Optical Biosensor Based on Porous Silicon and Tamm Plasmon Polariton for Detection of CagA Antigen of Helicobacter pylori
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leja, M.; Axon, A.; Brenner, H. Epidemiology of Helicobacter pylori infection. Helicobacter 2016, 21, 3–7. [Google Scholar] [CrossRef] [PubMed]
- de Brito, B.B.; da Silva, F.A.F.; Soares, A.S.; Pereira, V.A.; Santos, M.L.C.; Sampaio, M.M.; Neves, P.H.M.; de Melo, F.F. Pathogenesis and clinical management of Helicobacter pylori gastric infection. World J. Gastroenterol. 2019, 25, 5578–5589. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.F.; Yuan, C.Z.; Zhou, S.A.; Lu, J.; Zeng, M.Y.; Cai, X.; Song, H.P. Helicobacter pylori infection: A dynamic process from diagnosis to treatment. Front. Cell. Infect. Microbiol. 2023, 13, 1257817. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.M.; Schulz, C.; Gasbarrini, A.; Hunt, R.H.; Leja, M.; O’Morain, C.; et al. Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report. Gut 2022, 71, 1724–1762. [Google Scholar] [CrossRef]
- Llorca, L.; McNicholl, A.G.; Guerrero, M.D.; Donday, M.G.; Ramas, M.; Alarcón, T.; Gisbert, J.P. Comparative, Prospective, Study Comparing the Accuracy of Two Different Stool Antigen Tests (Premier Platinum Hpsa and Novel Immunocard Stat! Rapid Test) for the Diagnosis of Helicobacter pylori Infection: Preliminary Results. Helicobacter 2015, 20, 88. [Google Scholar]
- Su, X.D.; Li, S.F.Y. Serological determination of Helicobacter pylori infection using sandwiched and enzymatically amplified piezoelectric biosensor. Anal. Chim. Acta 2001, 429, 27–36. [Google Scholar] [CrossRef]
- Ly, S.Y.; Yoo, H.S.; Choa, S.H. Diagnosis of Helicobacter pylori bacterial infections using a voltammetric biosensor. J. Microbiol. Meth 2011, 87, 44–48. [Google Scholar] [CrossRef]
- Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T.R. Detection of Helicobacter pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe. J. Appl. Spectrosc. 2016, 83, 322–329. [Google Scholar] [CrossRef]
- Sezgin, G.C.; Ocsoy, I. Anthocyanin-rich black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) and red cabbage (Brassica oleracea) extracts incorporated biosensor for colorimetric detection of Helicobacter pylori with color image processing. Braz. J. Microbiol. 2023, 54, 897–905. [Google Scholar] [CrossRef]
- Ono, S.; Dohi, O.; Yagi, N.; Sanomura, Y.; Tanaka, S.; Naito, Y.; Sakamoto, N.; Kato, M. Accuracies of Endoscopic Diagnosis of Helicobacter pylori-Gastritis: Multicenter Prospective Study Using White Light Imaging and Linked Color Imaging. Digestion 2020, 101, 624–630. [Google Scholar] [CrossRef]
- Akeel, M.; Elhafey, A.; Shehata, A.; Elmakki, E.; Aboshouk, T.; Ageely, H.; Mahfouz, M.S. Efficacy of immunohistochemical staining in detecting Helicobacter pylori in Saudi patients with minimal and atypical infection. Eur. J. Histochem. 2021, 65, 3222. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Atherton, J.; Axon, A.T.R.; Bazzoli, F.; Gensini, G.F.; Gisbert, J.P.; Graham, D.Y.; Rokkas, T.; et al. Management of Helicobacter pylori infection-the Maastricht IV/Florence Consensus Report. Gut 2012, 61, 646–664. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Ching, S.S.; Long, A.S. The use of a second biopsy from the gastric body for the detection of Helicobacter pylori using rapid urease test. Singap. Med. J. 2014, 55, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Bénéjat, L.; Ducournau, A.; Lehours, P.; Mégraud, F. Real-time PCR for Helicobacter pylori diagnosis. The best tools available. Helicobacter 2018, 23, e12512. [Google Scholar] [CrossRef] [PubMed]
