
Citation: Yamada, W.; Cherney, J.;

Cherney, D.; Runge, T.; Digman, M.

Handheld Near-Infrared Spectroscopy

for Undried Forage Quality

Estimation. Sensors 2024, 24, 5136.

https://doi.org/10.3390/s24165136

Academic Editors: Qing Yu, Ran Tu,

Ting Liu and Lina Li

Received: 24 June 2024

Revised: 30 July 2024

Accepted: 2 August 2024

Published: 8 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Handheld Near-Infrared Spectroscopy for Undried Forage
Quality Estimation
William Yamada 1,* , Jerry Cherney 2, Debbie Cherney 2 , Troy Runge 1 and Matthew Digman 1

1 Department of Biological Systems Engineering, University of Wisconsin—Madison, Madison, WI 53706, USA;
trunge@wisc.edu (T.R.); digman@wisc.edu (M.D.)

2 Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University,
Ithaca, NY 14853, USA; jhc5@cornell.edu (J.C.); djc6@cornell.edu (D.C.)

* Correspondence: wyamada@wisc.edu

Abstract: This study investigates the efficacy of handheld Near-Infrared Spectroscopy (NIRS) devices
for in-field estimation of forage quality using undried samples. The objective is to assess the precision
and accuracy of multiple handheld NIRS instruments—NeoSpectra, TrinamiX, and AgroCares—when
evaluating key forage quality metrics such as Crude Protein (CP), Neutral Detergent Fiber (aNDF),
Acid Detergent Fiber (ADF), Acid Detergent Lignin (ADL), in vitro Total Digestibility (IVTD)and
Neutral Detergent Fiber Digestibility (NDFD). Samples were collected from silage bunkers across
111 farms in New York State and scanned using different methods (static, moving, and turntable). The
results demonstrate that dynamic scanning patterns (moving and turntable) enhance the predictive
accuracy of the models compared to static scans. Fiber constituents (ADF, aNDF) and Crude Protein
(CP) show higher robustness and minimal impact from water interference, maintaining similar R2

values as dried samples. Conversely, IVTD, NDFD, and ADL are adversely affected by water content,
resulting in lower R2 values. This study underscores the importance of understanding the water
effects on undried forage, as water’s high absorption bands at 1400 and 1900 nm introduce significant
spectral interference. Further investigation into the PLSR loading factors is necessary to mitigate
these effects. The findings suggest that, while handheld NIRS devices hold promise for rapid, on-site
forage quality assessment, careful consideration of scanning methodology is crucial for accurate
prediction models. This research contributes valuable insights for optimizing the use of portable
NIRS technology in forage analysis, enhancing feed utilization efficiency, and supporting sustainable
dairy farming practices.

Keywords: portable NIRS; miniaturization; feed composition; scanning methods

1. Introduction

Understanding and managing the nutritional variability of forages is crucial for op-
timizing dairy farm management and enhancing animal health. The nutritive value of
forages, including alfalfa-grass haylage and corn silage, exhibits considerable variability,
which can influence milk production efficiency and environmental sustainability [1]. Re-
cent advancements have leveraged handheld near-infrared (NIR) spectroscopy devices,
such as the NeoSpectra (1350–2550 nm, Si-ware Systems Inc., Cairo, Egypt), TrinamiX
(1450–2450 nm, TrinamiX Inc., Ludwigshafen, Germany), and Agrocares Scanners F-Series
(1300–2550 nm, AgroCares, Wageningen, The Netherlands). These tools offer rapid on-site
prediction of forage quality, enabling nutritional management by detecting variations in for-
age nutritive values, including dry matter (DM) [2–5], Crude Protein (CP) [2–10], and fiber
contents and properties, such as actual Neutral Detergent Fiber (aNDF) [2,6–10], Neutral
Detergent Fiber Digestibility (NDFD) [4,7,8], Acid Detergent Fiber (ADF) [2–4,6–10], Acid
Detergent Lignin (ADL) [2,4,7,8], and in vitro Total Digestibility (IVTD) [4,6–8,10]. By fa-
cilitating daily adjustments to animal diets based on accurate, real-time forage analysis,
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handheld NIR devices can significantly enhance the efficiency of feed utilization, reduce
environmental impact, and improve the overall profitability and sustainability of dairy
farming operations [3,11,12].

The interest in compact, handheld spectrometers for analyses conducted directly
on farms is gaining momentum [2,13,14]. These NIR devices have proven to have good
performance on pre-treated samples of dried and ground forage [6]. These portable spec-
trometers are becoming more common on machinery used for forage harvesting and have
also been modified for use with other agricultural implements like liquid manure spread-
ers [15,16]. In a study [17], it was found that a portable device (HarvestLabTM 3000, Deere
& Company, Moline, IL, USA) could approximate the quality of a mix of undried forage
species, albeit with systematic errors that could be adjusted for accuracy. An essential
element for the effectiveness of NIR technology in these applications is the development of
a reliable calibration.

The utilization of handheld Near-Infrared Spectroscopy (NIRS) devices in forage
assessment aims to permit direct sample analysis without the need for prior sample pro-
cessing. This is enabled by calibrations developed for wet, unprocessed forage. However,
deploying these devices faces several obstacles, notably the influence of the moisture ab-
sorption band and sample heterogeneity [18,19]. Additional operational challenges of
handheld NIRS technology include managing the signal-to-noise ratio, ensuring a consis-
tent power supply in a portable format, and maintaining functionality amid diverse and
potentially adverse environmental conditions [3,7].

These studies underscore the practical considerations and performance of handheld
NIRS instruments in the field. For instance, [7] describes the development of predictive
models for various forage types, highlighting the significant influence of the scanning
methodology on the accuracy of the constituent prediction. Similarly, ref. [3] provides an
assessment of multiple handheld NIR devices, examining their precision and accuracy in on-
farm forage evaluation, with a focus on dry matter content compared to traditional moisture
meters and the robustness of available calibrations for nutritive value determination.

