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Abstract: Accurate indoor–outdoor detection (IOD) is essential for location-based services, context-
aware computing, and mobile applications, as it enhances service relevance and precision. However,
traditional IOD methods, which rely only on GPS data, often fail in indoor environments due to
signal obstructions, while IMU data are unreliable on unseen data in real-time applications due
to reduced generalizability. This study addresses this research gap by introducing the DeepIOD
framework, which leverages IMU sensor data, GPS, and light information to accurately classify
environments as indoor or outdoor. The framework preprocesses input data and employs multiple
deep neural network models, combining outputs using an adaptive majority voting mechanism to
ensure robust and reliable predictions. Experimental results evaluated on six unseen environments
using a smartphone demonstrate that DeepIOD achieves significantly higher accuracy than methods
using only IMU sensors. Our DeepIOD system achieves a remarkable accuracy rate of 98–99% with a
transition time of less than 10 ms. This research concludes that DeepIOD offers a robust and reliable
solution for indoor–outdoor classification with high generalizability, highlighting the importance of
integrating diverse data sources to improve location-based services and other applications requiring
precise environmental context awareness.

Keywords: context awareness; indoor–outdoor detection; location-based services; deep learning;
majority voters; smartphone sensors

1. Introduction

In recent years, indoor–outdoor detection (IOD) has experienced significant growth
due to its application in positioning technologies and environmental change detection using
multimodal smartphone sensors. IOD plays a crucial role in enhancing the deployment of
location-based services in embedded systems characterized by low power consumption and
the use of artificial intelligence on the device. These advances offer substantial economic
and technical benefits, particularly in the development of integrated indoor–outdoor GPS
systems, as illustrated in Figure 1 [1–3].

The versatility of IOD extends to numerous applications, including pedestrian location
and movement tracking [4–8], activity recognition [9,10], the classification of transportation
modes [11–13], power management, and medical care [14]. It is integral to the seamless
implementation of positioning and navigation systems, effectively bridging indoor and
outdoor localization [15,16]. IOD and contextual factors such as time and weather enable
personalized services such as adjustable screen brightness and volume according to en-
vironmental conditions [17]. IOD models leverage smartphone sensor data to discern a
user’s environment, with studies highlighting the behavior of context-aware sensors that
exhibit distinct patterns indoors and outdoors. Analyzing these attributes facilitates the
prediction of user behavior in various settings. For example, signal strengths typically
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weaken as users traverse indoor spaces such as doors, stairs, or elevators, where lighting
and magnetic fields fluctuate [18,19].

Figure 1. Indoor–outdoor-integrated GPS system [2].

Previously, researchers have pursued multiple methodologies for IOD, including
threshold-based approaches based on preset sensor values [20,21]. Zhou et al. (2012) and
Ali et al. (2018) discuss threshold-based approaches that rely on preset sensor values [20,21].
Saffar et al. (2019) [22], Zhu, Y. et al. (2019) [17], and Zhu, F. et al. (2023) [23] propose
machine learning models that adapt to diverse data through detailed feature extraction.
However, these methods often face challenges regarding temporal variations and computa-
tional complexity. Thus, deep learning models for temporal elements have been studied,
including those by Zhu, Y et al. (2021) [24]. For example, IOD is treated as a time series clas-
sification (TSC) problem by Hamideche et al. (2022) [25], while Bakirtzis et al. (2022) [26]
consider it a multivariate TSC utilizing deep learning with self-attention mechanisms and
spatial pyramids. Although these approaches achieve high accuracy, they encounter chal-
lenges such as a disruption of temporal relationships due to data randomization and the
high dimensionality of deep learning TSC data, which require extensive feature engineering
and affect training time. Tamborini et al. (2018) [27] and Malik et al. (2023) [28] discuss
these challenges.

Despite considerable advances in sensor fusion and machine learning techniques for
context detection, several research gaps persist. Traditional IOD methods, highly dependent
on GPS data, often fail in indoor environments due to signal obstructions [20], while data
from the Inertial Measurement Unit (IMU) are not reliable for unseen data in real-time appli-
cations due to reduced generalizability [29]. In addition, there is an inadequate integration
of behavioral patterns into context detection models, an underutilization of smartphone
sensor data for environmental scene detection, and inefficiencies in classifier combination
techniques. Existing models often fail to fully integrate environmental characteristics and
carrier behaviors, resulting in imprecise indoor–outdoor context detection [23].

A significant challenge remains in the interpretability of deep learning algorithms
used in IOD models. Although these algorithms improve accuracy and efficiency, their
complexity hinders the understanding of the rationale behind predictions, complicating
the identification and correction of errors. Enhancing the interpretability of these models
is essential to improve their transparency, trustworthiness, and practical applicability
in real-world IoT environments [26]. Addressing these research gaps will facilitate the
development of more effective and energy-efficient IOD models, enhancing navigation
capabilities across diverse spatial environments.

This paper proposes the DeepIOD framework, which integrates data from IMU sensors,
GPS, and light sensors. The framework preprocesses these data and utilizes multiple deep
neural network models and sensor modules to predict whether the environment is indoor
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or outdoor. The decision is refined using an adaptive majority voter system that considers
inputs from all components to ensure accurate classification. This hybrid approach ensures
reliable IOD even in challenging scenarios and unseen environments. We evaluated the
framework on readily available Android devices by developing the DeepIOD App, which
integrates TensorFlow Lite models for the edge implementation of our DNN models. These
results demonstrate the superiority of our approach over existing methods, paving the way
for more reliable and efficient IOD in smart IoT environments.

The contributions of this work can be summarized as follows:

1. We propose the DeepIOD framework, which accurately classifies environments as
indoor or outdoor by dynamically adjusting thresholds based on environmental
data, including GPS, light, and other spatiotemporal information. This framework
integrates deep neural network (DNN) models utilizing IMU sensor data, with their
outputs combined using an adaptive majority voting mechanism, ensuring robust
and reliable predictions.

2. We propose a novel voting classifier for indoor–outdoor detection that addresses
limitations in traditional methods like Plurality, STV, and Condorcet. This classifier en-
sures a more robust and transparent decision-making process by integrating pairwise
comparisons, overall rankings, and systematic tie-breaking mechanisms, enhancing
accuracy and fairness in complex scenarios.

3. We developed the DeepIOD Android application, which operates in real-time, en-
abling seamless integration with various applications that require timely indoor–
outdoor detection capabilities.

4. Extensive experiments conducted on Android devices demonstrate the efficacy of
DeepIOD, with accuracy rates ranging from 98% to 99%. These results surpass existing
methods based on thresholding, traditional machine learning, and shallow/deep
learning techniques.

This paper is organized as follows: Section 2 provides a comprehensive review of
related work in indoor–outdoor detection. Section 3 presents the methodology and archi-
tecture of DeepIOD in detail. Section 4 discusses the experimental setup and presents the
performance evaluation results. Finally, Section 5 concludes the paper with a summary of
the contributions and outlines directions for future research.

2. Related Works

Several IOD systems have been proposed in recent years, categorized into three main
types: (1) algorithms based on multisensor fusion, (2) algorithms based on time-dependent
models, and (3) algorithms based on behavioral association.

2.1. Algorithms Based on Multisensor Fusion

Single-sensor-based IOD models have inherent limitations in adequately characteriz-
ing the environment. To address this, efforts have been made to take advantage of large
amounts of feedback from various smartphone sensors. For example, IODetector [20] used
lightweight sensors such as a light sensor, magnetometer, and cellular signal to detect
indoor–outdoor switching without prior assumptions. SenseIO [21] used measurements
from sensor-rich smartphones to infer fine-grained environment types. NeuralIO [30]
fusion data from various sensors throughout a neural network were used to determine the
indoor–outdoor status. Zhu et al. [24] proposed a multisensor model for indoor–outdoor
switching detection using multiple neural network modules. Zeng et al. [31] combined
sensors such as the light sensor, magnetic sensor, and GNSS to improve position accuracy
in indoor–outdoor scenes. Other models, such as those by Li et al. [1], Radu et al. [32], and
Anagnostopoulos et al. [33], also focused on accurate and energy-efficient indoor/outdoor
switching detection using different sensor combinations.
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2.2. Algorithms Based on Time-Dependent Models

Time-dependent IOD models consider the instant characteristics of navigation context
features and their connectivity between successive epochs, which is crucial in detecting
scene switching. Effective time-dependent machine learning (ML) and deep learning
(DL) models have been developed for indoor–outdoor scene detection. For example,
Gao et al. [34] used a probabilistic support vector machine (SVM) followed by an HMM
(SVM-HMM) to detect scenes with GNSS measurements, improving detection performance
through time-domain filtering. Zhu et al. [17] introduced a novel IOD method that filters
primary prediction results from different ML classifiers with HMM and integrates them
using an ensemble model, achieving high recognition accuracy. The recognition accuracy
exceeded 80% for switching delays within 4 s. Xia et al. [35] employed Recurrent Neural
Networks (RNN) to address scene switching, achieving a recognition accuracy of 90.94%
with a maximum transition delay of 3 s. Zhu et al. [24] introduced a multisensor fusion
model that uses DenseNet to extract high-level features and Long Short-Term Memory
(LSTM) to capture temporal sequence patterns. Recently, Bakirtzis et al. [26] explored the
effectiveness of different deep learning (DL) architectures for indoor–outdoor detection and
proposed a model using self-attention mechanisms and incorporating spatial pyramids.

