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Abstract: This study presents a predefined-time control strategy for rigid spacecraft, employing
dynamic predictive techniques to achieve robust and precise attitude tracking within predefined time
constraints. Advanced predictive algorithms are used to effectively mitigate system uncertainties and
environmental disturbances. The main contributions of this work are introducing adaptive global
optimization for period updates, which relaxes the original restrictive conditions; ensuring easier
parameter adjustments in predefined-time control, providing a nonconservative upper bound on
system stability; and developing a continuous, robust control law through terminal sliding mode
control and predictive methods. Extensive simulations confirm the control scheme reduces attitude
tracking errors to less than 0.01 degrees at steady state, demonstrating the effectiveness of the
proposed control strategy.

Keywords: rigid spacecraft; attitude tracking; predefined-time control; dynamic predictive technology;
speediest update predictive period

1. Introduction

In the realm of space exploration and the development of space infrastructure, space-
craft are pivotal assets, with the attitude control system (ACS) playing an essential role [1].
The challenge of spacecraft attitude tracking, influenced by unpredictable disturbances and
a variety of environmental effects in space, has attracted significant research interest [2].

Recent advancements have seen an increasing focus on fixed-time attitude control
for spacecraft. This approach, distinct from finite-time control, provides a predetermined
system convergence time [3]. However, the complex relationship between system param-
eters and fixed-time convergence has remained intricate and ambiguous. To overcome
these challenges, the concept of predefined time has been introduced as a conservative
estimate for the upper limit of fixed time. This method effectively addresses the limitations
of fixed-time control, enhancing the predictability and reliability of system behavior [4].

In response to the operational challenges faced by spacecraft, a range of sophisti-
cated control methods have been developed to meet the stringent mission performance
requirements. Optimal control theory has been advanced by Hu et al. [5], and composite
adaptive attitude controllers have been innovatively designed by Liu et al. [6]. Lyapunov-
based design strategies have been further developed by Hu et al. and Wu et al. [7,8],
and robust control along with its integrated applications has been thoroughly explored
in several studies [9–11]. Additionally, dual-loop controllers incorporating sliding mode
control (SMC) and model predictive control (MPC) have proven effective in addressing the
complexities of spacecraft attitude tracking [12–14].
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The exploration of robust control algorithms is critical for mitigating the effects of
uncertainty and disturbances encountered by spacecraft in orbit. Among the various
robust control methods, sliding mode control (SMC) and its derivatives have shown ex-
ceptional capability in managing unknown interferences and uncertainties. Based on this
foundation, finite-time sliding mode control methodologies have been developed to en-
sure the stable convergence of attitude tracking within predefined timeframes, receiving
widespread attention for their practical engineering applications [15–17]. Adaptive back-
stepping techniques, combined with second-order sliding mode control laws, have been
proposed by Pukdeboon et al. [18] to address finite-time attitude tracking challenges in
rigid spacecraft without considering the boundary information about uncertainties and
interference. Furthermore, Cao et al. [19] introduced a combination of nonsingular terminal
sliding mode control (NTSMC) and the Lyapunov function method to solve the attitude
tracking control issues of flexible spacecraft equipped with redundant reaction wheels.
Additionally, Pukdeboon et al. [20] proposed a new finite-time attitude tracking controller
that uses a finite-time disturbance observer to estimate disturbances under the presence of
external interference, verifying that the tracking error converges to zero within a finite time.
Moreover, Chen et al. [21] employed a new polynomial finite-time performance function to
reduce computational requirements and adopted a simpler error transformation to enhance
the speed and accuracy of tracking error convergence. From another standpoint, different
types of time-varying sliding mode control were employed to solve the tracking problem
of expected attitude trajectories that are known or measurable, and the genetic algorithm
optimized the parameters to ensure the strong robustness of the controller [22]. Despite the
advances in SMC, there are still notable challenges that need to be addressed. SMC can
suffer from chattering effects, which can degrade control performance, making it difficult
to ensure fast convergence and high accuracy.

Furthermore, advanced control methods like model predictive control (MPC) have
been extensively applied to spacecraft attitude control [14,23,24]. Saki et al. [25] proposed
an adaptive soft switching law based on Lyapunov theory to dynamically adjust controller
parameters. Multiple optimal sub-models have been utilized, and direct adaptive structure
multi-model predictive control has been employed for multi-operation point and maneuver-
ing range attitude tracking. Zhang et al. [26] designed a double-layer nonlinear controller
based on the high precision and constraint properties of MPC, ensuring robust system
dynamics and resilience to external disturbances. Nonetheless, the inherent uncertainties
of these systems pose challenges in obtaining high-precision nominal models, rendering
MPC overly conservative regarding disturbance robustness, often based on worst-case sce-
narios. To address these issues, an ideal Generalized Predictive Control (GPC) framework
has been employed, which accommodates unknown terms and ensures the optimization
of closed-loop system performance while maintaining the efficiency and accuracy of the
control method, making it particularly suitable for analyzing trajectory tracking control
problems amid parameter uncertainty and unknown constraint interference [27–29]. Pre-
dictive control methods often require precise system models and can be computationally
intensive, making real-time implementation challenging.

To overcome these challenges, this paper introduces a novel predefined-time attitude
control scheme for rigid spacecraft, designed to achieve accurate attitude tracking within a
predefined timeframe using quaternion representations for spacecraft attitude. The scheme
leverages dynamic prediction techniques and the fastest optimizing prediction period to
enhance control robustness against parameter uncertainties and disturbances. The main
contributions of this study include:

1. Adaptive Global Optimization for Period Updates: The introduction of new theorems
allows for the use of an adaptive global optimization approach to achieve period
updates, relaxing the original restrictive conditions in control schemes proposed by
Sun G et al. [30].
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2. Ease of Parameter Adjustment in Predefined-Time Control: Compared to fixed-time
control methods, the parameters related to predefined-time control are more easily ad-
justable, providing a nonconservative upper bound on system stability. This makes the
determination of stabilization time for the closed-loop system more straightforward
and practical.