The ongoing development of NIRS technology for forage quality prediction indicates
that miniaturized instruments have similar predictive power as benchtop instruments.
As this technology is increasing in popularity, it is essential to understand if different
portable instruments and scanning patterns affect the quality of the prediction. Thus,
the objectives of this research are as follows:

• To assess the precision and accuracy of multiple handheld Near-Infrared Spectroscopy
(NIRS) devices when used for on-farm forage evaluation, particularly focusing on the
robustness of calibrations for nutritive value determination;

• To examine if different portable instruments and scanning patterns influence the
quality of prediction;

• To evaluate the effects of using dried unground samples for forage quality prediction.

2. Materials and Method
2.1. Samples and Reference Analysis

Predictive NIRS models were developed using NIRS spectra and laboratory reference
values for 600 silage samples of mixed haylage. Silage samples were collected between
2021 and 2023 from silage bunkers on 111 farms around New York State. After collection,
the samples were vacuum-packed in oxygen-limiting polyethylene bags using a commercial
vacuum packing machine for scanning at a later date.

The acquisition of NIR spectroscopic measurement data was achieved using three scan-
ners: NeoSpectra (1350–2550 nm, Si-ware Systems Inc., Cairo, Egypt), TrinamiX (1450–2450 nm,
TrinamiX Inc., Ludwigshafen, Germany), and AgroCares (1300–2550 nm, AgroCares, Wa-
geningen, The Netherlands). The data collected with TrinamiX and AgroCares reported
spectra from 1454 to 2446 nm at a fixed step of 4 nm, while the NeoSpectra scanner reported
spectra from 1350 to 2550 nm at a variable step between 2.5 and 8.8 nm and a wavelength
resolution of 16 nm. Each scanner used different detector types as shown in Table 1.
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Table 1. Instruments and their characteristics.

Property AgroCares F-Series TrinamiX NEO Spectra

Detector Type MEMS Linear Variable Filter MEMS-FT-NIR
Spectral Range (nm) 1450–2450 1450–2450 1350–2500
Sample Scanning Contact Contact Contact

Before the scanning process began, all samples were thoroughly mixed in a large
plastic container to ensure homogeneity. All samples were scanned in a controlled labo-
ratory environment to avoid any interference of humidity or temperature on the scans.
Two primary methods were employed to capture spectra, alongside a third specialized
technique. The first method involved placing the scanner’s lens in direct contact with the
sample, where it remained stationary. The second method required the scanner to be moved
across the sample surface during the scanning period, maintaining continuous contact.
After each scan conducted with the second method, the samples were mixed again to
ensure consistency; this method was tested with the AgroCares and NEOSpectra scanners.
The third technique utilized a rotating dish accessory (Si-ware Systems Inc., Cairo, Egypt)
for the NEOSpectra instrument, allowing the sample to be scanned continuously. These
methods were sequentially applied to each forage sample, with five replicate scans being
collected to ensure accuracy and repeatability.

Post-acquisition, the samples were desiccated using forced-air ovens until a consistent
mass was achieved at 60 °C, subsequently ground with a Wiley mill (Thomas Scientific,
Swedesboro, NJ, USA) through a 1 mm mesh screen, and then stored in plastic containers.
The forage constituents appraised included Neutral Detergent Fiber (aNDF), in vitro Total
Digestibility (IVTD), Neutral Detergent Fiber Digestibility (NDFD), Acid Detergent Lignin
(ADL), Acid Detergent Fiber (ADF), ash, and Crude Protein (CP), which served as reference
variables for the calibration of Near-Infrared Spectroscopy (NIRS) predictive models.

2.2. Wet Chemistry

For the chemical analysis, the methodologies aligned with those delineated in the
literature [20]. Concisely, forage samples were apportioned into ANKOM F57 filter bags
(ANKOM Technology, Macedon, New York, NY, USA) to quantify NDF, ADF, ADL, and 48-h
IVTD. To alleviate gaseous pressure, the filter bags were intermittently removed from their
respective containers on both the initial and subsequent days. The digestibility of the
Neutral Detergent Fiber was quantified in terms of the percentage of fiber hydrolyzed,
with the values expressed on an NDF basis.

The nitrogen (N) content was measured through a combustion technique using a
LECO CN628 analyzer (DairyOne, Ithaca, NY, USA), with Crude Protein (CP) being in-
ferred from nitrogen values using the conversion factor of 6.25 as per AOAC guidelines
(1995). Duplicate analyses were performed for all constituents, with nitrogen content being
quantified in duplicate on a select sample subset to establish the Standard Error for the
CP measurement. The laboratory’s Standard Error (SEL) pertinent to these determina-
tions has been documented in prior studies that used the same samples but with different
instruments and scanning analysis [3,7].

2.3. Model Calibration

To ensure methodological consistency and mitigate the risk of overfitting, uniform
data preprocessing and training protocols were employed across all instrument models.
Spectral data from the NEOSpectra device were interpolated to achieve a consistent interval
of 4 nm. All spectral data were converted to absorbance by employing the logarithmic
transformation of the reciprocal reflectance, denoted as log(1/R). Data preprocessing was
standardized using a Savitzky–Golay filter with a window length of four, a polynomial
order of three, and a derivation order of one. The algorithm of choice for the modeling
was Partial Least Squares Regression (PLSR), using Python 3.10.12 and the packages scipy
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(to preprocess the data) and scikit-learn (to calibrate the PLSR model). In order to have a
baseline model for each predicted variable, we opted to work with PLS-1 to understand how
the scans affected the individual performance of the models. The selection of the optimal
number of latent variables within the range of 1 to 20 was systematically determined using
a grid search.

The dataset was divided into 90%/10% for training with five-fold cross-validation
(CV) and a separate validation dataset, respectively. We randomly selected bunkers to split
the dataset, ensuring that the training and test sets were independent. This approach uses
540 samples for calibration (432 for training and 108 for CV) and 60 samples for testing the
final model, providing a robust evaluation of the model’s generalizability. By having an
external dataset for validation, created as described, we can effectively verify the overfitting
of our model [21]. Overfitting can be identified by comparing performance metrics between
the training and validation datasets. If the model performs significantly better on the
training data than on the validation data or the validation performance deteriorates while
the calibration improves, it is likely overfitting. In our study, we adopt a robust outlier
detection method utilizing Partial Least Squares (PLS) regression tailored for Near-Infrared
(NIR) spectroscopy data analysis. This approach leverages Q-residuals and Hotelling’s
T-squared statistics to identify deviations, ensuring outliers that could skew the model’s
predictive accuracy are effectively recognized, using a 95% confidence level [22]. This
technique provides a systematic way to refine datasets for better analytical outcomes.