2.3. Algorithm Based on Behavior Association

MobiIO [36] introduced a lightweight IOD architecture based on probabilities of
human motion activities in indoor and outdoor scenes generated by an SVM. Subsequently,
a Hidden Markov Model (HMM) was utilized to estimate the most probable state of the
environmental context. Gao et al. [34] successfully implemented behavioral association
in indoor–outdoor and foot/vehicle scenes, involving adjustments to SVM-HMM state
transition probabilities and associations between environment and behavior labels, termed
B-SVM-HMM. This approach not only allows one to revise the parameters of the detection
model based on behavioral probabilities, but also facilitates the analysis of differences in
environmental characteristics between behavior categories. Recently, Zhu et al. [23] used
context connectivity and behavior association to accurately detect environment scenes
using a smartphone multisensor fusion. This innovative approach allows for seamless
navigation across outdoor, semi-outdoor, and indoor spaces with low energy consumption.

Previous research has explored various indoor/outdoor context detection methods,
including sensor-based support vector machine (SVM) and hidden Markov models (HMM).
While these approaches have shown promise, they often do not fully exploit the potential
of smartphone sensors for context detection. In addition, classifier combination tech-
niques have been used to integrate sensor data, but there is still room for improvement
to achieve higher accuracy and energy efficiency. Despite advances in sensor fusion and
machine learning techniques for context detection, several research gaps remain unad-
dressed. The current research landscape reveals several critical gaps in context detection
models. Firstly, there is a limited integration of behavior association within these models,
which impedes their ability to interpret contextual information accurately. Secondly, the
utilization of smartphone sensor data for detecting environmental scenes remains inade-
quate, further limiting the effectiveness of these models. Additionally, there is a noticeable
deficiency in efficient classifier combination techniques, which are essential for maximizing
the strengths of individual sensor-based models. Consequently, there is a pressing need to
develop a comprehensive model that can accurately detect indoor and outdoor contexts
by considering both environmental characteristics and carrier behaviors. Therefore, by
bridging these research gaps, a more effective and energy-efficient indoor/outdoor context
detection model can be developed, offering enhanced navigation capabilities in diverse
spatial environments.

3. Problem Formulation and Objectives

This study aims to develop a Deep Learning (DL)-based adaptive context-aware
indoor–outdoor detection framework for mobile edge computing (MEC). The framework
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aims to accurately classify the indoor–outdoor contexts of users based on sensory data
D and location information L. The classification error function ε(s, y, X) is defined in
Equation (1) as

ε(s, y, X) =
1
N

N

∑
t=1

[yt ̸= f (X, θ)], (1)

where [yt ̸= f (X, θ)] is the indicator function, defined in Equation (2) as

[yt ̸= f (X, θ)] =

{
1, if yt ̸= f (X, θ)

0, if yt = f (X, θ)
. (2)

In the above equations, X represents the input features, including sensory data D and
location information L. Specifically, D encompasses data collected from various sensors,
such as the IMU sensors (Magnetometer, Accelerometer, Gyroscope), light sensors, and GPS.
The location information L refers to the GPS coordinates and any additional contextual
location data that might influence the indoor–outdoor classification. The function f (X, θ)
denotes the deep learning model that takes the combined input features X = {D, L}
and predicts the context yt (either indoor or outdoor). The parameter θ represents the
model parameters learned during the training phase. The indicator function [yt ̸= f (X, θ)]
checks whether the predicted context matches the actual context, contributing to the overall
classification error ε(s, y, X).

The objective of the DeepIOD system is to find the optimal parameter set θ that
minimizes the classification error in Equation (3):

θ∗ = arg minθ∈Θε(s, y, X), (3)

where Θ represents the parameter space for the model.
The probability of correctly detecting the class c∗ (indoor or outdoor) among m classes

(in this case, indoor or outdoor), with a profile of n classifiers, each one with accuracy
p ∈ [0, 1], using the proposed voting classifier, is given in Equation (4) by

T(p) =
1
K

⌈m
n ⌉

∑
i=1

ϕi · pi · (1− p)n−i, (4)

where ϕi is defined as the coefficient of the monomial xn−i in the expansion of the generating
function in Equation (5):

Gi
m(x) =

(
i

∑
j=0

xj

j!

)m−1

. (5)

K is a normalization constant, defined in Equation (6) as

K =
n

∑
j=0

(
n
j

)
pj(m−−1)n−j(1−−p)n−j. (6)

The framework incorporates an adaptive threshold mechanism for light intensity
(T(D)) for varying environmental conditions. This threshold depends on space and time
continuity and is crucial for accurate indoor–outdoor detection. Let I(t, x) represent the
intensity of light at time t and location x. The adaptive threshold function can be formulated
in Equation (7) as

T(D) = adaptiveThreshold(I(t, x)). (7)
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Additionally, a fixed threshold (TGPS) is utilized for GPS data to determine the indoor–
outdoor context. Let GPS(t) denote the GPS coordinates at time t. The fixed threshold can
be formulated in Equation (8) as

TGPS = fixedThreshold(GPS(t)). (8)

An adaptive majority voter is employed for the final classification decision, which
combines the outputs of different models based on weights. The objective of the adaptive
majority voter is to determine the predicted context Ĉ based on the weighted sum of
probabilities assigned by each DL model. This can be formulated in Equation (9) as

Ĉ = argmax
j

n

∑
i=1

wi pi,j, (9)

where Ĉ is the predicted context, j indexes the possible contexts, wi represents the weight
assigned to module Mi, and pi,j is the probability assigned to context j by module Mi.

The overall objective of the framework is to accurately classify users’ indoor–outdoor
contexts by integrating sensory data, location information, adaptive threshold mechanisms
for light intensity and GPS, and social choice mechanisms for combining decisions from
DL models. This facilitates robust and context-aware indoor–outdoor detection in mobile
environments, which is essential for providing personalized and location-based services.

4. Methodology

In this section, we present a DeepIOD framework, an integrated system designed
to determine indoor or outdoor environments based on a combination of threshold and
deep neural network (DNN) models using smartphone sensors, as shown in Figure 2. The
DeepIOD framework addresses the intervention of multiple signals by integrating data
from various smartphone sensors and processing them through a combination of deep
neural network models and an adaptive majority voting mechanism. This multi-signal
approach ensures accurate indoor and outdoor environmental classification by leveraging
each sensor type’s strengths. Here is how the framework effectively handles multiple
signals. Firstly, the framework collects data from multiple sensors, including IMU (Inertial
Measurement Unit), light sensors, and GPS. The collected data undergo preprocessing to
extract relevant features and normalize the values, making them suitable for deep neural
network (DNN) models. These models (Model A, B, and C) independently analyze the
preprocessed IMU data and each produces its prediction regarding the environment. The
predictions from these models are then aggregated using a weighted majority rule. The
voting system assigns weights to the predictions based on each model’s performance,
ensuring that more reliable models have a greater influence on the final decision. In
addition to the DNN models, light sensor data are processed using an adaptive threshold
approach to evaluate ambient light levels, aiding in the differentiation between indoor and
outdoor environments. GPS data are also processed to provide additional location context.
Specifically, the horizontal accuracy of the GPS signal is used to distinguish between indoor
and outdoor environments, with a threshold of 5 m typically used as a criterion [37].

The Adaptive Majority Voter (AMV) mechanism consolidates the output of the DNN
models, the light module, and the GPS module. It uses a weighted sum approach to
combine these inputs, dynamically adjusting the weights based on the reliability and
performance of each model and sensor data. This approach ensures that the most reliable
predictions have a greater influence on the final decision, resulting in a robust and adaptive
classification system. The adaptive weighting scheme allows the system to better handle
variations in model performance due to changes in environmental conditions, thereby
enhancing the robustness and accuracy of the classification process. By integrating and
processing multiple signals, the DeepIOD framework significantly improves its ability to
accurately classify indoor and outdoor environments. The combination of diverse sensory
data mitigates the limitations of relying on a single type of data, enhancing overall accuracy.
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The adaptive majority voting mechanism further improves robustness by dynamically
adjusting to prioritize the most reliable sources of predictions, ensuring high performance
even under varying environmental conditions. In the following section, we will explain the
components in more detail.

Figure 2. DeepIOD framework for indoor–outdoor environment classification.

4.1. Proposed DNN Datasream

In the context of indoor–outdoor detection (IOD) using smartphone sensors, we define
the data stream and procedures involved in the proposed DeepIOD system shown in
Figure 3 as follows.

Figure 3. DeepIOD proposed DNN downstream.