3. Continuous and Robust Control via Terminal Sliding Mode Control and Predictive
Methods: This work diverges from the approach of Chen et al. [31], which employs
terminal sliding mode control technology to design predefined-time attitude con-
trollers. Instead, it utilizes a method of optimizing prediction periods and predictive
control to derive the control law, ensuring that the proposed control scheme is both
continuous and robust.

For the sake of clarity and to facilitate subsequent mathematical expressions, we
introduce the following notations in advance:

• The symbols R, R+, N, N+, and Rn denote the set of real numbers, the set of posi-
tive real numbers, the set of natural numbers, the set of positive integers, and the
n-dimensional real number space, respectively.

• For any matrix A ∈ Rn×n, λmax(A) and λmin(A) represent the maximum and mini-
mum eigenvalues of A, respectively.

• For any vector x = [x1, x2, . . . , xn]T ∈ Rn, ∥x∥ denotes the Euclidean norm of x.
• For any vector a = [a1, a2, a3]

T ∈ R3, the notation a× denotes the corresponding
skew-symmetric matrix:

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

.

• For any vector a = [a1, a2, a3]
T ∈ R3 and any positive scalar γ, sigγ(a) denotes

the vector:
sigγ(a) = [|a1|γsign(a1), |a2|γsign(a2), |a3|γsign(a3)]

T,

where sign(ai), for i = 1, 2, 3, is defined as:

sign(ai) =

{ ai
|ai |

if ai ̸= 0

0 if ai = 0
.

• The symbol Ci(i ∈ N) denotes the set of all differentiable functions whose i-th deriva-
tive is continuous. If a function f : Rn → R has partial derivatives and is continuous
up to the k-th order, 1 ≤ k ≤ ∞, then the function f is called a Ck function. Here, C0

represents continuous functions, and C∞ represents smooth functions, i.e., functions
that have continuous partial derivatives of any order.

2. Spacecraft Attitude Control Problem

As is well known, Euler angles are frequently used to parameterize spacecraft attitude
due to their clear and straightforward physical concept. However, Euler angles may
encounter singularity or gimbal lock issues when describing the parameterized attitude of
a spacecraft. To address these challenges, this paper adopts the quaternion representation
for spacecraft attitude. The spacecraft, modeled as a rigid body, operates in low Earth orbit
as depicted in Figure 1a. Its actuators are momentum wheels (MWs), which provide torque
about three orthogonal axes defined with respect to the body coordinate system B.
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(a) (b)

Figure 1. (a) Illustration of spacecraft orbital motion and coordinate system; (b) schematic diagram of
the designed controller structure.

In the spacecraft attitude control system, when MWs are used as actuators, they
contribute additional angular momentum, denoted as Hm = Jmωm, where Jm is the inertia
matrix and ωm is the angular velocity of the MWs. Furthermore, the kinematics and
dynamics of the spacecraft are governed by the following nonlinear equations [14,32]:

q̇v = P(q)ω, q̇4 = −1
2

qT
v ω (1)

[J Jm]

[
ω̇

ω̇m

]
+ ω×[J Jm]

(
ω

ωm

)
= ud + ugg (2)

where q = [qT
v , q4]

T ∈ R4 represents the quaternion describing the orientation of the space-
craft body frame B relative to the inertial coordinate system I . The vector
qT

v = [q1, q2, q3]
T ∈ R3 and the scalar q4 ∈ R ensure qTq = 1. The angular velocity

ω = [ωx, ωy, ωz]T ∈ R3 is defined in the body frame B. The inertia matrix of the spacecraft
is denoted by J = JT ∈ R3×3, and P(q) ∈ R3×3 is defined as P(q) = 1

2 [q
×
v + q4 I3].

The torque applied to the system, due to the orbital gravity gradient and unknown,
bounded disturbances, is represented by ud ∈ R3 and ugg ∈ R3, respectively. Here,

ugg = 3ω2
0(ko × Jko), where ω0 =

√
µ/r3

c denotes the orbital velocity of a spacecraft in a

near-Earth orbit, µ = 398, 600 km3/s2 represents the gravitational constant of the Earth, rc
is the distance between the spacecraft and the Earth’s center of mass, and ko denotes the
third column of the direction cosine matrix of the spacecraft [15].

Based on the nonlinear dynamics model of the rigid spacecraft’s attitude given by (1)
and (2), and considering the actual control process of the spacecraft, the following assump-
tions can be made.

Assumption 1. We assume that the form of the inertia matrix J in (2) is J = J0 + ∆J, where J0
and ∆J represent the known nominal matrix and uncertain part of J, and ∆J satisfies ∥∆J∥ ≤ JM,
where JM is a known positive constant.

Assumption 2. We assume that the disturbance ud is differentiable and bounded, i.e., ∥ud∥ ≤ uM,
where uM is a known positive constant.

Assumption 3. We assume that the system input u is bounded.