2.4. Evaluation

The calibration models were evaluated using the standards set forth by Malley et al. [23]
and Williams et al. [24] as shown in Table 2. This section details the predictive performance
of the models using a suite of metrics, including root mean square error (RMSE), Bias,
Standard Error (SE), Cross-Validation Standard Error (SECV), Coefficient of Determination
(R2), Cross-Validated R2 (R2

CV), Ratio of Performance to Deviation (RPD), Cross-Validated
RPD (RPDCV), and the number of latent variables (LVs) employed on the PLS calibration.

Table 2. Calibration classification and level of success according to [23,24].

Level of Success [23] R2 [23] RPD Value [24] Classification [24] Application [24]

Not useful <0.80 <2.0 Very poor Not recommended

Moderately Successful 0.80 to 0.90 2.0 to 2.5 Poor Rough screening
2.5 to 3.0 Fair Screening

Successful 0.90 to 0.95 3.0 to 3.5 Good Quality control
3.5 to 4.0 Very good Process control

Excelent >0.95 >4.0 Excellent Any application
RPD—Ratio of Perfomance to Deviation.

We will compare our results with those obtained from various handheld NIRS devices
reported in the literature. Specifically, we will reference studies that utilized different
instruments on both dried and undried materials. For undried and unground material, we
will compare our findings with those from the Aurora device as reported by Cherney et al.
(2021) [3] and the NEOSpectra device as reported by Feng et al. (2023) [7]. For dried and
ground material, comparisons will be made with results obtained using the MicroPHAZIR
(1600–2400 nm, ThermoFisher Scientific, Waltham, MA, USA) and DLP NIRscan Nano EVM
(900–1700 nm, Texas Instruments, Dallas, TX, USA) devices as described by Acosta et al.
(2020) [6], the NEOSpectra device as reported by Digman et al. (2022) [4], the ASD Quali-
tySpec (350–2500 nm, Malvern Panalytical, Cambridge, UK) and Tellspec (900–1700 nm,
Tellspec Inc., Toronto, ON, Canada) devices as detailed by Rukundo et al. (2021) [2], and the
Aurora (950–1650 nm, GraiNit S.r.l., Padua, Italy), NIR-S-G1 (950–1650 nm, InnoSpectra,
Hsinchu, Taiwan), and SCiO (740–1070 nm, Consumer Physics, Hod Hasharon, Israel)
devices as discussed by Berzaghi et al. (2021) [8]. This comprehensive comparison will
provide a robust context for evaluating the performance and accuracy of our results and
evaluating the impact of using undried materials. In addition, to evaluate the effects of
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water absorption, we will analyze the major PLS loading components in relation to the
water absorption bands as described by Williams [25]. The primary water absorption bands
are detailed in Table 3.

Table 3. Positions of main absorption bands in water.

Wavelength (nm) 1460 1778 1904 2208 2384
Relative Intensity Large Very Small Very Large Very Small Very Small

3. Results and Discussion
3.1. Spectral Data

The average spectra and range of the 600 samples scanned are shown in Figure 1,
which presents the mean spectral signatures captured by each instrument. In accordance
with the observations reported by Feng et al. [7], overtone bands attributable to O-H bonds
are discernible at approximately 1400 and 1900 nm, which is consistent with the presence
of moisture in the undried forage samples. The statistical information of the laboratory
measurements of the constituents is provided in Table 4.

Figure 1. Comparative analysis of forage sample spectra: This graph illustrates the mean spectral
signatures of forage samples (n = 600) as measured by three different scanners—TrinamiX (red
line—static scan), AgroCares (green line—static scan; blue line—moving scan), and NEOSpectra
(yellow—static scan; cyan—moving scan; magenta—turntable scan)—utilizing varying methods.
Each line represents the average log(1/R) value across a range of wavelengths from 1400 to 2600
nm. The hue of each line represents the range between the maximum and minimum measured for
each instrument.

Table 4. Laboratory reference values statistics.

IVTD aNDF NDFD ADF ADL CP

Unit %DM
Count 600
Mean 79.22 50.13 58.84 37.18 7.35 17.62
SD 7.31 10.42 9.39 5.80 2.18 4.43
Min 38.13 28.81 11.40 24.22 3.12 6.12
Median 80.73 48.75 58.50 36.50 7.06 18.04
Max 92.92 81.60 80.87 59.06 20.60 27.72

IVTD—in vitro Total Digestibility, aNDF—actual Neutral Detergent Fiber, NDFD—Neutral Detergent Fiber
Digestibility, ADF—Acid Detergent Fiber, ADL—Acid Detergent Lignin, CP—Crude Protein, DM—Dry Matter,
SD—Standard Deviation.
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3.2. Calibration Results

The calibration outcomes are summarized in Table 5. The NEOSpectra device in
turntable mode yielded superior fit models for the calibration set variables ADF, ADL,
CP, and aNDF. With respect to IVTD and NDFD, this device also demonstrated superior
performance in certain metrics while remaining competitive in others. An observation is
that both the moving and turntable scanning modes achieved the best calibration results
when utilizing a greater number of latent variables, suggesting that dynamic scanning
captures more relevant data for model calibration.

Table 5. Statistical performance metrics for calibration models using 540 samples undried and
unground alfalfa samples across different instruments and modes. The table lists the RMSE, Bias, SE,
SECV , R2, R2

CV , RPD, RPDCV , and the number of latent variables (LVs) for the variables ADF, ADL,
CP, IVTD, and NDFD.