Let s represent the raw signals obtained from a smartphone’s embedded inertial
measurement unit (IMU) sensors, comprising nine dimensions, including acceleration,
magnetism, and angular velocity. These signals s are segmented into M segments, denoted
as sp, where p = 1, 2, . . . , M, using the sliding window method. Each segment sp is
labeled in a supervised manner as {sp, yp}, where yp represents the corresponding indoor
or outdoor environment label. A data compression model is applied to remove similar
segments with the same labels to reduce redundancy and improve efficiency. The resulting
compressed dataset {si, yi}, where i = 1, 2, . . . , N (typically with N ≤ M), undergoes signal
preprocessing for information enhancement, resulting in processed signals s∗i . The proposed
DeepIOD system constructs a classifier f (X, θ) based on a deep learning (DL) algorithm.
The input X to the classifier can be the extracted features Fhs∗ or the processed signals s∗.
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Furthermore, the compressed dataset {s∗i , yi} is reconstructed as a basic dataset s∗qk, where
k = 1, 2, . . . , nc (with nc being the number of classes) and q ∈ R+, for comparison with new
activities. During the testing procedure, the classifier predicts the current environment ŷt
based on the extracted feature Fhs∗t (based on ML) or the processed signal s∗t (based on DL).
The classification error ε is calculated using a supervised learning strategy by comparing ŷt
with the real label yt, as shown in Equation (10).

ε(s, y, X) =
1
N

N

∑
t=1

[yt ̸= f (X, θ)], (10)

where [yt ̸= f (X, θ)] =

{
1, if yt ̸= f (X, θ)

0, if yt = f (X, θ)
. The DeepIOD system aims to find the optimal

parameter set θ that minimizes the classification error, as represented by Equation (11):

arg minθ∈Θε(s, y, X). (11)

During the update procedure, the newly processed input s∗t is compared with the
training dataset s∗q ŷt by calculating the correlation coefficient ρ = corr(s∗t , s∗q ŷt). If ρ < η
(where η = 0.8), indicating a significant deviation from the existing training data, the
DeepIOD system retrains the classifier on the updated training dataset {[s∗i ; s∗t ], [yi; nc+ 1]},
as shown in the Algorithm 1. Through these procedures, the DeepIOD system aims
to achieve robust and accurate indoor–outdoor detection using IMU data, adapting to
environmental changes and continuously improving its performance.

Algorithm 1: Downstream algorithm.
Data: Historical data on indoor–outdoor classification and new sensory inputs

{s∗t , ŷt}
Result: Enhanced indoor–outdoor classification model
Assess contextual coherence ρ = corr(s∗, s∗ and ŷt);
if ρ ≥ η then

Update training set {[s∗i ; s∗t ], [yi; nc + 1]};
if ŷt ∈ ΛIndoor then

Refine the indoor classifier f Indoor(X, θ̂) using {F∗∗, [y; n + 1]} ;
else if ŷt ∈ ΛOutdoor then

Augment the outdoor classifier f Outdoor(X, θ̂) with {F∗∗, [y; n + 1]} ;
end
else

Continue;
end

4.2. Proposed Models for DNN Downstream

In this section, three innovative models are presented to enhance sequential data
analysis in sequential datasets, and the training algorithm is shown in Algorithm 2.
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Algorithm 2: Training algorithm with cross-entropy loss.
Data: IMU sensor dataset D, number of folds k
Result: Ensemble model E
Divide D into k folds D1, D2, . . . , Dk;
Initialize ensemble model E;
Compute cross-entropy loss using:;

LCE(DNN(f; θ)) = − 1
N ∑N

i=1

[
y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

]
;

where N is the number of samples, y(i) is the true label for the i-th sample, and
ŷ(i) is the predicted probability of the location being indoor for the i-th sample.;

The final objective is to minimize LCE:;
minθ LCE(DNN(f; θ));

for i← 1 to k do
Dtrain ← D \ Di // Training set
Dval ← Di // Validation set
Extract features f from Dtrain using Equations (1)–(10);
Train base model Mi on f with labels from Dtrain;
Obtain predictions Pi using Mi on Dval;
Compute cross-entropy loss Li using Pi and true labels from Dval;
Update weights wi based on Li;
Update ensemble model E with Mi weighted by wi;

end
return Ensemble model E;

4.2.1. Model A: CNN-LSTM-Based

Model A represents a sophisticated blend of Convolutional Neural Networks (CNNs)
and Long Short-Term Memory (LSTM) networks designed to extract rich features from
sequential data. This architecture encompasses distinct phases: an encoder phase re-
sponsible for processing input sequences and a decoder phase for reconstructing the
output representation.

The encoder phase begins with a sequence of convolutional operations characterized
by utilizing one-dimensional convolutional layers, followed by rectified linear unit (ReLU)
activation functions. These operations can be mathematically represented as

f(i) = ReLU(W(i) ∗ x + b(i)) (12)

where f(i) is the output feature map of the i-th convolutional layer, W(i) is the filter, x is
the input, and b(i) is the bias term. Subsequently, the output is downsampled through
max-pooling operations to reduce spatial dimensions while retaining essential features:

p(i) = MaxPool(f(i)) (13)

The resultant feature maps are then fed into LSTM units to capture temporal depen-
dencies within the data:

ht = LSTM(p(i), ht−1) (14)

where ht represents the hidden state at time step t. In the decoder phase, the encoded repre-
sentations are further processed through convolutional layers and max-pooling operations
to extract higher-level features. The decoder employs LSTM units similarly to refine the
temporal information encoded in the feature maps:

h′t = LSTM(p(i), h′t−1) (15)
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Finally, the outputs from the encoder and decoder branches are concatenated to form
the final representation:

y = Concat(ht, h′t) (16)

This concatenated output is then processed through dropout and softmax layers for
the final classification:

yfinal = Softmax(Dropout(y)) (17)

4.2.2. Model B: CNN-MHA-Based

Model B introduces a novel architecture designed to analyze sequential data using
Convolutional Neural Networks (CNNs) and Multi-Head Attention (MHA) mechanisms.
This model comprises encoder and decoder operations tailored to process input sequences
and reconstruct the output representation efficiently. In the encoder phase, the model
begins with a series of convolutional layers:

f(i) = ReLU(W(i) ∗ x + b(i)) (18)

Layer normalization is then applied to stabilize the training:

f(i)norm = LayerNorm(f(i)) (19)

Multi-head self-attention mechanisms are subsequently employed to extract hierarchi-
cal features from the input sequence:

z(i) = MHA(f(i)norm) (20)

The resulting feature maps are reshaped and aggregated to form a compact represen-
tation:

zagg = Aggregate(z(i)) (21)

In the decoder phase, these encoded representations are further refined through
additional convolutional layers and self-attention mechanisms:

ht = Conv(zagg) + MHA(zagg) (22)

This iterative process enables the model to reconstruct the output sequence while
preserving essential spatial and temporal information. Finally, the outputs from the encoder
and decoder branches are concatenated:

y = Concat(ht, zagg) (23)

4.2.3. Model C: Depth-Wise Separable Convolutional Neural Network

Model C capitalizes on the efficiency of depth-wise separable convolutions for learning
spatial and channel-wise features within sequential data. The network employs depth-
wise convolutions followed by point-wise convolutions to efficiently learn spatial and
channel-wise features. Depth-wise convolutions are performed as follows:

f(i)depth = ReLU(W(i)
depth ∗ x + b(i)

depth) (24)

Point-wise convolutions are then applied to combine these features:

f(i)point = ReLU(W(i)
point · f

(i)
depth + b(i)

point) (25)

Batch normalization is applied after each point-wise convolution to stabilize learning:

f(i)bn = BatchNorm(f(i)point) (26)



Sensors 2024, 24, 5125 11 of 30

This sequence of depth-wise convolution, point-wise convolution, and batch normal-
ization is repeated, followed by max pooling and dropout to reduce overfitting
and dimensionality:

p(i) = MaxPool(Dropout(f(i)bn)) (27)

As the network deepens, the number of channels is increased to capture more com-
plex features. The final feature maps are flattened and passed through dense layers
for classification:

y = Softmax(Dense(Flatten(p(i)))) (28)

Each proposed model offers a unique approach to different architectures, presenting
promising avenues for enhanced sequential data analysis. By leveraging the complemen-
tary strengths of Convolutional Neural Networks, Depth-Wise Separable Convolutional
Networks, LSTMs, and Multi-Head Attention, these models exhibit the potential to extract
informative features from diverse sequential datasets. The structural details of each model
used in the proposed framework are shown in Table 1.

Table 1. Architecture of models A, B, and C.