In this study, the desired spacecraft attitude relative to the inertial coordinate sys-
tem I is represented by the quaternion qd = [qT

dv, qd4]
T ∈ R4, and the desired attitude

angular velocity by ωd = [ωdx, ωdy, ωdz]
T ∈ R3. The attitude tracking error between

the desired and actual attitudes is denoted as qe = [qT
ev, qe4]

T ∈ R4, with components
qev = [qe1, qe2, qe3]

T ∈ R3 satisfying the norm constraint qT
evqev + q2

e4 = 1.
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The error quaternion qe is defined by the equation:

qev = qd4qv − q×dvqv − q4qdv, qe4 = qT
dvqv + qd4q4 (3)

To aid in the controller design, it is assumed that both ωd and ω̇d are bounded. The
angular velocity error ωe is defined as ω − Ceωd, where the matrix Ce is determined from
the tracking error and is expressed as Ce = (q2

e4 − qT
evqev)I3 + 2qevqT

ev − 2qe4q×ev. In addition,
Ce satisfies Ċe = −ω×

e Ce. The kinematic equation governing the attitude tracking error qe
is given by:

q̇ev = P(qe)ωe, q̇e4 = −1
2

qT
evωe (4)

Here, P(qe) impacts the dynamics of ωe, influencing the attitude control process.
Combining (2) and (4), the differential control equation for the attitude tracking

angular velocity error ωe is as follows:

J0ω̇e = J0ω×
e Ceωd − J0Ceωd − ω× J0ω + u + d (5)

where u = −Jmω̇m − ω× Jmωm + ugg, d = ud − ∆Jω×
e Ceωd + (Ceω)×∆Jω + ω×

e ∆Jω.
The upper bound of the uncertain/disturbance part of the system can be determined

by the following expression:

∥d∥ ≤ b0 + b1∥ω∥+ b2∥ω∥2 (6)

in which b0, b1, and b2 are unknown positive constants, which satisfy that b0 is strictly
greater than the constant term of ∥d∥, b1 is strictly greater than the coefficient of the term
∥ω∥ of ∥d∥, and b2 is strictly greater than the coefficient of the term ∥ω∥2 of ∥d∥.

The primary objective of this study is to design a robust control law u ∈ R3 (as
illustrated in Figure 1b), ensuring that both the attitude tracking error qev and the angular
velocity error ωe converge asymptotically to zero under disturbance-free conditions, or
within a small bounded region when subject to external disturbances. Critically, the
predefined stabilization time is designed to be invariant with respect to the initial system
states, affirming the control’s robustness across varying operational scenarios.

Before proceeding to the main results of this paper, some preliminaries need to
be presented.

3. Preliminaries

Introduction to the following definitions and mathematical lemmas can be crucial for
understanding the main results in this article.

Consider the following nonlinear system:

ẋ = f (x, θ, d), x(0) = x0 (7)

where x ∈ Rn is the state vector of the system; θ ∈ Rb is the system parameter of the
system (7); d ∈ Rn is a vector of unknown disturbances and dynamic uncertainties; x0 is
the initial state; and f : Rn → R is a smooth nonlinear function and its origin is assumed to
be the equilibrium point of the system, i.e., f (0, θ) = 0.

Definition 1 (Finite-time stability [33]). The system (7) is considered globally finite-time stable if
it is globally asymptotically stable, and any solution reaches equilibrium within a finite time, i.e.,

∀t ≥ T(x0):x(t, x0) = 0 (8)

where T(x0) represents the actual convergence time of the system.
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Definition 2 (Fixed-time stability [34]). If the system (7) satisfies the following two conditions,
it is referred to as a globally fixed-time stable system: (i) it can reach a stable state within a finite
time, and (ii) the stable time T(x0) is globally bounded and independent of the initial state of the
system, i.e.,

∃Tmax > 0:∀x0 ∈ Rn, T(x0) ≤ Tmax (9)

where Tmax is an estimate of the convergence time of the system.

Definition 3 (Predefined-time stability [35]). For system parameter θ and a predetermined
parameter Tc = T(θ) > 0 (where Tc is an adjustable parameter), if the system (7) is fixed-time
stable and the stable time T : Rn → R satisfies

T(x0) ≤ Tc, ∀x0 ∈ Rn (10)

then the system is referred to as a globally predefined-time stable system. Furthermore, if the
minimum bound of the predefined-time function Tf satisfies Tf = supx0∈R T(x0) = Tc, then Tc is
referred to as a strong predefined time; otherwise, Tc is referred to as a weak predefined time.

Lemma 1. Assuming that V(x):Rn → R+ ∪ {0} is a continuous positive definite radial un-
bounded function that satisfies the following: (i) V(x) = 0 ⇒ x ∈ M, where M ∈ Rn is a
nonempty set; (ii) for any V(x) > 0, there exist parameters α, β, k, p, q > 0, and 0 < kp < 1 < kq
such that

V̇ ≤ −Cv

Tc
(αVp + βVq)k (11)

and ∀t > Tc, it can be guaranteed that V(x) = 0 and system (7) converges within the predefined
time Tc, where Tc is the convergence time.

If the parameter vector is defined as θ = [α, β, p, q, k]T ∈ R5, then the predefined-time function
satisfies Tf = Cv(θ), where Cv(θ) can be calculated by the following expression [36]:

Cv(θ) =
Γ(mp)Γ(mp)

αkΓ(k)(q − p)

(
α

β

)mp

(12)

where mp = 1−kp
q−p , mq = kq−1

q−p ∈ N+; Γ(·) is the gamma function that satisfies

Γ(z) =
∫ +∞

0 e−ttz−1dt.

Lemma 2. For any xi ∈ R+(i = 1, 2, · · · , n), and a real number p ∈ (0, 1], then [37]

(
n

∑
i=1

|xi|)p ≤
n

∑
i=1

|xi|p ≤ n1−p(
n

∑
i=1

|xi|)p (13)

Lemma 3. For any xi ∈ R+(i = 1, 2, · · · , n), and a real number q > 1, then [37]

n

∑
i=1

|xi|q ≤ (
n

∑
i=1

|xi|)q ≤ nq−1
n

∑
i=1

|xi|q (14)

Lemma 4. For any real-valued continuous function f (x1, · · · , xi, · · · , xn) ∈ C(Rn, Rn), where
i ∈ N1:n, there exist i smooth scalar functions fi(xi) ≥ 1, such that | f (x1, · · · , xi, · · · , xn)| ≤
∏ fi(xi) [38].