Instrument Mode Variable RMSE Bias SE SECV R2 R2
CV RPD RPDCV LVs

AgroCares Static ADF 2.754 0.000 2.756 3.379 0.771 0.655 2.090 1.703 10
Moving ADF 1.959 0.000 1.961 2.608 0.884 0.795 2.937 2.208 15

NEOSpectra
Static ADF 2.463 0.000 2.465 2.885 0.817 0.749 2.336 1.996 12

Moving ADF 2.122 0.000 2.124 2.544 0.864 0.805 2.711 2.264 20
Turntable ADF 1.861 0.000 1.862 2.198 0.895 0.854 3.093 2.620 19

Trinamix Static ADF 2.261 0.000 2.263 2.662 0.846 0.786 2.545 2.163 13

AgroCares Static ADL 1.365 0.000 1.367 1.674 0.591 0.386 1.564 1.277 11
Moving ADL 1.293 0.000 1.294 1.559 0.633 0.468 1.651 1.371 10

NEOSpectra
Static ADL 1.369 0.000 1.371 1.592 0.589 0.445 1.559 1.342 11

Moving ADL 1.242 0.000 1.244 1.460 0.661 0.533 1.718 1.464 18
Turntable ADL 1.175 0.000 1.176 1.450 0.697 0.539 1.817 1.473 20

Trinamix Static ADL 1.405 0.000 1.406 1.608 0.567 0.434 1.520 1.329 10

AgroCares Static CP 2.010 0.000 2.012 2.306 0.792 0.727 2.195 1.915 9
Moving CP 1.670 0.000 1.672 1.872 0.857 0.820 2.641 2.358 8

NEOSpectra
Static CP 1.843 0.000 1.845 2.140 0.825 0.765 2.393 2.063 11

Moving CP 1.513 0.000 1.514 1.799 0.882 0.834 2.916 2.454 20
Turntable CP 1.328 0.000 1.329 1.601 0.909 0.869 3.322 2.758 20

Trinamix Static CP 1.643 0.000 1.645 1.900 0.861 0.815 2.684 2.324 12

AgroCares Static IVTD 4.279 0.000 4.283 5.016 0.660 0.533 1.714 1.463 9
Moving IVTD 3.465 0.000 3.469 4.177 0.777 0.677 2.117 1.758 10

NEOSpectra
Static IVTD 4.114 0.000 4.118 4.632 0.686 0.602 1.783 1.585 10

Moving IVTD 3.665 0.000 3.668 4.455 0.750 0.632 2.002 1.648 19
Turntable IVTD 3.409 0.000 3.412 4.195 0.784 0.674 2.152 1.750 20

Trinamix Static IVTD 3.757 0.000 3.760 4.372 0.738 0.645 1.953 1.679 12

AgroCares Static NDFD 6.534 0.000 6.540 7.744 0.524 0.333 1.450 1.224 10
Moving NDFD 5.653 0.000 5.658 6.862 0.644 0.476 1.676 1.382 10

NEOSpectra
Static NDFD 6.317 0.000 6.323 7.173 0.555 0.428 1.500 1.322 11

Moving NDFD 5.730 0.000 5.735 6.980 0.634 0.458 1.653 1.358 19
Turntable NDFD 5.485 0.000 5.490 6.508 0.665 0.529 1.727 1.457 19

Trinamix Static NDFD 5.390 0.000 5.395 7.081 0.676 0.442 1.757 1.339 20

AgroCares Static aNDF 3.811 0.000 3.814 4.370 0.863 0.820 2.700 2.356 10
Moving aNDF 3.256 0.000 3.259 3.829 0.900 0.862 3.159 2.689 8

NEOSpectra
Static aNDF 3.243 0.000 3.246 3.752 0.901 0.867 3.172 2.744 15

Moving aNDF 3.007 0.000 3.010 3.573 0.915 0.880 3.421 2.881 20
Turntable aNDF 2.605 0.000 2.608 3.031 0.936 0.913 3.949 3.397 20

Trinamix Static aNDF 2.905 0.000 2.908 3.828 0.920 0.862 3.541 2.689 20

SE—Standard Error, RPD—Ratio of Performance to Deviation, CV—Cross-Validated, LVs—Latent Variables,
ADF—Acid Detergent Fiber, ADL—Acid Detergent Lignin, CP—Crude Protein, IVTD—in vitro Total Digestibility,
NDFD—Neutral Detergent Fiber Digestibility, aNDF—actual Neutral Detergent Fiber.

Figure 2 illustrates the relationship between the number of latent variables (LVs) and
the root mean square error (RMSE) for various instruments and target variables. The analy-
sis reveals that dynamic scans, represented by moving and turntable configurations, exhibit
less sensitivity to larger number of latent variables. In contrast, static scans demonstrate
signs of overfitting when more than 10 latent variables are used as indicated by the deterio-
ration in CV performance, evidenced by increasing the RMSE, despite improvements in the
calibration RMSE. This observation underscores the importance of scan dynamics in miti-
gating overfitting and enhancing the predictive accuracy of models across different latent
variable configurations. The explained variability of the LVs can be found in Table A1 in
Appendix A. Overall, the improvements using more latent variables are not that significant
for more than 10 LVs, achieving less than one percent improvement in the RMSE.
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Figure 2. RMSE vs. latent variables for each variable. This figure shows the root mean squared
error (RMSE) values for different numbers of latent variables across various instruments and target
variables. The RMSE values for both calibration and cross-validation (CV) are plotted for each instrument,
differentiated by color (purple—AgroCares Static, orange—Agrocares Moving, blue—NEOSpectra Static,
green—NEOSpectra Moving, red—NEOSpectra Turntable, brown—Trinamix Static) and line style
(continuous—calibration, dashed—CV).
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3.3. Validation Results

The validation results are reported in Table 6 and summarized in Table 7, the perfor-
mance of the NEOSpectra and Trinamix instruments across various modes and variables is
quantified through metrics such as RMSE, SE, R2, and RPD. For the NEOSpectra instrument,
when operating in ’Moving’ mode, CP predictions were moderately successful (R2 = 0.892)
with a corresponding RPD of 3.042, leading to a ’Good’ classification. However, the same
instrument’s performance predicting IVTD in the same mode was not useful, with a lower
R2 of 0.743 and an RPD of 1.974, reflecting a ‘Very poor’ classification. When utilizing the
‘Turntable’ mode, predictions of ADF and ADL yielded ‘Fair’ and ‘Very poor’ classifications,
respectively, indicating varied efficacy based on the forage constituent analyzed. In contrast,
the Trinamix instrument in ‘Static’ mode demonstrated ‘Successful’ prediction for aNDF
with an R2 of 0.916 and an RPD of 3.452, garnering a ‘Very good’ classification. These results
reflect the nuanced capabilities of each instrument and mode combination, emphasizing
the importance of selecting the appropriate setup for specific analytical needs in forage
assessment. Figure 3 makes it clear that the calibrated models did not perform well in
predicting NDFD, ADL, and IVTD on the validation set for undried haylage samples.

