl are the angles between the shadow ray
and the last path element of the detector or light source photon. This implies that in an
infinitely extended medium, from n = 2 onwards, each photon contributes to the simulated
signal. The same holds true in the presence of an extended light source or detector aperture.
Consequently, this methodology was also used to investigate the significance of multiple-
scattered LiDAR returns. Besides, note that for the first scattering order n = 1, only
the detector path emerges so that f (cos θl) is replaced by 1/2π(1 − cos θ0), where θ0
is the half opening angle, according to the solid angle illuminated by the light source.
This is equivalent to the local estimate method [18]. Furthermore, in the case of single
scattering, a photon only contributes to the detection signal if the shadow ray lies within
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the source aperture. Finally, it is important to address that the 1/ls2 term in Equation (12)
can potentially lead to the formation of random spikes in the simulated radiance curve due
to single photons where the distance between the interaction points of the two sub-paths
ls happens to be extremely small. In such cases, the simulations were repeated with the
same parameters and the minimum of both calculations was used to filter out the outliers.
The remaining photon propagation follows the standard MC scheme, where details of the
algorithmic implementation can be found in [18].

3. Results and Discussion
3.1. Validation of the Monte Carlo Software

To confirm the physical validity of the MC code, general test cases were first com-
pared to the analytical solution of the time-resolved double-scattered radiance presented in
Section 2.1. For this purpose, the scattering phase function, see Figure 1a (blue curve),
and the optical properties, µs = 7.8 × 10−2 m−1 and µa = 1.5 × 10−4 m−1, were calcu-
lated for a monodisperse fog with a particle radius of 2.5 µm via Mie theory, assuming
a Koschmieder visibility of V ≈ 3.9

µs
= 50 m and a wavelength of 1550 nm. A sketch of

the unidirectional light source and detection geometry under consideration can be seen in
Figure 1b.
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Figure 1. (a) Scattering phase functions calculated from Mie theory at a wavelength of 1550 nm for
advection and a radiation fog, and a monodisperse fog, assuming a radius of r = 2.5 µm for the latter
case and a refractive index of 1.318 for all cases. The particle size distributions employed for the
advection and radiation fog are based on values reported in [19]. (b) Schematic of the unidirectional
source and detector geometry used for validation. The pencil beam source is located at the coordinate
origin, emitting along the positive z-axis, with the detector located at position x. The detection
direction ŝd is defined by the spherical coordinates θ′ and φ′ within the translated detector coordinate
system. Since the argument ŝ in Equation (9) is related to the direction of the incident light and not
the viewing direction, ŝd and ŝ each point in exactly the opposite direction.

In the first three test cases, see Figure 2a–c, where the radiance was evaluated at the
detection point x = (3, 5, 7)m to break possible symmetries, it is evident that the MC
can reproduce the result of the analytical solution even for extremely variable radiance
characteristics. In particular, even the highly complex radiance response caused by the
phase function in Figure 2b,c could be mapped simulatively, achieving an overall accu-
racy of well below 1 % for a total number of simulated photons of about 1012. Notably,
the oscillations in Figure 2b result from the unique arrangement of detector and light
source, in which detectable photon paths are forced to scatter twice at the same angle,
e.g., θ1 or θ2 as shown in Figure 3a. Since the phase function of the monodisperse fog
exhibits pronounced oscillations, these also translate to the radiance at the corresponding
scattering angles due to the prevailing geometric constraints on the photon trajectories.
The authors note that such a geometry could provide a potential starting point for the
determination of the phase function, for example, by solving the inverse problem using MC
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simulations. The oscillations in Figure 2c can be explained similarly. Again, a geometric
restriction of the photon paths leads to a mapping from the phase function to the radiance,
except in this case instead of requiring the same scattering angle twice to contribute to the
signal, the sum of the two scattering angles is limited to a certain value depending on the
respective path length. Finally, for the last comparison, Figure 2d, a special limiting case is
considered. In contrast to the previous examples, the detector is located at x = (1, 0, 0)m,
whereby the detection direction is inclined at a small angle towards the unidirectional light
source. For this configuration, a singularity formally appears in the radiance exactly at the
intersection of the detection and source directions. Therefore, due to numerical inaccuracy,
a larger deviation between the simulation and the analytical solution can be observed in
the area of the pole.