Lemma 5. If limt→∞ f (t) < ∞ exists, and ḟ is uniformly continuous (or f̈ is bounded), then
limt→∞ ḟ (t) = 0.
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4. Main Results

In this section, we propose a novel predetermined time attitude tracking control
scheme for rigid spacecraft. To facilitate the controller design, we introduce a sliding
mode variable:

s = ωe + sig
1
2 (ϑ)

where the auxiliary variable ϑ = sig2(ωe) +
C2

v
2T2

c1
(αsigp(qev) + βsigq(qev)) and relevant

parameters are defined according to Lemma 1. The controller development process is based
on dynamic prediction techniques, and can be explained as follows.

Step 1. Dynamic prediction model for the system input-output.
Design the controller using a general form of optimization method to achieve asymp-

totic stability of the closed-loop system. Ensure that the spacecraft output y = [qev, ωe]T ∈ R6

of the lower-triangular system converges to the origin in an optimal way according to the
following performance index:

J =
1
2

∫ T

0
y(t + τ)2dτ (15)

where T > 0 is the prediction period.
The above problem will be solved by a variable prediction period T = T(0)e−L, where

T(0) > 0, and the update formula for L (as shown in Figure 2a) is given by:

∆L =
ν

1 − β
− β

∂J(L, x)
∂L

β = argminβ f (ν − β∇J) = 0 (16)

where β is the update learning rate. The steepest descent update rule is transformed into a
hidden Lipschitz nonlinear hybrid optimization form, ensuring that the control process
achieves global optimization rather than merely local improvements. This transformation
is critical for enhancing the robustness and effectiveness of the control strategy across
all operational regimes. The optimization approach is equivalent to the adaptive change
rate (17), which dynamically adjusts based on the evolving system conditions, further
ensuring the comprehensive applicability and efficiency of the control method [39–41].

L̇ = f (L, ˙̂v, x), L(0) = 0, f : R+ × R → R+ (17)

(a) (b)

Figure 2. A sketch description of the predefined−time convergence of the steepest descent update
rule. (a) The direction of the steepest descent update vector (The equipotential surface contour map
represents the vector.); (b) a sketch of the predefined−time convergence.
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Based on the configuration of system (15), the future output ŷ(t + τ) within the
prediction horizon (i.e., 0 < τ < T) is predicted using the following Taylor series expansion:

ŷ(t + τ) = α0x1 + α1τx2 + · · ·+ αn−1
τn−1

(n − 1)!
xn

+ αn

[
τn

n!
u + · · ·+ τn+r

(n + r)!
u(r)

]
= Γ̄x + Γ̃U (18)

where Γ̄ ≜
[
α0, · · · , αn−1

τn−1

(n−1)!

]
, Γ̃ ≜ αn

[
τn

n! , · · · , τn+r

(n+r)!

]
, U ≜

[
u, · · · , u(r)

]T
, r ∈ N de-

notes the control sequence, and αi is the defined constants related to the kinematic-dynamic
properties of the spacecraft.

By the form of (18), the performance index for prediction (15) can be obtained in the
following form:

Ĵ =
1
2

∫ T

0
ŷ(t + τ)2dτ =

1
2

xTΓ1x + xTΓ2U +
1
2

UTΓ3U (19)

where Γ1 =
∫ T

0 Γ̄TΓ̄dτ ∈ Rn×n, Γ2 =
∫ T

0 Γ̄TΓ̃dτ ∈ Rn×(r+1), Γ3 =
∫ T

0 Γ̃TΓ̃dτ ∈ R(r+1)×(r+1).
Taking the partial derivative of Ĵ with respect to U yields ∂ Ĵ/∂U = ΓT

2 x + Γ3U. In this
paper, Γ3 is a positive definite matrix. By setting ∂ Ĵ/∂U = 0 and ensuring that ∂2 Ĵ/∂U2 > 0,
the optimal control sequence is obtained as U∗ = −Γ−1

3 ΓT
2 x.

Assuming that Γ2(i, j) = pi,jTn+i+j−1 and Γ3(i, j) = qi,jT2∗n+i+j−1 have such forms,
the simplified form of the control law can be obtained as follows:

U∗ = −eL κ1

Tn x1 − eL κ2

Tn−1 x2 − · · · − eL κn

T
xn (20)

where pi,j, qi,j and κi are constants that depend only on r and n. The above derivation still
holds when the prediction horizon is variable or state dependent [42].

For the convenience of the proof of the predictive control described in this paper, let
zi ≜ xie−L(i ∈ N1:n), and the system (15)–(20) can be constructed into a more compact
expression as follows:

ż = −I L̇z + Az + e−LΦ(θ, x) (21)

where I denotes the identity matrix, z ≜ [z1, z2, ..., zn]T, Φ(θ, x) ≜ [φ1, φ2, · · · , φn]T,

A ≜


0 α1 · · · 0
...

...
. . . 0

0 0 · · · αn−1
eL κ1

Tn(0) eL κ2
Tn−1(0) · · · eL κn

T(0)

.