Table 6. Validation performance metrics for different instruments operating in static, moving,
and turntable modes. The metrics include RMSE, Bias, SE, R2, Slope, Intercept, and RPD for the
validation of variables ADF, ADL, CP, IVTD, NDFD, and aNDF using a set of 60 samples. This table
facilitates the comparison of model precision and prediction accuracy across diverse instruments and
scanning configurations for the validation dataset.

Instrument Mode Variable RMSE Bias SE R2 Slope Intercept RPD

AgroCares Static ADF 2.949 −0.150 2.970 0.761 0.973 1.191 2.047
Moving ADF 3.015 −0.654 2.968 0.751 0.928 3.386 2.003

NEOSpectra
Static ADF 2.490 −0.203 2.502 0.830 1.026 −0.805 2.425

Moving ADF 2.283 −0.446 2.258 0.857 0.923 3.374 2.645
Turntable ADF 2.207 −0.193 2.217 0.866 0.946 2.269 2.736

Trinamix Static ADF 2.536 −0.332 2.536 0.824 1.090 −3.124 2.381

AgroCares Static ADL 2.400 −0.040 2.420 0.109 0.644 2.705 1.059
Moving ADL 2.247 −0.251 2.252 0.219 0.835 1.450 1.132

NEOSpectra
Static ADL 2.050 −0.079 2.066 0.350 0.963 0.356 1.240

Moving ADL 2.013 −0.321 2.004 0.373 1.018 0.194 1.263
Turntable ADL 1.794 −0.178 1.800 0.502 1.040 -0.115 1.417

Trinamix Static ADL 1.961 −0.307 1.953 0.405 1.257 −1.550 1.297

AgroCares Static CP 2.003 0.356 1.988 0.783 0.893 1.408 2.144
Moving CP 1.729 0.329 1.712 0.838 0.937 0.700 2.484

NEOSpectra
Static CP 1.977 0.333 1.965 0.788 0.997 −0.288 2.172

Moving CP 1.412 0.074 1.422 0.892 0.986 0.150 3.042
Turntable CP 1.517 0.140 1.524 0.875 0.935 0.911 2.831

Trinamix Static CP 1.712 0.101 1.723 0.841 0.925 1.112 2.509

AgroCares Static IVTD 4.558 −0.709 4.540 0.577 0.862 11.412 1.537
Moving IVTD 4.141 0.010 4.176 0.651 0.857 11.125 1.692

NEOSpectra
Static IVTD 4.040 −0.315 4.061 0.668 0.911 7.270 1.735

Moving IVTD 3.549 −0.262 3.570 0.743 0.927 5.942 1.974
Turntable IVTD 3.550 −0.277 3.569 0.743 0.854 11.650 1.974

Trinamix Static IVTD 4.142 −0.180 4.173 0.651 0.912 7.068 1.692

AgroCares Static NDFD 8.355 −1.046 8.360 −0.019 0.497 30.314 0.991
Moving NDFD 7.406 −0.232 7.465 0.200 0.645 21.191 1.118

NEOSpectra
Static NDFD 6.515 −0.590 6.543 0.381 0.838 10.082 1.271

Moving NDFD 5.943 −0.164 5.991 0.485 0.952 3.016 1.393
Turntable NDFD 5.544 −0.348 5.579 0.552 0.816 11.202 1.493

Trinamix Static NDFD 7.295 −0.515 7.338 0.223 0.649 21.140 1.135
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Table 6. Cont.

Instrument Mode Variable RMSE Bias SE R2 Slope Intercept RPD

AgroCares Static aNDF 4.380 −0.501 4.388 0.841 1.018 −0.462 2.506
Moving aNDF 3.808 −0.865 3.739 0.880 1.020 −0.186 2.883

NEOSpectra
Static aNDF 3.832 −0.713 3.797 0.878 1.050 −1.935 2.864

Moving aNDF 3.494 −0.174 3.519 0.899 0.991 0.666 3.141
Turntable aNDF 3.304 −0.404 3.307 0.909 0.991 0.872 3.322

Trinamix Static aNDF 3.180 0.189 3.201 0.916 1.010 −0.705 3.452

SE—Standard Error, RPD—Ratio of Performance to Deviation, ADF—Acid Detergent Fiber, ADL—Acid Detergent
Lignin, CP—Crude Protein, IVTD—in vitro Total Digestibility, NDFD—Neutral Detergent Fiber Digestibility,
aNDF—actual Neutral Detergent Fiber.

Table 7. Performance of the best model for each predicted variable on the validation set.

Variable RMSE SE R2 RPD Success Classification
Instrument Mode (R2 [23]) (RPD [24])

NEOSpectra

Moving CP 1.412 1.422 0.892 3.042 Moderately
Successful Good

Moving IVTD 3.549 3.570 0.743 1.974 Not Useful Very poor

Turntable ADF 2.207 2.217 0.866 2.736 Moderately
Successful Fair

Turntable ADL 1.794 1.800 0.502 1.417 Not Useful Very poor
Turntable NDFD 5.544 5.579 0.552 1.493 Not Useful Very poor

Trinamix Static aNDF 3.180 3.201 0.916 3.452 Successful Very good

RMSE—Root Mean Squared Error, SE—Standard Error, RPD—Ratio of Performance to Deviation, ADF—Acid Detergent
Fiber, ADL—Acid Detergent Lignin, CP—Crude Protein, IVTD—in vitro Total Digestibility, NDFD—Neutral Detergent
Fiber Digestibility, aNDF—actual Neutral Detergent Fiber.