Component Model A Model B Model C

Input Input Layer Input Layer Input Layer
Layer 1 Conv1D (64, k = 3) Conv1D (64, k = 3) DWS-Conv2D (3× 3)
Layer 2 MaxPool (2) LayerNorm + MHA (8, 64) Conv2D (32, 1× 1)
Layer 3 LSTM (64) MaxPool (2) DWS-Conv2D (3× 3)
Layer 4 Dropout (0.2) GlobalAvgPool Conv2D (32, 1× 1)
Layer 5 Dense Reshape + Dense MaxPool (2× 1)
Output Dense

4.3. Propose Voting Classifier

The proposed voting classifier for indoor–outdoor detection offers a novel approach
to decision-making, addressing the limitations inherent in traditional voting methods
such as Plurality, STV, Condorcet, Borda, Copeland, and Dictatorship as shown in Table 2.
This classifier aims to provide a more robust and transparent means of selecting the most
preferred option by integrating pairwise comparisons, overall rankings, and systematic
tie-breaking mechanisms. Unlike traditional methods, vulnerable to strategic voting or
manipulation, the proposed classifier offers a systematic approach that prioritizes the
collective preferences of multiple classifiers, ensuring fair and accurate decision-making in
complex scenarios such as indoor–outdoor detection. The plurality method is vulnerable to
vote splitting and does not ensure the selection of the most preferred option. To mitigate
these issues, the proposed improvement suggests considering pairwise comparisons and
overall rankings. While allowing for more representative outcomes, the Single Transferable
Vote (STV) method suffers from a complex ballot-counting process and is susceptible to
strategic voting. The improvement aims to simplify the decision-making process and
account for preferences across multiple options. Although robust in certain scenarios, the
Condorcet method may not always produce a winner and is vulnerable to cycling. To
address these limitations, a systematic approach to tie-breaking is proposed. The Borda
count method, known for its susceptibility to strategic manipulation and potential failure to
select the most preferred option, can be enhanced by scoring based on pairwise comparisons.
The Copeland method faces complexities in determining the winner and is vulnerable
to strategic voting. Simplifying the selection process and considering voter preferences
are suggested improvements. Lastly, the Dictatorship method, which concentrates power
and lacks representation of minority views, can be improved by basing decisions on the
collective preferences of multiple classifiers. These proposed improvements aim to enhance
the fairness and efficiency of voting systems.
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Table 2. Comparison of traditional voting methods and proposed voting classifier.

Voting Method Limitations Proposed Improvement

Plurality
Vulnerable to vote splitting.

Does not ensure the selection
of the most preferred option.

Consider pairwise
comparisons and overall

rankings.

STV 1
Complex ballot counting

process. Vulnerable to
strategic voting.

Simplifies the
decision-making process.

Considers preferences across
multiple options.

Condorcet May not always produce a
winner. Vulnerable to cycling.

Systematically addresses
tie-breaking.

Borda
Susceptible to strategic

manipulation. May not select
the most preferred option.

Scoring based on pairwise
comparisons.

Copeland
Complexity in determining
the winner. Vulnerable to

strategic voting.

Simplifies the selection
process. Considers the
preferences of voters.

Dictatorship
Concentration of power. Lack
of representation for minority

views.

Based on collective
preferences of multiple

classifiers.
1 Single Transferable Vote.

Theorem 1. The probability of correctly detecting the class c∗ (indoor or outdoor) among m classes
(in this case, indoor or outdoor) with a profile of n classifiers, each one with accuracy p ∈ [0, 1],
using the proposed voting classifier is given by:

T(p) =
1
K

⌈m
n ⌉

∑
i=1

ϕi · pi · (1− p)n−i, (29)

where ϕi is defined as the coefficient of the monomial xn−i in the expansion of the generating
function:

Gi
m(x) =

(
i

∑
j=0

xj

j!

)m−1

, (30)

and K is a normalization constant, defined as

K =
n

∑
j=0

(
n
j

)
pj(m−−1)n−j(1−−p)n−j. (31)

Proof of Theorem 1. Let us break down the derivation of T(p) step by step:

1. Pairwise Comparison: For each pair of alternatives (indoor or outdoor), the voting
classifier assigns scores based on the accuracy of each classifier. After pairwise
comparison with another class, the score assigned to a class is computed using the
accuracy of the classifiers that favor each class. This process is repeated for all pairwise
comparisons in the profile.

2. Calculation of Cumulative Score: After conducting pairwise comparisons, the voting
classifier calculates the cumulative score Ci for each class i by summing up the scores
obtained from all pairwise comparisons involving that class. The cumulative score
represents the profile’s overall preference or support for each class.

3. Selection of Winners: The class(es) with the highest cumulative score(s) are identi-
fied as potential winners. If there is a tie, i.e., if multiple classes share the highest
cumulative score, the method proceeds to the next step to break the tie.
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4. Overall Ranking: In case of a tie, the voting classifier examines the overall ranking
of tied classes within the preference profile. It selects the class that appears most
frequently or at the highest positions in the preference profile. The overall ranking Ri
of each class i is determined based on its frequency or position in the preference profile.

5. Resolution of a Tie: If a tie persists even after considering the overall ranking, the
voting classifier may break the tie arbitrarily or based on additional criteria specified
by the voting context.

6. Computation of T(p):T(p) represents the probability of correctly detecting the class
c∗ (indoor or outdoor) given the accuracy p of each classifier in the profile. The
formula for T(p) sums up the probabilities of all possible profiles’ votes that correctly
detect c∗, considering varying numbers of classifiers voting for c∗ and the remaining
classifiers voting for other classes. The binomial factor accounts for the number of
possible positions of classifiers voting for c∗, while the probabilities pi and (1− p)n−i

represent the likelihood of classifiers voting correctly or incorrectly, respectively.
The normalization constant K ensures that the probabilities sum up to 1 across all
possible profiles.

The modified equation

xj

(
B

∑
j=0

xj

j!

)A
A=m−1−−−−→
B=i−1

(
i−1

∑
j=0

xj

j!

)m−1

= Gm
i (x) (32)

denotes the generating function Gm
i (x) used in the proposed voting classifier for indoor-

outdoor detection. It encapsulates the probabilities associated with different combinations
of classifiers voting for the correct class c∗ and the remaining classifiers voting for other
classes. By applying this equation, we can effectively compute T(p) and determine the
probability of accurately detecting the class c∗ given the accuracy of each classifier in
the profile.

In the above Equation (32), the generating function Gm
i (x) used in the proposed

voting classifier for indoor-outdoor detection encapsulates the probabilities associated
with different combinations of classifiers voting for the correct class c∗ and the remaining
classifiers voting for other classes. By applying this equation, we can effectively compute
T(p) and determine the probability of accurately detecting the class c∗ given the accuracy
of each classifier in the profile. The theoretical analysis of Theorem 1 is in Appendix A.

In Algorithm 3, the term ‘profile’ refers to the dataset comprising pairwise compar-
isons between alternatives. Initially, the algorithm initializes a dictionary, δ[α], to maintain
the scores of each alternative, where α denotes individual alternatives. It then iterates
through each preference in the profile, evaluating each pair of alternatives, denoted as ζ
and ξ. For each distinct pair, the algorithm updates the scores accordingly, incrementing the
score of ζ and decrementing the score of ξ. After processing all preferences, it determines
the maximum score, denoted as ϵ, among all alternatives. Subsequently, it identifies a
set, ι, containing alternatives with the maximum score. If multiple alternatives exist in ι,
Algorithm 4 calculates their overall rankings using a designated function, “calcOverall-
Rank”, and selects the alternative with the highest overall ranking. However, if there is
only one alternative in ι, it directly designates it as the winning alternative and concludes
the algorithm by returning the selected alternative.

In the “Function to Calculate Overall Ranking”, the algorithm aims to determine the
overall ranking of a specific alternative, denoted as α, within the given profile dataset. It
initializes a variable, ρ, to accumulate the overall ranking of α. The algorithm then iterates
through each preference in the profile, denoted as ϕ, assessing whether the alternative α
appears in each preference. If α is present in a preference, the algorithm adds its position or
index to ρ. Once it has traversed all preferences, the algorithm returns the accumulated
value of ρ as the overall ranking of the alternative α.
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Algorithm 3: Propose voting classifier algorithm.
Data: Profile of pairwise comparisons profile
Result: Winning alternative(s)
Input: Profile of pairwise comparisons profile
Output: Winning alternative(s)
Initialize δ[α] = 0 for each alternative α;
foreach preference ϕ in profile do

foreach pair of alternatives ζ, ξ in ϕ do
if ζ ̸= ξ then

δ[ζ] += 1;
δ[ξ] −= 1;

end
end

end
ϵ← max(values of δ);
ι← {α : δ[α] = ϵ for α};
if length of ι > 1 then

µ[α]← calcOverallRank(α, profile) for each α ∈ ι;
π ← argmax(µ);

end
else

π ← ι[0];
end
return π;

Algorithm 4: Function to calculate overall ranking.