According to the relevant theory of optimal control [40,41], the stability of the nom-
inal system (19) depends only on the control order r. By choosing the control order r
appropriately, there exists a positive definite and symmetric matrix P ∈ Rn×n such that
ATP + PA = −I. In this paper, the update of the prediction horizon is presented in the
following adaptive form:

˙̂v =
ρ1

γ
e−L∥z∥2

L̇ =
1
ε1

max
(

0, ρ2 − ε2eL κ

T(0)

)
, L(0) = 0

(22)

where ρ1 and ρ2 are adjustable parameters that satisfy 1√
nKλmax(P) > ρ1 > 0, ρ2 > 0. The

speediest update method can be shown to be consistent with adaptive characteristics
through (22).
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Considering the computational complexity limitations of the dynamics predictive
controller for rigid spacecraft, the optimization order n = 1 is set as proposed in (20).
Higher-order residuals and remaining parameters are adjusted using the adaptive parame-
ter adjustment described in Equation (22). Consequently, the following can be derived:

ωd(t) = P−1(qe)

(
− κ1

T1
I3qev + q̇dv + v̂1

)
u∗(t) = J0

(
− κ2

T2
I3ωe + J−1

0 ω× J0ω + v̂2

)
(23)

where T1 = T1(0)e−L1 , T2 = T2(0)e−L2 and κ1 = κ2 = 4.
The v̂i represent the unknown estimation laws defined in (22), satisfying the condition

that v̂i ∈ R3(i = 1, 2).

Theorem 1. For the attitude control system (4) and (5) of a rigid spacecraft, the closed-loop system
is globally asymptotically stable under dynamic predictive control in the form of (23). The dynamic
prediction period is determined by (22), and thus, the spacecraft’s attitudes error qev → 0 and
attitude angular velocity error ωe → 0 exist.

Proof. The closed-loop system discussed in this proof section satisfies the following conditions:

1. It is evident that all states in the closed-loop system are uniformly bounded and that
the system state converges to the origin, i.e., limt→∞ x = 0.

2. According to Lemma 3, for each C0 function ∂φi/∂xj, i ∈ N1:n, j ∈ N1:i, there exist
smooth scalar functions ai,j(θ) ≥ 1 and bi,j(x̄i) ≥ 1 such that |∂φi/∂xj| ≤ ai,j(θ)bi,j(x̄i).

Considering that v is an unknown variable that depends on θ, which needs to be
evaluated in the controller (as shown in (23)), the following definition is provided for the
convenience of the following proof.

Let v ≜ maxi∈N1:n{ai,1(θ), ai,1(θ), · · · , ai,1(θ)} and we have [v, v], where v and v are
known constants. We define ΩM ≜ {(zT, ṽ)T ∈ Rn+1 | V(z, ṽ) ≤ M}, ΩN ≜ [−N, N]n,
where M ≜ maxz∈[−ρ,ρ]n ,v̂∈[v−ρ,v̄+ρ] V(z, ṽ), N ≜ max

(zT,v̂)
T∈ΩM

∥z∥∞ [42].

The domain of the closed-loop system under consideration in this proof section is de-
fined as (x(0)T, v̂(0)T)T ∈ Θ ≜ [−ρ, ρ]n+1, where ρ is a positive constant for any initial state
that satisfies the following domain condition: (x(0)T, v̂(0)T)T ∈ Θ ⇒ ṽ(0) ∈ [v − ρ, v̄ + ρ].

We construct a Lyapunov function as V(z, ṽ) ≜ W(z) + γṽTṽ, where W(z) = zTPz,
ṽ = v − v̂ is an estimate of v, and γ > 0 is a design parameter. Based on the above
definitions, we obtain the following constraint: ∀(zT, ṽ)T ∈ ΩM, ∃ε2 ∈ [0, 1], s.t.V̇(z, ṽ) ≤
−eL κ

T(0) (1 − ε2)∥z∥2.
We can differentiate W(z) with respect to the form of system (21):

Ẇ(z) = −eL κ

T(0)
∥z∥2 + e−LzTPΦ − L̇zTPz (24)

First, we estimate the last two terms on the right side of (24).
When xi ̸= 0, i ∈ N1:n holds, by the mean value lemma, we have:

|ψi(θ, xi)| ≤ e−L|ψi(θ, xi)− ψi(θ, 0)|

= e−L
∣∣∣∣x1

∂ψi
∂x1

|x1=ξ1,··· ,xi=ξi + xi
∂ψi
∂xi

|x1=ξ1,··· ,xi=ξi

∣∣∣∣
≤ e−Lṽ(|x1|+ |x2|+ · · ·+ |xi|) · max{bi,1(ξ i), bi,2(ξ i), · · · , bi,i(ξ i)} (25)



Sensors 2024, 24, 5127 10 of 18

Under the condition that x ∈ ΩN , where in ξi ∈ (0, xi). Thus, we can obtain:

|ψi(θ, xi)e−L| ≤ e−LK(|x1|+ |x2|+ · · ·+ |xi|)
= ṽK(e−L|x1|+ e−L|x2|+ · · ·+ e−L|xi|)
= ṽK(|z1|+ |z2|+ · · ·+ |zi|)
≤ ṽK(|z1|+ · · ·+ |zi|+ · · ·+ |zn|)
≤

√
nK∥z∥ṽ (26)

where K = maxi∈N1:n ,x∈ΩN{bi,1(ξ̄i), bi,2(ξ̄i), · · · , bi,i(ξ̄i)} ≥ 1 is a known constant. Thus, we
can obtain: ∣∣∣zTPΦ

∣∣∣ ≤ √
nK∥z∥2ṽTλmax(P) (27)

By constructing the proof through the selection of adjustable parameters that satisfy
the Hurwitz condition, it can be shown that P is a positive definite matrix, which yields the
following result:

2zTPz ≥ ε1∥z∥2 ≥ 0 (28)

where ε1 ∈ (0, 2λmin(P)).
Combining (26)–(28), we can transform (24) to:

Ẇ(z) |x∈ΩN≤ −eL κ

T(0)
∥z∥2 + e−L√nK∥z∥2ṽTλmax(P)− ε1 L̇∥z∥2 (29)

Furthermore, it can be derived that:

V̇(z, ṽ) |x∈ΩN = Ẇ − γṽT ˙̂v ≤ −eL κ

T(0)
∥z∥2 + e−L√nKṽλmax(P)∥z∥2 − ε1 L̇∥z∥2 − γṽT ˙̂v

≤ −eL κ

T(0)
(1 − ε2)∥z∥2 −

(
ε2eL κ

T(0)
+ ε1 L̇

)
∥z∥2

+ ṽT(e−L√nKλmax(P)∥z∥2 − γ ˙̂v)

= −eL κ

T(0)
(1 − ε2)∥z∥2 −

(
ε2eL κ

T(0)
+ ε1 L̇

)
∥z∥2 + ṽT(e−Lρ1∥z∥2 − γ ˙̂v) (30)

Let ε2 and ρ1 =
√

nKλmax(P) ∈ (0, 1). Taking (23) into (30) yields that domain
condition holds.

For the convenience of the proof, suppose that V(t) ≜ V(z, ṽ). When L(0) = 0, there
exists (x(0)T, v̂(0)T)T ∈ ΩM with x(0) ̸= 0 such that V(0) ≤ M and V̇(0) < 0 (if x ≡ 0,
t ≥ 0 must be ensured). To simplify the subsequent proof, we assume that the Lyapunov
function has the form ∥z∥2 ≥ ∥x∥2e−2L and satisfies V̇|x∈ΩN ≤ −e−L κ

T(0) (1 − ε2)∥x∥2.
Through the aforementioned simplification, the form of the domain is defined as

(xT, v̂T)T ∈ ΩM, ∀(x(0)T, v̂(0)T)T ∈ Θ. There exists t2 ≥ 0 such that the Lyapunov function
satisfies V̇(0) < 0. Hence, the following relational equation necessarily exists as follows:
V < M holds for t ∈ (0, t2); V(t2) = M; V > M holds for t ∈ (t2, t2 + ∆) where ∆ > 0 (as
shown in Figure 2b).

Therefore, we can conclude that:

V(t2)− V(0) =
∫ t2

0
V̇(t)dt

≤ −(1 − ε2)
∫ t1

0
e−L κ

T(0)
∥x∥2dt ≤ 0 (31)
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As V(t2) ≥ V(0), we have
∫ t2

0 ∥x∥2e−L κ
T(0)dt = 0 ⇔ x ≡ 0, t ∈ (0, t2). In fact, z, γ,

and L are uniformly bounded, i.e., 1 ≤ limt→∞ L < ∞ ⇔ 0 < limt→∞ T ≤ T(0).

Let F ≜
∫ t

0 ∥z∥2dt; we can deduce that limt→∞ F =
∫ ∞

0 ∥z∥2dt ≤ − T(0)
∫ ∞

0 V̇(z,ṽ)
κeL(1−ε2)

dt < ∞.
Defining F = 2(z1ż1+· · ·+zn żn), ż is uniformly bounded with F. According to Lemma 5,
we can obtain that limt→∞ Ḟ = 0 ⇔ limt→∞ z = 0 ⇔ limt→∞ x = 0 ⇔ limt→∞ qev = 0 and
limt→∞ ωe = 0. This can prove that the proposed update method for dynamic predictive
control is locally stable and converges. Hence, the proof of Theorem 1 is completed.

Remark 1. The control laws designed for the unknown terms that the system is subjected to are
denoted by v̂1 and v̂2 in (22) in this study.

Step 2. Design of a control law for u.
Based on the sliding mode variable s and the dynamic prediction form of the control

torque defined in (23), the control law for spacecraft control torque is defined as follows:

u = u1 + u2,

u1 = J0
4e−L2 I3

Tc2

|ωe|χ − a

|ϑ| 1
2 + |ωe|

− J0χ + ω× J0ω + J0v̂2,

u2 = k0sgn(s),

χ =
Cv

Tc2
(α|s|p + β|s|q)ksgn(s),

a =
C2

v
2Tc2

(αp|qev|p−1 + βq|qev|q−1)ωe,

k0 = b0 + b1∥ω∥+ b2∥ω∥2, (32)

where Tc2 is the predefined-time constant for system stability, and b0, b1, and b2 are prede-
fined positive constants that satisfy the definition in (6).

Theorem 2. Consider the spacecraft described by (1) and (2) and assume that the initial relative
attitude does not contain singularities. If the control torque is given by (23) and (32), then the origin
of the attitude tracking error system described by (4) and (5) is predefined time stable.

Proof. Taking the time derivative of the proposed sliding mode variable s:

ṡ = ω̇e +
|ωe|ω̇e

|ϑ| 1
2

+

C2
v

2Tc1
(αp|qev|p−1 + βq|qev|q−1)ωe

|ϑ| 1
2

(33)

Substituting the dynamic model of the system (5) into (33), we obtain:

ṡ = ω×
e Ceωd − Ceω̇d − J−1

0 ω× J0ω + J−1
0 u + J−1

0 d

+
|ωe|

(
ω×

e Ceωd − Ceω̇d − J−1
0 ω× J0ω + J−1

0 u + J−1
0 d

)
|ϑ| 1

2

+

C2
v

2Tc1
(αp|qev|p−1 + βq|qev|q−1)ωe

|ϑ| 1
2

(34)
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Substituting (34) into (32) gives:

ṡ =
4e−L2

Tc2

|ωe|χ − a

|ϑ| 1
2 + |ωe|

− χ − J−1
0 k0sgn(s) + J−1

0 d

+

|ωe|
(

4e−L2 |ωe |χ−a

Tc2
1

|ϑ|
1
2 +|ωe |

− χ − J−1
0 k0sgn(s) + J−1

0 d
)

|ϑ| 1
2

+

C2
v

2Tc1
(αp|ωe|p−1 + βq|ωe|q−1)ωe

|ϑ| 1
2

(35)

Based on the definition in (6), there exists k0 = b0 + b1∥ω∥+ b2∥ω∥2 ≥ ∥d∥, and we
can derive from (35) that:

ṡ = −χ − J−1
0 k0sgn(s) + J−1

0 d +
|ωe|

(
−J−1

0 k0sgn(s) + J−1
0 d

)
|ϑ| 1

2

≤ −χ = − Cv

Tc2
(α|s|p + β|s|q)ksgn(s) (36)

Consider the following Lyapunov function candidate V3 = |s|. Taking the time
derivative of V3 yields:

V̇3 = ṡsgn(s) ≤ − Cv

Tc2
(α|s|p + β|s|q)k = − Cv

Tc2

(
αVp

3 + βVq
3

)k
(37)

According to Lemma 1, in the convergence phase, the system is predefined time stable,
and the predefined time is Tc2.

Once the tracking trajectory of the system undergoes a phase of stabilization converg-
ing to the origin, i.e., s = 0 when t > Tc2, by defining the variables, we can obtain:

ωe = − Cv

Tc1
(α|qev|p + β|qev|q)ksgn(qev) (38)

where Tc1 is also the predefined-time constant for system stability.
Consider the following Lyapunov function candidate V4 = |qev|. Taking the time

derivative of V4 yields:

V̇4 = q̇evsgn(qev) ≤ − Cv

Tc1
(α|qeν|p + β|qeν|q)k = − Cv

Tc1
(αVp

4 + βVq
4 )

k (39)

Similarly, according to Lemma 1, the system converges stably to the origin in the
predefined time Tc2. Moreover, the system under the control of (23) and (32) converges
stably to the origin within the predefined-time constant Tc = Tc1 + Tc2. Hence, the proof of
Theorem 2 is completed.

Therefore, from Theorems 1 and 2, we conclude that qev and ωe converges to the origin
within the predefined time.

Remark 2. The controller designed in this paper relaxes the torque constraint required by general
dynamic prediction techniques. Moreover, the upper bound of the predefined-time constant for the
closed-loop system in the results is independent of the initial conditions, making the parameter
selection of the controller more convenient.
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Remark 3. Considering that the sign function sgn(s) will lead to system chattering, the sgn(s) in
the proposed controller (32) is modified to the following form:

sgn(s) =

{
s

|s|+0.01 , |s| > ε

εI3, |s| ≤ ε
(40)

where ε ∈ R is a small positive constant.

Remark 4. The derivatives of the Lyapunov function in this study are scaled exclusively in the
presence of system uncertainty. In contrast, other control schemes undergo multiple scaling steps in
their derivation process. As a result, the proposed upper bound on the convergence time presented in
this paper is notably less conservative.

5. Simulation Results

In this section, we validate the efficacy of the proposed control scheme through
numerical simulation. The nominal inertia matrix J0 of the spacecraft is defined with the
following parameters: J = [21, 1.4, 0.8; 1.4, 18, 1.2; 0.8, 1.2, 17] kg· m2. In the simulation, 30%
of the inertia matrix is given as a deviation, which is represented as the uncertain part of the
inertia matrix ∆J = 0.3J0. The spacecraft is equipped with MWs drive, which is a rotating
body fixed inside the spacecraft, with Jm = diag(0.03, 0.08, 0.08) kg· m2. The reference
attitude is qd = col(sin(t), cos(t), 1, 0). The control parameters are chosen as k = 0.5, p = 1,
q = 3, α = 3, β = 3, Tc = 10, b0 = 2.01, b1 = 16.2, b2 = 1.9, ρ1 = 1.2, and ρ2 = 1.54. The
saturation problem of the actuator has been considered during the system simulation, and
the torque of the actuator is limit to [−5, 5] N· m.

Remark 5. The control parameters in the proposed predefined-time control strategy are critical
for achieving optimal performance. Gain parameters (k, α, β) influence the convergence speed
and robustness of the control system. Typically, higher values of α and β enhance the system’s
ability to reject disturbances and handle uncertainties, but they may also increase control effort
and cause chattering. The parameter k should be chosen to balance fast convergence and system
stability. Time constants (Tc, Tc1, and Tc2) define the predefined stabilization time. Smaller values
lead to faster convergence but require more precise control actions. A moderate starting value is
recommended, which can then be fine-tuned based on the desired system performance and response.
Disturbance parameters (b0, b1, and b2) estimate the upper bounds of disturbances and uncertainties.
Accurate estimation is crucial for maintaining robustness. Initial values can be based on prior
system knowledge and adjusted according to observed disturbance levels during operation. Adaptive
parameters (ρ1, ρ2) control the adaptation rate of the dynamic predictive control scheme. Higher
values result in quicker adaptation to changing conditions but may risk instability if set too high.
By adjusting the corresponding control parameters, optimal performance can be achieved under
different spacecraft configurations and mission requirements.