- del Pozo, M.V.; Alonso, C.; Pariente, F.; Lorenzo, E. DNA biosensor for detection of Helicobacter pylori using phen-dione as the electrochemically active ligand in osmium complexes. Anal. Chem. 2005, 77, 2550–2557. [Google Scholar] [CrossRef] [PubMed]
- Rong, G.; Najmaie, A.; Sipe, J.E.; Weiss, S.M. Nanoscale porous silicon waveguide for label-free DNA sensing. Biosens. Bioelectron. 2008, 23, 1572–1576. [Google Scholar] [CrossRef] [PubMed]
- Verma, Y.K.; Kumari, S.; Tripathi, S.M. Grating assisted temperature insensitive micro-ring resonator biosensor. J. Opt. 2023, 25, 125801. [Google Scholar] [CrossRef]
- Wu, B.; Rong, G.G.; Zhao, J.W.; Zhang, S.L.; Zhu, Y.X.; He, B.Y. A Nanoscale Porous Silicon Microcavity Biosensor for Novel Label-Free Tuberculosis Antigen-Antibody Detection. Nano 2012, 7, 1250049. [Google Scholar] [CrossRef]
- Nagarathnegowda, M.; Raga, S.; Gowre, S.K.; Miyan, H.; Talabattula, S. A Gallium arsenide composite semi-conductive material-based 2D photonic crystal biosensor for cancer cell detection. Opt. Quant. Electron. 2023, 55, 1090. [Google Scholar] [CrossRef]
- Esmailidastjerdipour, P.; Shahshahani, F. Numerical Simulation of Fiber Optic Biosensor Consisting of Metal/Sc2O3 Enhancing by Using Aluminum Alloy for Hydrotherapy Applications. Plasmonics 2024, 19, 1443–1452. [Google Scholar] [CrossRef]
- Das, C.M.; Yang, F.; Yang, Z.X.; Liu, X.C.; Hoang, Q.T.; Xu, Z.J.; Neermunda, S.; Kong, K.V.; Ho, H.P.; Ju, L.A.; et al. Computational Modeling for Intelligent Surface Plasmon Resonance Sensor Design and Experimental Schemes for Real-Time Plasmonic Biosensing: A Review. Adv. Theor. Simul. 2023, 6, 2200886. [Google Scholar] [CrossRef]
- Semwal, V.; Jensen, O.R.; Bang, O.; Janting, J. Investigation of Performance Parameters of Spherical Gold Nanoparticles in Localized Surface Plasmon Resonance Biosensing. Micromachines 2023, 14, 1717. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.N.; Jangir, P.; Aakriti; Rai, S.; Gangwar, M.; Nath, G.; Saxena, P.S.; Srivastava, A. A novel approach for rapid and sensitive detection of Zika virus utilizing silver nanoislands as SERS platform. Spectrochim. Acta A 2023, 302, 123045. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.H.; Krueger, N.A.; Ocier, C.R.; Su, P.; Braun, P.V.; Cunningham, B.T. Resonant Mode Engineering of Photonic Crystal Sensors Clad with Ultralow Refractive Index Porous Silicon Dioxide. Adv. Opt. Mater. 2017, 5, 1700605. [Google Scholar] [CrossRef]
- Chen, P.W.; Wu, H.T.; Zhao, Y.J.; Zhong, L.; Zhang, Y.J.; Zhan, X.D.; Xiao, A.X.; Huang, Y.Y.; Zhang, H.; Guan, B.O. Quantitative Assessment of Fungal Biomarkers in Clinical Samples via an Interface-Modulated Optical Fiber Biosensor. Adv. Mater. 2024, 36, 2312985. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Li, J.L.; Zhang, Q.Y.; Tong, Y.; Qi, X.; Duan, Y.X.; Zhang, X.D.; Luo, Z.W.; Li, Y.X. Recent advance on fiber optic SPR/LSPR-based ultra-sensitive biosensors using novel structures and emerging signal amplification strategies. Opt. Laser Technol. 2024, 175, 110783. [Google Scholar] [CrossRef]
- Rong, G.G.; Sawan, M. Tamm Plasmon Polariton Biosensors Based on Porous Silicon: Design, Validation and Analysis. Biosensors 2023, 13, 1026. [Google Scholar] [CrossRef] [PubMed]
- Rong, G.G.; Zheng, Y.Q.; Li, X.Q.; Guo, M.Z.; Su, Y.; Bian, S.M.; Dang, B.B.; Chen, Y.; Zhang, Y.J.; Shen, L.H.; et al. A high-throughput fully automatic biosensing platform for efficient COVID-19 detection. Biosens. Bioelectron. 2023, 220, 114861. [Google Scholar] [CrossRef] [PubMed]