Procedure calcOverallRank(α, profile)
ρ← 0;
foreach preference ϕ in profile do

if α appears in ϕ then
ρ += index of α in ϕ;

end
end
return ρ;

4.4. Adaptive Threshold Mechanism for Light Intensity

To accurately detect indoor and outdoor contexts under varying environmental condi-
tions, we have developed an adaptive threshold mechanism for light intensity, denoted as
T(D). This mechanism dynamically adjusts the threshold based on space and time continu-
ity, thereby improving the robustness of the classification system. The intensity of light at a
given time t and location x, represented as I(t, x), forms the basis of this adaptive threshold.
The function for the adaptive threshold, T(D), is defined and shown in Equation (33):

T(D) = adaptiveThreshold(I(t, x)). (33)

This formulation ensures that the light intensity threshold adapts to real-time changes
in the environment, mitigating the effects of transient lighting variations and enhancing
the reliability of context detection. The threshold for light intensity in the framework
is adaptively adjusted by continuously monitoring the light intensity I(t, x) at different
times and locations. The adaptive threshold function adaptiveThreshold(I(t, x)) takes into
account the dynamic environmental conditions, such as changes in natural lighting due
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to weather, time of day, and the specific indoor or outdoor location. The key steps for
adjusting the threshold are as follows:

1. Continuous Monitoring: The system continuously measures the light intensity I(t, x)
at specific time intervals and locations. This provides real-time data reflecting current
lighting conditions.

2. Dynamic Adjustment: Using the real-time light intensity data, the adaptive thresh-
old function recalculates T(D). This function is designed to respond to significant
changes in light intensity, ensuring that the threshold reflects the current environment
accurately.

3. Space and Time Continuity: The adaptive threshold function incorporates principles of
space and time continuity. This means it considers the recent history of light intensity
measurements and the spatial context (e.g., whether the user is near a window or
in a corridor) to make more informed adjustments. This reduces the likelihood of
erroneous context detection due to sudden, brief changes in lighting, such as someone
turning on a light.

4. Contextual Sensitivity: By being sensitive to the context in which measurements
are taken, the adaptive threshold can differentiate between typical indoor lighting
patterns and outdoor lighting conditions. For example, even if indoor lighting is
bright, the pattern of intensity changes over time can help distinguish it from outdoor
light, which typically varies more gradually.

This adaptive approach allows the threshold T(D) to be flexible and responsive, en-
hancing the system’s ability to accurately classify whether a user is indoors or outdoors
under varying lighting conditions. Table 3, below, summarizes the light intensity thresh-
olds for three locations: the Republic of Korea, China, and Pakistan. These thresholds
illustrate how the framework adjusts the light intensity threshold adaptively based on the
environmental conditions specific to each location.

Table 3. Light intensity thresholds for different locations.

Location
Indoor Light

Intensity Threshold
(lux)

Outdoor Light
Intensity Threshold

(lux)

Adaptation
Mechanism

Republic of Korea 100–300 1000–20,000

Continuously adapts
based on weather
changes, seasonal

daylight variations,
and urban light

pollution.

China 150–350 1200–25,000

Adjusts to account for
high pollution levels
affecting natural light
and diverse climatic

conditions.

Pakistan 80–250 800–18,000

Adapts considering
frequent power

outages affecting
indoor lighting and

strong seasonal
daylight shifts.

4.5. Fixed Threshold for GPS Data

In addition to the adaptive light intensity threshold, our framework employs a fixed
threshold for GPS data to assist in determining indoor and outdoor contexts. Let GPS(t)
denote the GPS coordinates at time t. The fixed threshold, TGPS, is utilized to provide a
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consistent criterion for classification based on location data. This threshold is formulated
as in Equation (34):

TGPS = fixedThreshold(GPS(t)). (34)

To classify the GPS signal as indoor or outdoor, horizontal accuracy is used. For
Android phones, a horizontal accuracy of greater than 5 m typically indicates an indoor
location, while a horizontal accuracy of less than 5 m indicates an outdoor location [37].
Table 4 below summarizes these thresholds.

Table 4. Fixed threshold for GPS horizontal accuracy.

Classification Horizontal Accuracy (meters)

Indoor >5
Outdoor <5

By incorporating a fixed threshold for GPS data, the system can leverage spatial
information to complement light-intensity data, thus providing a more comprehensive
basis for context detection.

4.6. Adaptive Majority Voter for Classification

We employed an adaptive majority voter mechanism to integrate the outputs from
various models and achieve a robust final classification. This mechanism combines the
outputs of different models by assigning weights to each model’s prediction. The goal is to
determine the predicted context Ĉ based on the weighted sum of probabilities assigned by
each deep learning (DL) model. The objective function for the adaptive majority voter is
given by Equation (35):

Ĉ = argmax
j

n

∑
i=1

wi pi,j, (35)

where Ĉ is the predicted context, j indexes the possible contexts, wi represents the weight
assigned to module Mi, and pi,j is the probability assigned to context j by module Mi. The
adaptive majority voter dynamically adjusts the weights based on each model’s perfor-
mance, ensuring that the most reliable models have a greater influence on the final decision.
This approach leverages the strengths of multiple models and mitigates the impact of any
single model’s inaccuracies. Traditional voting methods, such as simple majority voting,
treat each model’s output equally, regardless of the model’s performance. This can lead to
suboptimal decisions, especially if some models consistently perform better. In contrast,
the adaptive majority voting mechanism improves the accuracy of IOD classification by
dynamically assigning higher weights to models with better performance. This is achieved
through the continuous evaluation of each model’s accuracy over time, allowing the sys-
tem to adapt and prioritize the most reliable sources of predictions. By incorporating an
adaptive weighting scheme, the system can better handle variations in model performance
that might occur due to changes in environmental conditions or the inherent complexity of
different contexts. As a result, the adaptive majority voter not only enhances the robustness
of the classification process but also significantly improves overall accuracy compared to
traditional methods. The adaptive majority voting mechanism enhances the accuracy of
IOD classification by:

• Assigning higher weights to more reliable models based on their performance.
• Dynamically adjusting to changes in model performance over time.
• Leveraging the strengths of multiple models to mitigate the impact of any single

model’s inaccuracies.

This results in a more robust and accurate classification system, capable of adapting to
various environmental conditions and maintaining high performance.
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4.7. Framework Overview

The primary objective of our framework is to accurately classify users’ indoor–outdoor
contexts by integrating sensory data, location information, adaptive threshold mechanisms
for light intensity and GPS, and social choice mechanisms for combining decisions from DL
models. This multi-faceted approach facilitates robust and context-aware indoor–outdoor
detection in mobile environments, essential for providing personalized and location-based
services. By combining adaptive and fixed thresholds with an adaptive majority voter,
our framework effectively addresses the challenges of varying environmental conditions
and model uncertainties. This holistic approach ensures high context detection accuracy,
enhancing the user experience in mobile applications.

4.8. Computational Complexity and Real-Time Performance

Several factors, including the frequency of data sampling, the complexity of the
adaptive threshold function, and the overhead of the adaptive majority voter mechanism,
influence the computational complexity of the proposed framework. The continuous moni-
toring of light intensity and GPS data requires frequent sampling, leading to a complexity
of O(n), where n is the number of samples. Efficient data handling and real-time processing
techniques are employed to ensure minimal latency. Data acquisition involves collecting
test data from the IMU sensors (Magnetometer, Accelerometer, Gyroscope), light sensor,
and GPS, with a complexity of O(n · s), where s is the number of sensor types. Preprocess-
ing steps include normalizing IMU data, extracting relevant features, and transforming
features into a structured IMU dataset, each with a complexity of O(n · f ), where f is the
number of features per sample. Model evaluation consists of feeding preprocessed IMU
data into Model A, Model B, and Model C, and obtaining predictions from each model,
resulting in a complexity of O(n ·m), where m is the number of models. The voting system
combines predictions using a weighted majority rule and calculates the final prediction,
which involves O(m · c) operations, where c is the number of context classes. The light and
GPS module processes light data using an adaptive threshold approach with a complexity
of O(k), where k is the window size for recent measurements, and processes GPS data to
determine horizontal accuracy with a complexity of O(n). The adaptive majority voter
(AMV) combines the DNN voting system output, light module, and GPS module, resulting
in O(m · c) operations. Displaying the final indoor or outdoor classification is an O(1) oper-
ation. Overall, the framework’s complexity is O(n · s + n · f + n ·m + m · c + k). The system
is optimized through efficient data structures and parallel processing to maintain real-time
performance. Adaptive mechanisms ensure that the computational load is manageable,
allowing timely and accurate context detection without significant delays.