Figure 3. Comparative evaluation of three handheld spectrometers and methods used to predict
nutritional content in feed samples. The different colors and shapes represent readings from moving,
static, or turntable methods of using the AgroCares, NEO Spectra, and TrinamiX instruments. Each
dot represents the pair of reference data and the prediction using the calibrated PLSR model from the
validation set (n = 60). The regression lines for each method showcase the accuracy and precision in
predicting the content of Crude Protein (CP), Neutral Detergent Fiber (aNDF), Acid Detergent Fiber
(ADF), Acid Detergent Lignin (ADL), Neutral Detergent Fiber Digestibility (NDFD), and in vitro
Total Digestibility (IVTD). The dashed black line represents a 1:1 agreement between the reference
and predicted values.
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When calibrated exclusively with static scans, TrinamiX had a better RMSE, SE, and
RPD than the NEOSpectra for predicting CP and ADL. These findings concur with the
insights of Feng et al. [7], highlighting the enhanced spectral quality afforded by moving
scans due to their capacity to encapsulate a more generalized and homogeneous represen-
tation of the samples. A closer examination of the calibration data delineated in Table 5
reveals a performance hierarchy within the same instrument, with the order of efficacy
being turntable > moving > static. This sequence also correlates with the increasing num-
ber of latent variables that can be utilized in the NEOSpectra scanning process, thereby
suggesting that sliding scans not only improve the spectral quality but also allow for a
better model calibration.

Utilizing the same scanning pattern—whether static, moving, or turntable—tends
to yield comparable calibration performance across different devices as evidenced by the
minimal variation in the R2 and the RPD values, usually within the same class range of
success, according to Table 2. This is consistent across most variables, with the notable
exception of Neutral Detergent Fiber (aNDF), where the Trinamix instrument in static
mode achieved an RPD of 3.453, surpassing those of AgroCares at 2.506 and NEOSpectra at
2.864. The findings thus suggest that the methodology of spectral data acquisition is more
important than the choice of the handheld instrument.

Figure 4 presents normalized boxplots of prediction errors, facilitating a more nuanced
comparison of calibration performance. Notably, CP, ADF, and aNDF demonstrate the
most favorable results, characterized by minimal bias and RMSE, with most prediction
errors falling within one standard deviation. Conversely, ADL predictions are less accurate,
exhibiting a multitude of outliers as reflected in Table 7, indicating a disparity between the
predicted and observed values.

Figure 4. The chart presents the normalized distribution of prediction errors on the validation set
for six forage quality variables—CP, NDFD, aNDF, ADL, IVTD, and ADF—obtained using different
spectral scanning instruments and methods. Each boxplot shows the median, quartiles, and outliers
for the prediction error standard deviation (SD) of each method.

The standard error of laboratory (SEL) values reported by Cherney et al. (2021) [3] for the
wet chemistry of the same samples indicated errors that are an order of magnitude lower than the
root mean square error (RMSE) values from our results presented in Table 7 (SELaNDF ≤ 0.66,
SELADF ≤ 0.70, SELADL ≤ 0.30, SELIVTD ≤ 0.76, SELNDFD ≤ 2.36, and SELCP ≤ 0.44).

Compared to the existing literature, our calibration results are compatible with the
previously reported findings. For undried samples, [3] evaluated the Aurora instrument for
haylage, corn silage, and Total Mixed Ration, while [7] assessed the NEOSpectra for corn
silage, alfalfa, grass, and mixed alfalfa and grass silage. Both studies utilized moving scans.
As shown in Figure 5, our results with haylage samples exhibit similar characteristics to
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the best metrics from the literature, further supporting the notion that dynamic scans often
outperform other methods. Additionally, our findings indicate that ADF, aNDF, and CP
achieve moderately successful-to-excellent calibrations, whereas IVTD, NDFD, and ADL
do not yield useful models according to the [23] R2 criteria.

Figure 5. Undried data R2 comparison with Aurora [3], calibrated for haylage, corn silage, and Total
Mixed Ration, and NEOSpectra [7] calibrated for grass, alfalfa, and mixed silage forages. Both
references were sampled using moving scans. The dots represents the metrics obtained by the
references, and the stars represents the metrics obtained by our best model.

As one of the goals of portable NIRS is to be used for in-field forage quality estimation,
it is important to understand how the prediction model performance is affected when using
undried samples. Since water has high absorption bands at 1400 and 1900 nm, it creates
interference in the raw spectrum of the material in the NIR region [25]. Figure 6 illustrates
how our model performance compares to that of models calibrated on dried samples. It
is evident that the water content of the samples affects the performance of the models to
varying degrees for all forage quality metrics studied. ADF, aNDF, and CP are less impacted
by water, exhibiting similar R2 values to those of dried materials. In contrast, IVTD, NDFD,
and ADL are severely affected by the water content, resulting in lower R2 values. Further
investigation into how water influences the PLSR loading factors is necessary to better
understand whether these effects can be mitigated.

Figures 7 and 8 display the first two latent variables that contain most of the explained
variance of the PLS models (Appendix A). It is evident that the main absorption bands of
water play a role in the loading factors of the latent variables, particularly at the 1904 nm
band, where water has a significant absorption peak. These effects arise from the interac-
tions of water with the O-H groups present in carbohydrates, fats, and proteins, which
can form hydrogen bonds with most types of fiber. These results are consistent with the
findings obtained from studies on small grains [25].
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Figure 6. Comparison of R2 values from models calibrated on dried samples (literature) versus
our model calibrated on undried samples. Tellspec and ASD QualitySpec [2] were calibrated for
grass. NEOSpectra [4] was calibrated for grass, alfalfa, and mixed silage forages. Nano and MicroP-
HAZIR [6] were calibrated for grass forages. NIR-S-G1, SCiO, and Aurora [8] were calibrated for
alfalfa and grass forages. The dots represent the metrics obtained from the references, and the stars
represent the metrics obtained by our best model.