0 20 40 60 80 100

ct / m

10−9

10−8

10−7

I
/

W
·m
−

2
·sr
−

1
·s−

1

(a)

I2 (Analytic)

I2 (MC)

0 50 100

ct / m

−0.01

0.00

0.01

R
el

.
d

ev
ia

ti
o
n

0 20 40 60 80 100

ct / m

10−11

10−10

10−9

10−8

10−7

10−6

I
/

W
·m
−

2
·sr
−

1
·s−

1

(b)

I2 (Analytic)

I2 (MC)

0 50 100

ct / m

−0.01

0.00

0.01

R
el

.
d

ev
ia

ti
on

0 20 40 60 80 100

ct / m

10−11

10−10

10−9

10−8

10−7

I
/

W
·m
−

2
·sr
−

1
·s−

1

(c)

I2 (Analytic)

I2 (MC)

0 50 100

ct / m

−0.01

0.00

0.01

R
el

.
d

ev
ia

ti
on

0 20 40 60 80 100

ct / m

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

I
/

W
·m
−

2
·sr
−

1
·s−

1

(d)

I2 (Analytic)

I2 (MC)

0 50 100

ct / m

−0.01

0.00

0.01

R
el

.
d

ev
ia

ti
on

Figure 2. Comparison of the time-resolved double-scattered radiance obtained from the analytical
solution and MC simulations for the detector directions ŝd (a) θ′ = 0◦ and φ′ = 0◦, (b) θ′ = 180◦

and φ′ = 0◦, (c) θ′ = 90◦ and φ′ = 0◦, and (d) θ′ = 2.5◦ and φ′ = 180◦. The detector position is
x = (3, 5, 7)m for (a–c), respectively, x = (1, 0, 0)m for (d). The insets show the relative deviation.

3.2. Simulations of the LiDAR Geometry

Based on the validated MC software, the influence of individual scattering orders on
the overall LiDAR signal can now be analyzed on a physically sound foundation. Thus,
unlike the previous tests in Section 3.1, illumination and detection are no longer assumed to
be discrete, but extended over an angular range to provide a more realistic representation
of a real LiDAR apparatus. Besides the contribution of the individual scattering orders,
the impact of the exact LiDAR geometry is also studied in this section. Essentially, there are
two primary strategies to measure the relevant field of view (FOV) [20]. One is scanning
LiDAR, where, as the name suggests, a highly collimated laser beam is scanned across
the FOV, providing an angular sampling of the scene. The second, flash LiDAR, involves
illuminating the entire FOV and using a detector array to achieve angular resolution. Both
configurations were modeled in the simulation as a bistatic LiDAR setup, as shown in
Figure 3b, with a distance between the transmitter and receiver of d = 2 cm. Further,
according to [20], an FOV of 0.1◦ was assumed for the detector, with a light source full
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aperture angle of 0.05◦ for the scanning LiDAR and 60◦ for the flash LiDAR. In both cases,
the total emitted power was arbitrarily set to 1 W.

(a)

light source

detector

θ1 θ2

θ2
θ1

(b)

light source

detector

d

Figure 3. (a) Exemplary double scattering photon paths (red and blue) contributing to the signal in
Figure 2b. Due to the special arrangement of the light source and detector, photons must be scattered
twice at the same angle, e.g., θ1 or θ2, resulting in the phase function being mapped onto the radiance
curve. (b) Sketch of the simulated bistatic LiDAR setup. In the case of low beam divergence, as in
scanning LiDAR, the spatial separation between the source and detector leads to a distinct temporal
separation of the detected single-scattered signal (red path) from the higher scattering orders, e.g., the
double-scattered contributions (blue path).