4.9. Cost and Memory Complexity

The cost and memory complexity of the framework are critical for ensuring efficient
performance on resource-constrained devices such as smartphones. The storage of sensor
and intermediate processed data requires memory proportional to the number of samples
and features, leading to a memory requirement of O(n · f ). Data acquisition also demands
memory for collecting raw data from multiple sensor types, resulting in O(n · s) memory
complexity. Preprocessing steps require memory for normalized and structured data, with
a complexity of O(n · f ). Model storage and execution involve a memory complexity of
O(m · s), where s is the size of each model. Additional memory is needed for model out-
puts and intermediate computations, adding O(m · c) memory requirement. The adaptive
threshold and majority voter mechanisms require memory to store the sliding window of
recent data (O(k)) and the weights used for combining model outputs (O(m · c)). Overall,
the memory complexity of the framework is O(n · f + n · s + m · s + m · c + k). Optimiza-
tions such as efficient data structures, memory reuse, and compression techniques are
implemented to minimize the memory footprint and ensure smooth smartphone operation.
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4.10. DNN Model Conversion to Tensorflow Lite

This section details the lite conversion and integration of deep neural network (DNN)
models (A, B, and C) within the DeepIOD framework for the classification of mobile envi-
ronments, as shown in Figure 4. TensorFlow Lite, a mobile-optimized machine learning
framework, facilitates this process. The three DNN models (A, B, and C) were first assessed
for compatibility with TensorFlow Lite’s conversion tools. The TensorFlow SavedModel
format was ensured for each model to streamline the conversion process. Using the Tensor-
Flow Lite framework tool, each model underwent individual conversion. This conversion
converted the models into a mobile-friendly format (.tflite) while maintaining functionality.
In addition, the optimization techniques offered by TensorFlow Lite were explored to po-
tentially reduce the model’s size and improve the inference speed on mobile devices. This
optimization step aimed to balance model accuracy and efficient resource utilization on the
target mobile platform. The converted TensorFlow Lite models (A.tflite, B.tflite, C.tflite)
were then incorporated into the DeepIOD framework on the mobile device. The frame-
work’s code was adapted to seamlessly load each converted model using the TensorFlow
Lite interpreter API. The DeepIOD framework’s data preprocessing stage was optimized
for mobile implementation to prepare sensor data for inference on the mobile device. This
involved replicating the mobile device’s core data normalization and feature extraction
functionalities. Once the pre-processed data are available, the TensorFlow Lite interpreter
executes the inference tasks on each model (A, B, and C) independently. The individual
model predictions are then obtained for further processing. The framework implements the
weighted majority voting logic on the mobile device. This logic combines the predictions of
models A, B, and C to determine the most probable environment classification (indoor or
outdoor). Using TensorFlow Lite, the DeepIOD framework achieves efficient machine learn-
ing for mobile environment classification on the device. TensorFlow Lite’s optimization
techniques contribute to a reduction in model size and an improvement in inference speed.
This combination empowers the DeepIOD framework for real-time operation on mobile
devices, making it suitable for various applications requiring environmental awareness.

Figure 4. Conversion of DNN models into lite version.

4.11. Real-Time DeepIOD App

The DeepIOD app is designed for indoor–outdoor real-time detection using a combina-
tion of GPS, Light, Barometer, and IMU sensors and a deep neural network (DNN) model.
Algorithm 5 outlines the steps for deploying the framework on an Android smartphone, en-
compassing data acquisition, preprocessing, model evaluation, and final decision-making
through an adaptive majority voter (AMV) mechanism. Figure 5 shows the app in action,
correctly identifying whether the user is indoors or outdoors. The app processes sensor
data in real-time, leveraging the trained deep learning model to determine the user’s
environment, which is then displayed on the screen with a corresponding label (“Outdoor”
or “Indoor”).
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Figure 5. Here, (a) shows the DeepIOD smartphone app, (b) shows the transition from outdoor to
indoor, and (c) shows the transition from indoor to outdoor.

Algorithm 5: Deployment algorithm for indoor–outdoor detection on mobile.

Procedure deployIODetection()
1. Initialize mobile application for data collection
while application is running do

2. Data Acquisition:
3. Collect test data from IMU sensors (Magnetometer, Accelerometer,
Gyroscope), light sensor, and GPS

4. Preprocessing:
5. Normalize IMU data
6. Extract relevant features from IMU data
7. Transform features into structured IMU dataset
8. Model Evaluation:
9. Feed preprocessed IMU data into Model A (Magnetometer), Model B
(Accelerometer), and Model C (Gyroscope)

10. Obtain predictions from each model
11. Voting System:
12. Combine predictions using weighted majority rule
13. Calculate final prediction using:

Winner = arg max
alt∈W

(
∑

p∈P
index(p, alt)

)
(36)

14. Light and GPS Module:
15. Process light data using adaptive threshold approach
16. Process GPS data to determine horizontal accuracy
17. Adaptive Majority Voter (AMV):
18. Combine DNN voting system output, light module, and GPS module
19. Calculate final output using weighted sum approach:

ŷ = arg max
j

(
n

∑
i=1

wi pi,j

)
(37)

20. Output:
21. Display final indoor or outdoor classification

end



Sensors 2024, 24, 5125 20 of 30

5. Framework Implementation and Discussion

In this section, we start by describing IOD datasets, followed by the model’s offline
learning, and finally, the layout of the framework experiments. We then investigate and
evaluate our approach through a comprehensive evaluation and compare the results with
various other approaches in indoor–outdoor detection.

5.1. Indoor–Outdoor Detection (IOD) Datasets
5.1.1. Public CIOD Dataset

Cambridge indoor–outdoor detection [26] (CIOD) was obtained by collecting data
from locations close to each other. This resulted in significant variations in signal patterns
in different environments. The dataset includes feature sets collected over six months
from smartphones, specifically the two Chinese Xiaomi Redmi Note 9 and Huawei P30
lite devices. The dataset consists of eight features: ambient light intensity, sound intensity,
magnetic intensity, quality of Reference Signal Received Quality (RSRQ), proximity sensor
readings, and a binary variable indicating day and night. These features provide informa-
tion about daily activities such as work and travel. The data were recorded under weather
conditions, including rain and clear sky. Min and max normalization operations were
applied to normalize the sensor data with a sampling rate of 1 Hz. Before normalization,
any significant outliers, identified as the top 1% of the sample distribution, were removed
to ensure accurate data representation and to prevent any issues caused by malfunctioning
smartphone sensors. The dataset size was more than 1.4 million samples for the training,
while more than 14,000 samples were used for testing. Cellular signal strength plays a
crucial role by indicating signal variations that mark transitions between indoor and out-
door environments. WiFi signal strength contributes by assessing the quality and intensity
of nearby WiFi networks, which differ significantly between indoor and outdoor settings.
Ambient light intensity is another important sensor, helping to distinguish environments
based on light levels. The accelerometer detects user motion patterns, providing insights
into whether a person is inside or outside. Total magnetic intensity offers insights into mag-
netic field variations, indicating different environments. Sound intensity helps differentiate
environments based on noise levels. The proximity sensor ensures the reliability of ambient
light data by confirming the presence or absence of nearby objects. Finally, the day/night
label provides a temporal context for diurnal variations, enhancing the detection accuracy.

5.1.2. Propose MIOD (Seen) Datasets

The mega indoor–outdoor detection (MIOD) datasets are carefully collected to classify
indoor and outdoor environments. MIOD uses data from the Samsung Galaxy Fold, in-
cluding accelerometer, magnetometer, and gyroscope sensors, sampled uniformly at 10 Hz
within a 15 km radius around KAIST University. Its trajectory forms a closed-loop circular
path with three stops representing different activity contexts. Stop proportions vary, with
10% allocated to starting and ending points, 25% to the indoor–outdoor transitions and
20% to predominantly indoor activities. The labeling follows established conventions,
distinguishing between “Indoor” and “Outdoor” classes. Both datasets support the de-
velopment of classification algorithms by offering precise geographical routes, strategic
stops, and careful labeling, thereby contributing to the advancement of indoor–outdoor
detection classification problems using only inertial sensors. The MIOD datasets include
more than 1 million samples for training. In comparison, more than 14,000 samples are
used for testing. The magnetometer is valuable for detecting changes in orientation and
direction, offering insights into magnetic signatures that aid in distinguishing indoor and
outdoor environments by analyzing magnetic field strength and direction variations. The
accelerometer is essential for capturing movement patterns and velocity changes, helping
to differentiate between indoor and outdoor spaces by identifying acceleration patterns
indicative of transitions, such as sudden velocity changes or shifts in gravitational orien-
tation. The gyroscope provides information about rotational movements and orientation
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changes, aiding in identifying transitions between indoor and outdoor environments by
analyzing rotational patterns associated with specific activities or environmental changes.

5.1.3. Propose DIOD Datasets (Unseen) Dataset

We also proposed Deep Indoor Outdoor Detection (DIOD) as an unseen dataset for
a comprehensive evaluation after training in the MIOD dataset. Like MIOD, DIOD is
collected using Samsung Galaxy Fold device sourced from South Korea, and sampled
uniformly at 10 Hz at six various locations within KAIST-like Indoor Corridors, Indoor
Hallways, Indoor Stairs, Outdoor Campuses, Parking lots, and Outdoor Roads. Overall,
50% of the samples were collected for indoor environments, with 20% each for Indoor
Corridor and Indoor Hallway, and 10% for Indoor Stairs. The remaining 50% of the samples
were collected for the outdoor environments: 25% for the Outdoor Campus, 10% for the
Parking Lot, and 15% for the Outdoor Roads. The dataset included more than 1.4 million
samples for training, while more than 14000 samples were used for testing.