Figure 7. Loading values of the first latent variable of the spectrum (first derivative). Instruments are
divided by color (AgroCares—blue, NEOSpectra—red, and Trinamix—green). The scan modes are
divided by the line style (continuous—static, dashed—moving, and dotted—turntable). The vertical
lines are the water absorption bands. Very small absorption bands (1778, 2208, and 2384 nm) are in
green. The large absorption band (1460 nm) is illustrated in cyan. The very large absorption band
(1904 nm) is shown in purple.
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Figure 8. Loading values of the second latent variable of the spectrum (first derivative). Instruments
are divided by color (AgroCares—blue, NEOSpectra—red, and Trinamix—green). The scan modes are
divided by the line style (continuous—static, dashed—moving, and dotted—turntable). The vertical
lines are the water absorption bands. Very small absorption bands (1778, 2208, and 2384 nm) are in
green. The large absorption band (1460 nm) is illustrated in cyan. The very large absorption band
(1904 nm) is in purple.

Collectively, these analyses underscore the significance of the scanning pattern over the
specific technology or instrument used. The consistency in data acquisition methodology
emerges as a critical factor in the calibration performance, influencing the robustness of
predictive models more substantially than the hardware utilized. Furthermore, the lower
performance of certain variables is likely due to the water’s electromagnetic absorption
and interaction with the undried sample material.

4. Conclusions

This study systematically explores the influence of the scanning methodology and
instrument design on the efficacy of spectroscopic models in forage analysis. Our findings
are derived from a set of 600 ensiled forage samples collected across New York state.
As detailed in Tables 5 and 6, and summarized in Table 7, we highlight the importance
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of the role the spectral acquisition technique plays over the specific technical features of
handheld NIRS devices.

The consistency observed across the instruments when identical scanning patterns
were employed underscores the methodological influence over technology. Specifically,
the NEOSpectra instrument, when employed in a dynamic mode, demonstrates a significant
advantage in the predictive accuracy for all variables. This suggests that the precision and
reliability of predictions are more heavily contingent upon applying robust and consistent
scanning protocols.

Based on the analysis of Figure 2 and Table A1, we recommend limiting the number
of latent variables to 7–10 to avoid overfitting and ensure future model performance.
Although our results indicate that 11–20 LVs can have a small improvement in the unseen
validation set, the explained variance of these variables does not significantly improve the
results enough to justify using them. Therefore, a careful balance must be struck between
model complexity and predictive stability.

Comparative analyses, particularly for undried forage, have aligned with the findings
from the literature, confirming the validity of our models within the expected performance
parameters. Moreover, the results have revealed that scanning modes incorporating move-
ment tend to enhance the homogeneity of the sample representation, which is critical
in achieving high-quality spectral data. When comparing dried and grounded material
calibrations, we can see that fiber constituents and protein are less impacted by water ab-
sorption. However, there remains a knowledge gap in understanding the water interactions
of the undried and unground forage constituents, specifically how water interaction affects
their NIR spectral characteristics. The loadings obtained through Partial Least Squares
Regression of the NIR spectra highlight the critical role of variance at the wavelengths asso-
ciated with O-H absorptions in constructing models for these materials. The behavior of
water within complex agricultural substances is expected to differ from that of liquid water.

Figures 3 and 4 provide visual confirmation of the comparative and error distribution
analyses, respectively, illustrating the nuanced performance across different forage con-
stituents and underscoring the models that exhibit both high accuracy and those with room
for improvement.

In summary, this research affirms the importance of the scanning pattern in develop-
ing robust near-infrared spectroscopic models. It contributes valuable insights that may
guide practitioners in selecting the most suitable instruments and modes for forage quality
assessment. As the field advances, future studies should further refine these methodolo-
gies, optimizing the balance between technological innovation and practical application
for enhanced forage analysis. The evaluation of embedded NIR sensors in agricultural
machinery to predict forage quality and properties is one of the paths forward in undried
forage research.
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Appendix A. Explained Variance

Table A1. Explained variance (%) by each latent variable (LV) for different instruments and target
variables. The values represent the individual contribution of each LV to the total explained variance.

Instrument Variable LV1 LV2 LV3 LV4 LV5 LV6 LV7 LV8 LV9 LV10

AgroCares Static

ADF 69.64 9.99 1.89 5.29 2.66 2.74 1.73 2.22 0.50 0.80
ADL 75.36 3.10 3.93 1.58 4.79 2.72 1.73 3.06 0.49 0.36
CP 34.57 40.04 3.19 4.97 5.35 2.54 2.17 1.89 0.99 0.91

IVTD 66.68 12.45 1.59 4.12 3.94 3.21 1.77 1.49 1.28 0.83
NDFD 75.40 4.20 3.90 1.83 2.45 2.76 2.93 2.62 0.80 0.68
aNDF 38.45 35.27 3.75 5.49 4.13 3.71 2.43 2.03 0.56 0.75

AgroCares Moving

ADF 72.73 11.85 1.76 5.23 2.02 1.75 0.52 1.52 0.26 0.26
ADL 79.69 3.66 4.60 1.87 2.07 3.65 0.94 1.01 0.17 0.29
CP 37.47 42.25 2.13 7.73 1.68 3.31 1.06 1.09 0.51 0.21

IVTD 67.76 15.55 1.78 6.10 1.02 1.57 1.75 1.66 0.29 0.25
NDFD 78.51 2.07 4.56 2.58 1.23 6.11 1.23 1.18 0.18 0.33
aNDF 42.04 38.25 2.75 5.86 3.70 1.75 0.70 1.75 0.49 0.21

NEOSpectra Static

ADF 67.24 13.98 7.18 3.96 2.41 0.70 1.23 0.42 0.53 0.32
ADL 74.43 5.09 6.78 5.11 3.41 0.64 1.10 0.63 0.44 0.31
CP 36.26 42.49 6.67 5.75 1.79 1.20 0.63 1.28 1.00 0.45