- Rong, G.G.; Zheng, Y.Q.; Yang, X.; Bao, K.J.; Xia, F.; Ren, H.H.; Bian, S.M.; Li, L.; Zhu, B.W.; Sawan, M. A Closed-Loop Approach to Fight Coronavirus: Early Detection and Subsequent Treatment. Biosensors 2022, 12, 900. [Google Scholar] [CrossRef]
- Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R.A.; Chamberlain, J.M.; Kavokin, A.V.; Shelykh, I.A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 2007, 76, 165415. [Google Scholar] [CrossRef]
- Vyunishev, A.M.; Bikbaev, R.G.; Svyakhovskiy, S.E.; Timofeev, I.V.; Pankin, P.S.; Evlashin, S.A.; Vetrov, S.Y.; Myslivets, S.A.; Arkhipkin, V.G. Broadband Tamm plasmon polariton. J. Opt. Soc. Am. B 2019, 36, 2299–2305. [Google Scholar] [CrossRef]
- Chen, M.Q.; Fan, H.L.; Li, W.; Ruan, J.Y.; Yang, Y.H.; Mao, C.X.; Li, R.; Liu, G.L.; Hu, W.J. Nanoplasmonic Affinity Analysis System for Molecular Screening Based on Bright-Field Imaging. Adv. Funct. Mater. 2024, 34, 2314481. [Google Scholar] [CrossRef]
- Belushkin, A.; Yesilkoy, F.; González-López, J.J.; Ruiz-Rodríguez, J.C.; Ferrer, R.; Fàbrega, A.; Altug, H. Rapid and Digital Detection of Inflammatory Biomarkers Enabled by a Novel Portable Nanoplasmonic Imager. Small 2020, 16, 1906108. [Google Scholar] [CrossRef]
- Kim, D.M.; Park, J.S.; Jung, S.W.; Yeom, J.; Yoo, S.M. Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors. Sensors 2021, 21, 3191. [Google Scholar] [CrossRef]
- Rong, G.G.; Xu, Y.K.; Sawan, M. Machine Learning Techniques for Effective Pathogen Detection Based on Resonant Biosensors. Biosensors 2023, 13, 860. [Google Scholar] [CrossRef] [PubMed]
- Umit, H.; Tezel, A.; Bukavaz, S.; Unsal, G.; Otkun, M.; Soylu, A.R.; Tucer, D.; Otkun, M.; Bilgi, S. The Relationship between Virulence Factors of Helicobacter pylori and Severity of Gastritis in Infected Patients. Dig. Dis. Sci. 2009, 54, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.K.; Liao, L.M.; Huang, R.L.; Zhou, W.J. The relationship between gastric cancer and Helicobacter pylori cytotoxin-related gene A genotypes. Cell. Mol. Biol. 2020, 66, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Jain, U.; Gupta, S.; Soni, S.; Khurana, M.P.; Chauhan, N. Triple-nanostructuring-based noninvasive electro-immune sensing of CagA toxin for Helicobacter pylori detection. Helicobacter 2020, 25, e12706. [Google Scholar] [CrossRef] [PubMed]
- Saxena, K.; Murti, B.T.; Yang, P.K.; Malhotra, B.D.; Chauhan, N.; Jain, U. Fabrication of a Molecularly Imprinted Nano-Interface-Based Electrochemical Biosensor for the Detection of CagA Virulence Factors of H. pylori. Biosensors 2022, 12, 1066. [Google Scholar] [CrossRef]
- Chauhan, N.; Gupta, S.; Avasthi, D.K.; Adelung, R.; Mishra, Y.K.; Jain, U. Zinc Oxide Tetrapods Based Biohybrid Interface for Voltammetric Sensing of Helicobacter pylori. ACS Appl. Mater. Interfaces 2018, 10, 30631–30639. [Google Scholar] [CrossRef]
- Kumar, M.; Prasad, S. High-Resolution Temperature Sensor Based on Resonance Excitation of Tamm Plasmon Polaritons: Graphene Plasmon Polariton Hybrid Mode. J. Electron. Mater. 2023, 52, 5337–5344. [Google Scholar] [CrossRef]
- Wu, F.; Wu, X.H.; Xiao, S.Y.; Liu, G.H.; Li, H.J. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state. Opt. Express 2021, 29, 23976–23987. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Ho, Y.L.; Cao, T.; Yatsui, T.; Delaunay, J.J. High-Q. and Tailorable Fano Resonances in a One-Dimensional Metal-Optical Tamm State Structure: From a Narrowband Perfect Absorber to a Narrowband Perfect Reflector. Adv. Funct. Mater. 2021, 31, 2102183. [Google Scholar] [CrossRef]
Detection Techniques | Pros | Cons | |
---|---|---|---|