The contributions of the first four scattering orders I1 to I4 to the total radiance
are presented in Figure 4 for both LiDAR configurations and different visibilities for an
advection fog, see the orange curve in Figure 1a. Firstly, looking at the simulation results
of the scanning setup, Figure 4a,c,e, depending on the visibility value, two more or less
pronounced peaks can be observed in the overall radiance response. Analysis of the
individual scattering orders reveals that the first peak is mainly formed by the double-
scattered radiance I2 and the second peak by the single-scattered radiance I1. Taking a closer
look at the geometrical arrangement of the light source and detector, see Figure 3b, the origin
of both maxima is easily understood. Single-scattered light can only contribute to the
LiDAR signal if it is scattered in the overlapping area between the light and detection cones.
For higher scattering orders n > 1, this geometric restriction no longer applies, allowing
a signal to be registered for distances larger than d. As a consequence, for the scanning
setup, the limited extension of the detection and light cones leads to a pronounced temporal
separation of I1 from the higher scattering orders. Note, that in contrast to the simulated
bistatic configuration, no temporal separation of I1 is anticipated for a coaxial setup due to
the lack of spatial separation of detector and source (d = 0 cm). The relative change in the
two peak heights as a function of visibility, Figure 4a,c,e, can also be explained by simple
geometric considerations. At lower visibilities, and thus larger scattering, the probability
of entering the intersection region of the source and detector cones without a previous
scattering event is reduced, resulting in a decrease in the peak caused by I1 compared
to the peak dominated by I2. Conversely, for larger visibility values and a decrease in
scattering, the effect is reversed and the maximum of I1 prevails. The broadening of the I1
peak with increasing visibility can be explained analogously. Furthermore, the different
declines in the respective radiance components with varying visibility can also be attributed
to a change in the scattering probability. The larger scattering present at low visibilities
leads on average to a reduction in the free path length travelled between scattering events.
Consequently, the probability of contributing at longer distances after only a few scattering
events is reduced in comparison to larger viewing distances. The observed increase in
the I2 peak with decreasing visibility can also be attributed to a change in the mean free
path length. At lower visibilities, the average distance between scattering events shortens,
resulting in a higher probability of contributions at short distances, i.e., in the region of
the peak, compared to higher visibilities. About the third and fourth scattering orders,
it is evident for the simulated scanning setup, Figure 4a,c,e, that these generally do not
make a significant contribution to the total radiance. At the lowest visibility of 25 m, see
Figure 4a, starting around 100 m the entire radiance is dominated by even higher scattering
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orders (n > 4). However, given the limited visibility and considering the signal-to-noise
ratio of a real detector, this interval is unlikely to be relevant for real-world applications
anyway. Altogether, the key features required for a realistic augmentation could be captured
with I1 and I2 for the scanning arrangement assumed herein. As the peak caused by I2
clearly dominates the overall signal in low visibility conditions, an augmentation based on
single scattering models would not be a sufficiently accurate approximation of the LiDAR
response, especially in this situation. Since distance determination relies on the peaks in
the LiDAR signal, an AI-based perception model must also be able to deal with additional
peaks caused by fog to enable reliable autonomous navigation. Models that only consider
single-scattered light would only map one of the two peaks, which means that critical
features that may occur in real-world applications would be lost, potentially degrading the
prediction accuracy of object recognition.
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Figure 4. Contribution of the individual scattering orders In to the total radiance for the (a,c,e) scan-
ning and (b,d,f) flash configuration, and visibility values of 25 m, 50 m and 100 m from top to bottom.
The scattering and absorption coefficient of the advection fog were calculated using Mie theory for the
corresponding particle size distribution [19], yielding µs = 7.8 × 10−2 m−1 and µa = 8.4 × 10−4 m−1

for a visibility of 50 m. Both coefficients have been halved or doubled, for 25 m and 100 m visibility,
respectively. The corresponding scattering phase function can be found in Figure 1a.
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Looking at the simulation results for the flash arrangement, Figure 4b,d,f, the overall
signal shows a different profile compared to the scanning setup. The significant increase
in the illuminated solid angle manifests within the detected signal, with the result that
the radiance decreases monotonically and the peaks induced by I1 and I2 are no longer
apparent. This change can again be related to the geometric arrangement. The extended
aperture of the light source brings the overlapping area between the detector and the source
into closer proximity to the receiver and transmitter, thereby enabling I1 to contribute to
the signal at an earlier stage. Theoretically, there is still some time delay in the incoming
I1 signal, which is no longer resolved within the time resolution employed. Furthermore,
the full illumination of the FOV causes higher scattering orders apart from the initial
peak to make up a substantial fraction of the overall signal. For example, at a visibility
of 100 m I4 already exceeds I1 from about 70 m, see Figure 4f. Another interesting effect
can be observed with variation of visibility, Figure 4b,d,f. Although the profile of the
individual scattering orders changes significantly due to the change in mean free path
lengths described above, the overall radiance curve remains almost unchanged except for
the initial region. In summary, the early part of the signal can be mapped by I1; however,
as the distance increases, the higher scattering orders become increasingly dominant,
rendering the single scattering approximation rather inaccurate.