IVTD 62.96 17.68 5.75 5.34 1.61 1.39 1.68 0.50 0.59 0.34
NDFD 73.31 2.32 9.77 6.12 1.84 1.48 1.91 0.47 0.43 0.35
aNDF 36.99 38.83 10.39 4.16 3.23 0.52 1.70 0.45 0.90 0.40

NEOSpectra Moving

ADF 67.69 12.72 4.56 7.72 1.77 1.13 1.12 0.46 0.55 0.28
ADL 73.90 4.19 8.23 5.41 2.66 0.82 0.45 0.84 1.19 0.28
CP 35.14 39.27 3.32 13.64 2.10 0.80 1.78 0.98 0.46 0.40

IVTD 60.10 15.80 2.24 13.97 1.72 1.27 1.47 0.54 0.60 0.28
NDFD 72.91 1.90 7.88 9.07 2.23 0.87 1.05 1.08 0.73 0.25
aNDF 38.82 34.14 3.75 15.01 2.22 1.30 0.78 0.85 0.33 0.59

NEOSpectra TurnTable

ADF 65.80 16.21 4.45 6.11 2.14 1.01 0.48 0.87 0.46 0.26
ADL 72.69 6.89 6.00 3.80 5.30 1.02 0.49 0.31 1.06 0.19
CP 30.11 50.20 6.68 3.97 2.36 1.91 0.48 1.09 0.58 0.32

IVTD 59.73 20.88 2.94 7.73 2.67 1.44 0.48 1.05 0.46 0.29
NDFD 75.94 2.90 7.23 2.55 4.24 3.00 0.50 0.75 0.55 0.19
aNDF 33.29 45.87 8.35 3.29 2.71 1.56 0.31 1.25 0.46 0.41

Trinamix Static

ADF 74.94 10.20 2.82 2.63 1.33 2.96 1.53 0.70 0.27 0.59
ADL 79.72 5.00 2.72 1.96 1.78 3.62 1.22 1.35 0.65 0.30
CP 42.12 37.73 5.05 1.99 2.13 2.41 1.72 3.17 0.45 1.02

IVTD 70.04 13.63 2.41 3.13 1.39 2.30 0.73 3.34 0.57 0.55
NDFD 80.21 3.67 3.60 1.17 2.53 2.12 2.01 1.96 0.25 0.54
aNDF 45.70 33.24 5.78 2.67 1.75 4.03 2.68 0.53 0.70 0.81

ADF—Acid Detergent Fiber, ADL—Acid Detergent Lignin, CP—Crude Protein, IVTD—in vitro Total Digestibility,
NDFD—Neutral Detergent Fiber Digestibility, aNDF—actual Neutral Detergent Fiber.
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19. Tsenkova, R.; Munćan, J.; Pollner, B.; Kovacs, Z. Essentials of aquaphotomics and its chemometrics approaches. Front. Chem.
2018, 6, 363. [CrossRef] [PubMed]

20. Valentine, M.E.; Karayilanli, E.; Cherney, J.H.; Cherney, D.J. Comparison of in vitro long digestion methods and digestion rates
for diverse forages. Crop Sci. 2019, 59, 422–435. [CrossRef]

21. Roelofs, R.; Shankar, V.; Recht, B.; Fridovich-Keil, S.; Hardt, M.; Miller, J.; Schmidt, L. A meta-analysis of overfitting in machine
learning. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2019; pp. 9175–9185.

22. Mendes de Oliveira, D.; Pasquini, C.; Rita de Araújo Nogueira, A.; Dias Rabelo, M.; Lúcia Ferreira Simeone, M.; Batista de
Souza, G. Comparative analysis of compact and benchtop near-infrared spectrometers for forage nutritional trait measurements.
Microchem. J. 2023, 196, 109682. [CrossRef]

23. Malley, D.F.; McClure, C.; Martin, P.D.; Buckley, K.; McCaughey, W.P. Compositional Analysis of Cattle Manure During
Composting Using a Field-Portable Near-Infrared Spectrometer. Commun. Soil Sci. Plant Anal. 2005, 36, 455–475. [CrossRef]

24. Williams, P. The RPD Statistic: A Tutorial Note. NIR News 2014, 25, 22–26. [CrossRef]
25. Williams, P. Influence of water on prediction of composition and quality factors: The aquaphotomics of low moisture agricultural

materials. J. Infrared Spectrosc. 2009, 17, 315–328. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compag.2021.106013
http://dx.doi.org/10.3168/jds.S0022-0302(79)83330-5
http://dx.doi.org/10.1177/0960336020916815
http://dx.doi.org/10.1016/j.compag.2020.105578
http://dx.doi.org/10.1002/chem.202002838
http://www.ncbi.nlm.nih.gov/pubmed/32820844
http://dx.doi.org/10.3390/chemosensors11050272
https://www.agriculture.com/news/technology/john-deere-adds-manure-constituent-sensing-to-harvestlab-3000
https://www.agriculture.com/news/technology/john-deere-adds-manure-constituent-sensing-to-harvestlab-3000
http://dx.doi.org/10.2134/jeq2013.01.0014
http://www.ncbi.nlm.nih.gov/pubmed/24216353
http://dx.doi.org/10.3390/rs12193256
http://dx.doi.org/10.3390/molecules24152742
http://www.ncbi.nlm.nih.gov/pubmed/31357745
http://dx.doi.org/10.3389/fchem.2018.00363
http://www.ncbi.nlm.nih.gov/pubmed/30211151
http://dx.doi.org/10.2135/cropsci2018.03.0159
http://dx.doi.org/10.1016/j.microc.2023.109682
http://dx.doi.org/10.1081/CSS-200043187
http://dx.doi.org/10.1255/nirn.1419
http://dx.doi.org/10.1255/jnirs.862

	Introduction
	Materials and Method
	Samples and Reference Analysis
	Wet Chemistry
	Model Calibration
	Evaluation

	Results and Discussion
	Spectral Data
	Calibration Results
	Validation Results

	Conclusions
	Appendix A
	References