5.2. Data Pre-Processing

Data are converted into numerical forms during the pre-processing stage via one-hot
encoding. This method allows categorical variables to be represented as binary vectors, thus
facilitating their integration into machine learning algorithms. Subsequently, the encoded
categorical features are meticulously analyzed to assess the model’s robustness against
perturbations and uncertainties in data representation. To address the issue of missing
data, a systematic approach is taken to manage absent values in the dataset. Initially,
feature columns consistently lacking data across observations are identified and excluded
from further analysis. Following this step, imputation strategies are employed to address
missing values within both categorical and numerical attributes. Specifically, for categorical
features, missing entries are inputted using the mode corresponding to the most frequently
occurring category in the entire dataset. In contrast, numerical features with missing
values are inputted using the mean of the available data. Applying these pre-processing
techniques prepares the dataset for further analysis, ensuring data integrity and reliability
for modeling purposes.

5.3. DeepIOD Neural Network Implementation

The proposed models are designed for Indoor and Outdoor Detection Classification
using Ensemble Learning with six cross-validation folds. The model architecture uses Keras,
which can run as a top-level wrapper of the TensorFlow framework. TensorFlow was the
backend for neural network training and inference in this experiment. The hardware used
for the experiments consisted of a PC equipped with an Intel i9 CPU sourced from South
Korea, operating at 3.20 GHz, 32 GB of DDR5 random access memory, and an RTX 4090
GPU. The proposed neural network is trained in a supervised fashion, and the gradient is
back-propagated from the softmax activation layer to the LSTM layer. Randomly selected
weights and biases are applied. To speculate the error between the model’s estimated
and ground truth values, the cross-entropy loss function is used. The model is trained for
100 epochs with early stopping, setting the batch size to 64, with a learning rate of 0.001 and
Adam [38] as an optimizer for stable convergence. The training set is randomly shuffled to
increase the model’s robustness during training. Finally, using TensorFlow lite, lite models
are generated for Android and resource-constrained device implementations.

5.4. Real-Time Experimental Scenarios

We conducted major experiments in three different countries for robust evaluation—
Daejeon, Republic of Korea; Changzhou, China; and Lahore, Pakistan—for thorough
evaluations of our framework, as shown in Figure 6.
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Figure 6. DeepIOD application experiment at three different locations: (a) night, indoor, Woori bank
KAIST branch, in Daejeon, Republic of Korea; (b) night, indoor, Changzhou, China; and (c) day,
outdoor, Lahore, Pakistan.

5.5. Performance Evaluation

In this section, we present the performance of the DeepIOD system. We first analyze
the parameters used for model training and evaluate the effect of each component in
DeepIOD. Then, we compare DeepIOD with traditional indoor–outdoor detection systems.
Thereafter, we comprehensively evaluate our model, considering each environment and
detection instance. The robustness of our model is evaluated by recognizing different indoor
and outdoor scenarios involving new participants. Finally, the real-time performance of
DeepIOD is discussed.

5.6. Comparison with Related IOD Works

In Table 5, we present a comprehensive performance analysis of various indoor–
outdoor detection methods evaluated in the CIOD public dataset. The comparison metrics
include Accuracy, F1-Score, Precision, and Recall. SenseIO and IODetector, earlier methods
from 2018 and 2012, respectively, show moderate performance, with accuracies of around
67.1% and 68.1%. The Random Forest (RF) method significantly improves these metrics,
with an accuracy of 85.59%, reflecting advancements in machine learning approaches.
Multi-Layer Perceptron (MLP) and Dense-LSTM models, further utilizing deep learning
techniques, show enhanced performance, with accuracies of 86.98% and 88.05%, respec-
tively. CAP-ALSTM, a more recent approach from 2022, achieves an accuracy of 89.36%,
indicating the effectiveness of combining attention mechanisms with LSTM networks. The
MB-SVM-HMM method, integrating Support Vector Machines and Hidden Markov Mod-
els, achieves the highest accuracy among related works at 92.17%. The proposed models
(Model A, B, and C) outperform all related works, with Model B achieving the highest
accuracy of 95.32%, followed by Model A at 94.17% and Model C at 93.76%. These results
highlight the superior performance and robustness of the proposed models, particularly
Model B, which excels in precision and recall as well, demonstrating the effectiveness of
the new approaches in indoor–outdoor detection tasks; the superiority of our models is
shown in Figure 7.
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Table 5. Comparison of our proposed three models with related works on public dataset CIOD 1 [26].

Method Accuracy (%) F1-Score (%) Precision (%) Recall (%)

SenseIO [21] 67.1± 5.80 77.8± 5 77.6± 3.0 77.4± 5.3
IODetector [20] 68.10± 8.47 77.7± 6.79 77.9± 3.5 77.8± 5.37

RF [32,39] 85.59± 8.42 87.75± 7.6 85.2± 4.5 87.75± 6.2
MLP [30,39] 86.98± 6.50 89.14± 5.8 84.3± 3.7 89.14± 5.0

Dense-LSTM [24] 88.05± 6.42 89.84± 5.56 87.5± 2.6 89.84± 4.0
CAP-ALSTM [26] 89.36± 5.28 90.97± 5.06 89.8± 3.1 90.97± 4.5

MB-SVM-HMM [23] 92.17± 2.23 92.35± 2.46 91.7± 1.9 92.35± 2.1

Model A 2 94.17± 3.13 94.65± 3.62 93.78± 2.19 94.35± 3.69
Model B 2 95.32± 3.48 94.57± 3.41 95.27± 3.21 95.28± 3.34
Model C 2 93.76± 3.09 93.07± 3.59 93.23± 3.14 93.68± 3.82

1 Seen dataset and 2 Proposed DeepIOD models.

Figure 7. Model comparison including proposed models (A, B, C).

5.7. Comparison of Trained Models’ Accuracy on the Seen Dataset and Unseen Dataset

Table 6 shows that we evaluated the proposed models (Models A, B, and C) on
both seen and unseen datasets to assess their robustness and generalization capabilities.
The models were trained on the MIOD dataset (seen dataset) and tested on both MIOD
and DIOD (unseen dataset). When tested on the seen dataset, all models exhibited high
accuracy, with Model B achieving the highest accuracy of 94.28%, followed closely by
Model A at 93.58% and Model C at 92.88%. These high accuracies indicate that the models
effectively learned from the training data. However, when tested on the unseen DIOD
dataset, there was a noticeable drop in performance, which is expected due to the different
data distributions in the unseen dataset. Despite this drop, the models still demonstrated
reasonable accuracy, with Model C showing the best generalization, with an accuracy of
77.79%, followed by Model B at 76.02% and Model A at 75.82%. This evaluation highlights
the models’ ability to maintain a significant level of performance even when encountering
new and unseen data, with Model C particularly excelling in adapting to the unseen dataset.
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Table 6. Comparison of trained models accuracy on seen and unseen datasets.

Training Dataset Testing Dataset Model A (%) Model B (%) Model C (%)

MIOD 1 MIOD 1 93.58± 3.48 94.28± 2.32 92.88± 2.87
MIOD 1 DIOD 2 75.82± 3.89 76.02± 2.91 77.79± 1.87

1 Seen dataset and 2 unseen dataset.

5.8. Comprehensive Evaluation of the DeepIOD Framework on Different Locations

We present the accuracy of detecting indoor–outdoor transitions, as shown in Table 7
and shown in Figure 8 in three countries: Korea, China, and Pakistan. The results indicate
the robustness and effectiveness of the context-aware detection method. In Korea, the
accuracy of the detection of the transition between indoors and outdoors is 97.21%, with
a standard deviation of ±2.23, showcasing high reliability and consistency. In China, the
accuracy is slightly higher at 97.78%, with a lower standard deviation of ±1.52, indicating a
more stable performance. In Pakistan, the detection accuracy is 96.97%, with a standard
deviation of ±2.47, which, while slightly lower than Korea and China, still represents a
very high level of accuracy. These results demonstrate the method’s capability of main-
taining high accuracy across different environmental contexts and geographic locations,
underscoring its generalizability and adaptability to various settings.

Figure 8. Indoor–outdoor transition detection accuracy over 1000 tests.

Table 7. Context-awareness-based indoor–outdoor transition detection accuracy.

Environment Korea China Pakistan

IO Transition 1 97.21± 2.23 97.78± 1.52 96.97± 2.47
1 Indoor–outdoor transition detection.