Finally, to investigate the influence of different types of fog, the total radiance of
the scanning setup was compared for an advection and radiation fog (orange and green
curve in Figure 1a, respectively) under different visibility conditions, see Figure 5. This
time, however, a linear representation of the detector signal was chosen, as this is more in
line with what a typical receiver is able to capture. The linear plots highlight once again
that the total signal is governed by the two peaks mainly caused by single and double
scattering, with one or the other dominating depending on the visibility as described above.
Furthermore, the type of fog has a minimal impact on the form of the second peak located
at about ct = 40 m. This can be attributed to the geometric restriction on the photon
paths and the phase functions. As also discussed above, single-scattered photons must be
backscattered in the overlapping region of the detection and light cone to contribute to the
signal. Since the phase functions of the two fog types exhibit comparable values within
the angular range of backscattering, as illustrated in Figure 1a, only a negligible variation
of I1 is observed. In contrast, a substantially larger angular range of the phase function
is relevant for double scattering, translating into a more noticeable change in the I2 peak.
Therefore, to create a realistic training data set, it may be beneficial to include different
types of fog to capture the variation of the I2 peak. The influence of the two fog types was
also investigated for the flash arrangement, but apart from a change in the initial decrease,
no major effect was found.
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Figure 5. Comparison of the total LiDAR signal for advection and radiation fog at (a) 25 m, (b) 50 m
and (c) 100 m visibility. The scattering and absorption coefficients were calculated using Mie
theory for the corresponding particle size distributions [19], yielding µa = 8.4 × 10−4 m−1 and
µs = 7.8 × 10−2 m−1 for the advection fog and µa = 3.9 × 10−4 m−1 and µs = 7.8 × 10−2 m−1 for the
radiation fog for visibility of 50 m. Both coefficients have been halved or doubled, for 25 m and 100 m
visibility, respectively. The corresponding scattering phase functions can be found in Figure 1a.

4. Conclusions

In this work, the influence of multiple scattered LiDAR returns in the context of
autonomous driving was investigated using MC simulations to evaluate whether exist-
ing augmentation models, which only employ single scattering approximations, provide
a physically plausible estimate of the light contributions from fog. To achieve efficient
computation, the LiDAR geometry and the bidirectional path tracing method [17] were
integrated into a self-developed GPU-accelerated MC software [18]. In the first step, the an-
alytical solution of the RTE for the time-resolved radiance in terms of scattering orders
caused by a unidirectional point source was derived and evaluated up to double scattering
for validation and successfully compared with the corresponding MC implementation.
For the bistatic scanning setup, it was shown that the low beam and detection aperture
combined with a local separation of receiver and transmitter causes a temporal separation
of I1 from the higher scattering orders. Depending on the visibility, this results in two more
or less pronounced peaks in the overall signal, which are mainly composed of single or
double-scattered light. For low visibility, the double scattering can even clearly dominate
the overall signal. In the case of the scanning setup, the main signal features relevant to
the real-world application could be mapped via I1 and I2. Therefore, it may be beneficial
to also consider double scattering as part of augmentation, as changes caused by I2 can
have a profound effect on the LiDAR signal and consequently on the performance of object
identification algorithms. In contrast, the flash arrangement exhibits a monotonic decline
in signal intensity due to the extensive illuminated FOV, with the initial portion of the
curve dominated by single scattering. However, with increasing distance, higher scattering
orders (n >> 1) progressively dominate the overall signal, rendering the single scattering
approximation increasingly inaccurate, particularly at low visibilities. It has been demon-
strated that the LiDAR signal is significantly influenced by the precise beam and detection
geometry, which must be considered within the augmentation model following the LiDAR
technique employed. In addition to geometry, it has been shown that the fog phase function,
particularly for the double-scattered radiance of the scanning arrangement, can also result
in noticeable changes in the signal. Overall, the results indicate that augmentation models
that only consider single-scattered light are generally not a sufficient approximation for the
light contributions from fog. Since range detection and thus AI-based object identification
is based on peak detection, any additional peaks caused by fog should ideally also be
mapped in the LiDAR signal as part of the augmentation, so that the perception model can
distinguish them from the actual object peak in a real case. Given that in the presence of
fog, especially under poor visibility conditions, a peak caused by double-scattered light
appears in addition to the peak consisting mainly of single-scattered light, augmentation
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models should also be able to map the additional peak, e.g., by including double-scattered
contributions, to enable reliable navigation in fog. As the MC method allows the physically
accurate simulation of arbitrarily complex LiDAR configurations and fog types, it provides
an attractive option for future augmentation approaches aimed at the further improvement
of AI-based perception models. To this end, extending the recently introduced integral
local estimate method [18] to the spatial domain may prove to be a key factor in facilitat-
ing an even more efficient MC-based calculation of the radiance. Augmentation through
the analytical solution presented might also be conceivable in settings where I1 and I2
provide a sufficient approximation of the total signal. In this case, however, an efficient
implementation of numerical integration over the beam and detection angles would still be
required. Beyond augmentation, the theoretical calculation of light propagation facilitates a
more in-depth understanding of the composition of LiDAR returns under adverse weather
conditions which, in turn, provides a foundation for the enhancement of LiDAR devices
in the context of autonomous driving. In particular, further theoretical investigations,
including polarisation, could yield valuable insights into this field of application.
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