First, it is assumed that there are no disturbance and measurement noises (define this
as Case A). In this case, the initial conditions of the system are q(0) = col(0.4,−0.2, 0.65, 0.6)
and ω(0) = col(0.5, 0.4, 0.3) deg/s. The simulation results are shown in Figure 3. It can be
observed that the attitude tracking errors of the spacecraft in Euler angles with a 3−1−2
rotation sequence (i.e., ϕe, θe and ψe) are less than 0.002 degrees when t ≥ 10 s, which
indicates that the proposed control scheme in this paper can achieve perfect spacecraft
attitude tracking.
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Figure 3. The impact of controllers (23) and (32) on attitude tracking (with uncertain factors, no
disturbances, and no measurement noise). (a) Attitude tracking errors in Euler angles with a 3−1−2
rotation sequence; (b) angular velocity tracking errors; (c) control torque.

Next, the case with disturbances is addressed (define this as Case B). In this case, the
elements of the initial attitude q(0) = col(−0.3,−0.1, 0.5, 0.7) and initial angular velocity
ω(0) = col(−0.4, 0.2, 0.4) deg/s are given, respectively. To investigate the robustness
performance of the closed-loop system, an external disturbance ud = 0.1col(sin 0.5t, cos 0.5t,
sin 0.4t) N· m is given. The results are shown in Figure 4, indicating that the attitude
tracking errors of in Euler angles are less than 0.008 degree at the steady-state stage.

Furthermore, we discuss the case where measurement noise is present (define this
as Case C). In this case, the initial values of the attitude q(0) and angular velocity ω(0)
are randomly selected from the range [−0.4, 0.8] and [−0.5, 0.5] deg/s, respectively. The
measurement noise signals defined in the controllers during the simulation calculations are
given according to An-Min Zou et al.’s method [37]. The results in Figure 5 show that at
the steady state, the attitude tracking errors in the Euler angles are less than 0.01 degrees.
The excellent performance of the proposed control scheme is further evidenced by the root
mean square error (RMES) of the attitude tracking presented in Table 1.
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Figure 4. The impact of controllers (23) and (32) on attitude tracking (with uncertainties and dis-
turbances, without measurement noise). (a) Attitude tracking errors in Euler angles with a 3−1−2
rotation sequence; (b) angular velocity tracking errors; (c) control torque.
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Figure 5. The impact of controllers (23) and (32) on attitude tracking in the presence of uncertainty,
disturbances, and measurement noise. (a) Attitude tracking errors in Euler angles with a 3−1−2
rotation sequence; (b) angular velocity tracking errors; (c) control torque.
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Table 1. Attitude tracking root mean square error (RMES).

Euler Angles Case A Case B Case C

ϕe (deg) 0.129 0.132 0.348
θe (deg) 0.110 0.110 0.1438
ψe (deg) 0.069 0.067 0.090

Finally, a comprehensive comparison is conducted between the proposed predefined-
time dynamic predictive controller, traditional PID control (as shown in (41)), and the
existing fixed-time control (as shown in (42)) methods under the same conditions:

uPID = Kpe + Ki

∫
e dt + Kd ė (41)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, respectively. The
PID controller is widely used due to its simplicity and effectiveness, but it has significant
limitations when dealing with uncertainties, bounded actuators, and external disturbances:

u = −
[
(k2γ + k) sigα(ξ) + (k3γ + k) sigβ−1+α1(ξ)

]
− f (ω, ωd, ω̇d)− κβJ diag(|qe|β−1)q̇e (42)

where k > 0, ki > 0 (i = 2, 3) are constants, and diag(|qe|β−1) is a diagonal matrix.
This fixed-time method provides a guaranteed convergence time but faces challenges in
parameter tuning and robustness under high levels of uncertainties and disturbances.

As shown in Figure 6, even with simultaneous uncertain factors and measurement
noise affecting the spacecraft system, the proposed predefined-time dynamic predictive
method exhibits superior performance in terms of spacecraft attitude angle tracking, an-
gular velocity response, and control torque jitter compared to both PID and fixed-time
controllers. The PID controller shows significant performance degradation under uncer-
tainties and disturbances. The fixed-time controller offers improvements but still lacks the
flexibility and robustness of the proposed method.
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Figure 6. Performance comparison between the controllers designed in this paper and the fixed-time
controller (with uncertainties and measurement noises). (a) Response of ∥qe∥; (b) response of ∥ωe∥;
(c) response of ∥u∥.

In conclusion, the proposed control strategy demonstrates strong robustness to existing
uncertainties and disturbances, achieving the control goal of attitude tracking more effec-
tively than traditional PID and fixed-time control methods. This highlights the practical
benefits of the proposed method for advanced spacecraft attitude control applications.

6. Conclusions

This paper presents a novel predefined-time control scheme for rigid spacecraft, lever-
aging dynamic predictive techniques to address the robustness challenges posed by system
uncertainties and environmental disturbances. The proposed approach combines the
strengths of quaternion-based attitude representation and predefined-time control, en-
suring high precision and robustness against external perturbations. Key contributions
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include the introduction of adaptive global optimization for period updates, easing pa-
rameter adjustments for predefined-time control, and developing a continuous and robust
control law using terminal sliding mode control and predictive methods. Our method
significantly surpasses traditional control strategies by providing rapid convergence to
desired attitudes with exceptional accuracy as evidenced by simulation results showing
attitude tracking errors reduced to below 0.01 degrees. The control strategy’s flexibility
allows for adaptations to different spacecraft models, enhancing its applicability in complex
space missions. Furthermore, the robustness of the control scheme against disturbances
and its capacity to handle uncertainties without performance degradation highlight its
practical benefits for future aerospace applications. Future work will focus on expanding
the applicability of this strategy to more complex models and testing its effectiveness in
real-world space mission scenarios. This approach, due to its robust and adaptable nature,
also has potential applications in other areas requiring precise dynamic control, such as
robotics and unmanned aerial vehicles.
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