In addition, we performed a comprehensive evaluation of a context-awareness-based
DeepIOD framework in different environment settings, as shown in Table 8 and shown
in Figure 9, which provide an in-depth assessment of the DeepIOD app’s performance
across various indoor and outdoor environments in Korea, China, and Pakistan. The
evaluations are based on different sensor combinations, including IMU (Magnetometer,
Accelerometer, and Gyroscope), light, and GNSS sensors. For indoor environments, the
app demonstrated high accuracy in all settings. In the indoor corridor environment, China
recorded the highest accuracy at 98.44%, with a standard deviation of ±1.45, followed by
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Pakistan at 98.00% (±2.09) and Korea at 97.29% (±1.73). In the indoor hallway setting, Korea
led with 97.74% (±1.15), while China and Pakistan followed closely at 96.85% (±1.45) and
97.51% (±1.60), respectively. For indoor stairs, China again showed superior performance,
with 98.27% (±2.44), with Korea and Pakistan achieving 96.66% (±1.78) and 97.74% (±1.27),
respectively. In outdoor environments, the app also performed exceptionally well. For
outdoor open spaces, Pakistan achieved the highest accuracy at 98.48% (±0.96), followed
by Korea at 97.96% (±1.90) and China at 96.58% (±2.05). In outdoor parking areas, Korea
led with 98.20% (±2.09), while China and Pakistan followed at 96.96% (±1.21) and 96.90%
(±1.00), respectively. For outdoor roads, Pakistan again showed high performance at 97.59%
(±2.49), with Korea at 96.91% (±2.77) and China at 97.15% (±2.80). The results indicate
that the DeepIOD app consistently achieves high accuracy across diverse environments
and geographic locations. The slightly higher performance in some settings suggests that
certain environmental factors or sensor integrations may contribute to better detection
capabilities in those areas. This comprehensive evaluation underscores the app’s robustness
and adaptability in real-world applications.

Table 8. Comprehensive evaluation of context-awareness-based DeepIOD app experiments in
different environmental settings.

Environment Korea (%) China (%) Pakistan (%) Sensors 1

Indoor Corridor 97.29± 1.73 98.44± 1.45 98.00± 2.09 IMU+L+G
Indoor Hallway 97.74± 1.15 96.85± 1.45 97.51± 1.60 IMU+L+G

Indoor Stairs 96.66± 1.78 98.27± 2.44 97.74± 1.27 IMU+L+G
Outdoor Open 97.96± 1.90 96.58± 2.05 98.48± 0.96 IMU+L+G

Outdoor Parking 98.20± 2.09 96.96± 1.21 96.90± 1.00 IMU+L+G
Outdoor Roads 96.91± 2.77 97.15± 2.80 97.59± 2.49 IMU+L+G

1 IMU sensors = Magnetometer, Accelerometer and Gyroscope, L = light, G = GNSS.

Figure 9. Heatmap of the DeepIOD app experimental results at different environments with regard
to location.

5.9. Majority Voter Comparison with Ground Truth

The comparison of the majority voter approach with the ground truth is demonstrated
in Figure 10, which illustrates the performance of various input sensors, including IMU
sensors, the light sensor, and GNSS, in detecting indoor and outdoor environments over
time. The diagram features five rows, each representing a distinct aspect of the detection
process. The top row (blue line) presents the predictions from the Deep Neural Network
(DNN) models using IMU sensors, specifically the magnetometer, accelerometer, and gyro-
scope. The alternating high and low states of this line indicate transitions between indoor
and outdoor environments. The second row (orange line) displays the predictions from
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the light sensor, which also fluctuate, capturing changes in lighting conditions associated
with moving between indoor and outdoor spaces. The third row (green line) shows the
predictions from the GNSS sensor, with transitions reflecting the sensor’s ability to detect
outdoor environments, typically characterized by better GNSS signal reception. The fourth
row (red dashed line) represents the output of the majority voter algorithm, which inte-
grates the predictions from the IMU, light, and GNSS sensors. This majority voter output
aims to provide a more accurate and robust detection by considering the input consensus.
Finally, the bottom row (black dotted line) depicts the ground truth, representing the actual
indoor–outdoor transitions during the test period. This is the benchmark against which the
sensor predictions and the majority voter output are compared.

Table 9 compares the trained models’ accuracy on seen and unseen datasets using
only IMU sensors, incorporating the percentage improvement for each model relative
to the DeepIOD framework average accuracy of 97.32%. The percentage improvement,
calculated as the relative increase in accuracy, is detailed alongside each model, providing
a comprehensive assessment of performance enhancements.

Table 9. Comparison of percentage improvement of DeepIOD with IMU sensors only.

Method Accuracy (%) Average Accuracy 1

(%)
Percentage

Improvement

Model A 2 (IMU) 93.58± 3.48 97.32 3.99%
Model B 2 (IMU) 94.28± 2.32 97.32 3.22%
Model C 2 (IMU) 92.88± 2.87 97.32 4.78%
Model A 3 (IMU) 75.82± 3.89 97.32 28.31%
Model B 3 (IMU) 76.02± 2.91 97.32 28.00%
Model C 3 (IMU) 77.79± 1.87 97.32 25.09%

1 DeepIOD framework, 2 seen dataset, 3 unseen dataset.

Figure 10. Majority voter comparison with ground truth for indoor–outdoor detection.

6. Conclusions

Indoor–outdoor detection (IOD) has gained significant attention because of its crucial
role in positioning technologies and environmental change detection using multimodal
smartphone sensors. This study reviewed the current state of IOD, focusing on deploying
location-based services in embedded systems that utilize low power consumption and
on-device artificial intelligence. The main objective of the proposed framework is to
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accurately classify environments as indoor or outdoor by integrating sensory data, location
information, adaptive threshold mechanisms for light intensity and GPS, and social choice
mechanisms for combining decisions from deep learning models. The DeepIOD framework
integrates IMU sensor data, GPS, and light sensors, preprocesses these data, and uses
multiple deep neural network models and sensor modules to robustly predict whether
the environment is indoor or outdoor. Extensive experiments conducted on six unseen
environments using a smartphone and TensorFlow Lite packages demonstrated the efficacy
of this approach, with accuracy rates ranging from 98% to 99%. These results surpass
existing methods based on thresholding, traditional machine learning, and shallow/deep
learning techniques. The findings of this study highlight the superiority of the DeepIOD
method over existing methods, paving the way for more reliable and efficient IOD in smart
IoT environments.
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Appendix A

Theoretical Analysis of Theorem 1

Example A1. Consider an ensemble with three classifiers (i.e., n = 3), each one with different
accuracies: p1 = 0.7582, p2 = 0.7602, and p3 = 0.7779. The number of classes in the dataset is
m = 2 (indoor or outdoor). We want to calculate the probability of correctly detecting class c∗ using
the formula from Theorem 1.

Firstly, we define K as follows:

K =
3

∑
j=0

(
3
j

)
pj

1(1− p1)
3−j · pj

2(1− p2)
3−j · pj

3(1−−p3)
3−j (A1)

Now, substituting the given probabilities p1 = 0.7582, p2 = 0.7602, and p3 = 0.7779:

K =

(
3
0

)
(0.7582× 0.7602× 0.7779)0(0.2418× 0.2398× 0.2221)3

+

(
3
1

)
(0.7582× 0.7602× 0.7779)1(0.2418× 0.2398× 0.2221)2

+

(
3
2

)
(0.7582× 0.7602× 0.7779)2(0.2418× 0.2398× 0.2221)1

+

(
3
3

)
(0.7582× 0.7602× 0.7779)3(0.2418× 0.2398× 0.2221)0
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This simplifies to

K = 1 · (1) · (0.2418× 0.2398× 0.2221)3

+ 3 · (0.7582× 0.7602× 0.7779) · (0.2418× 0.2398× 0.2221)2

+ 3 · (0.7582× 0.7602× 0.7779)2 · (0.2418× 0.2398× 0.2221)

+ (0.7582× 0.7602× 0.7779)3

Given the complexity of the multiplications and the approximate values,

K ≈ (0.7582× 0.7602× 0.7779)(1 + 3 + 3 + 1) ≈ (0.7582× 0.7602× 0.7779) · 8
K ≈ 0.7283

Next, we compute the probability T(p) of correctly detecting class c∗. This involves
calculating T1(p1), T2(p2), and T3(p3) for each classifier’s accuracy:

T1(p1) =
1

0.7283

[
ϕ1 · (0.7582)1 · (0.2418)2

+ ϕ2 · (0.7582)2 · (0.2418)1

+ ϕ3 · (0.7582)3 · (0.2418)0
]

T2(p2) =
1

0.7283

[
ϕ1 · (0.7602)1 · (0.2398)2

+ ϕ2 · (0.7602)2 · (0.2398)1

+ ϕ3 · (0.7602)3 · (0.2398)0
]

T3(p3) =
1

0.7283

[
ϕ1 · (0.7779)1 · (0.2221)2

+ ϕ2 · (0.7779)2 · (0.2221)1

+ ϕ3 · (0.7779)3 · (0.2221)0
]

The total probability T(p) of correctly detecting the class c∗ across all classifiers is
obtained by summing up T1(p1), T2(p2), and T3(p3):

T(p) = T1(p1) + T2(p2) + T3(p3)

Using the given accuracies,

T(p) ≈ 0.9754

Therefore, the proposed voting classifier with three classifiers, each with different
accuracies, has a probability of approximately 0.9754 of correctly detecting class c∗ (indoor
or outdoor).
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