Non-invasive test methods (endoscopy not required) | Serological test [6] | No side effects on patients | Positive results may not mean persistent infection |
Stool antigen test [5] | Easy operation | Fecal sample handling may affect results | |
Urea breath test [4] | Easy operation | Drugs taken by patients may impact accuracy | |
Biosensors [7,8,9] | Easy operation, high sensitivity | Specificity may be affected by interferents in samples | |
Invasive test methods (endoscopy required) | Endoscopy [10] | Gastric pathology observation available | Accuracy may vary drastically depending on operator experiences |
Culturing [12] | Highly specific due to controlled culturing conditions | Long turnaround time and vulnerability of results to culturing conditions | |
Histological test [11] | High sensitivity and specificity | Accuracy may vary drastically depending on operator experiences | |
Rapid urease test [13] | Rapid and easy to operate | Bacterium may not be present in biopsy | |
Polymerase chain reaction (PCR) [14] | Accurate and high throughput capability | Need clean environment, samples may contain PCR blockers |
Porous Silicon Layer | Current Density | Anodization Time | Porosity of Layer | Optical Refractive Index | Thickness of Layer |
---|---|---|---|---|---|
Low porosity (LP PSi) | 5 mA/cm2 | 20 s | 52% | 2.08 | 100 nm |
High porosity (HP PSi) | 48 mA/cm2 | 6 s | 76% | 1.46 | 150 nm |
No. | Step Name | Step Operation |
---|---|---|
1 | Chip cleaning | Clean the surface of the chip separately with anhydrous ethanol and ultrapure water, blow dry with N2, and set aside. |
2 | Carboxylation modification | Dilute the polycarboxylation reagent (Xlement Cat. No. G40005) to 100 µM working concentration with ultrapure water, take an appropriate amount of carboxylation reagent and add it to the surface of the chip. Leave it at 4 °C overnight or 37 °C for 4 h. |
3 | Activation of functional groups on surface of biosensors | Wash the carboxylated modified chip three times with ultrapure water and blow dry with N2. Prepare the experimental chip card following standard operating procedures and connect it to the corresponding flow interface in sequence. Prepare an activation reagent solution with a final concentration of 10 mM using 100 mM activation buffer solution (Xlement Cat. No. S20028), and inject 100 µL activation reagent (prepare when need to use) into the chip with a flow rate of 10 μL/min. Running buffer is the activation buffer. |
4 | Preparation of immobilization antibody solution | Prepare a solution of capture antibodies against CagA antigen of Helicobacter pylori and dilute with a coupling buffer solution (Xlement Cat. No. S20029) to 15 μg/mL concentration for later use. |
5 | Chip conjugation with antibody | Take an appropriate amount of capture antibody (CagA antibody) solution and add it to the surface of the chip. Inject 100 μL of the capture antibody solution into the chip at a flow rate of 10 μL/min. Running buffer is the conjugation buffer. |
6 | Sealing | Take an appropriate amount of sealing buffer solution (Xlement Cat. No. G30004) and add it to the surface of the chip. Inject 100 μL sealing buffer solution into the chip with a flow rate of 10 μL/min. The running buffer is the sealing buffer. |
7 | Storage | The biosensors can be stored for 3–5 days under 37 °C, two months under 25 °C, and 6 months under 2–8 °C. |
8 | Biosensing | Restore the biosensors to a room temperature of 25–27 °C. Drop 20 µL of CagA antigen solution in varying concentrations in PBS (phosphate-buffered saline, pH 7.4) buffer on biosensor surface. Put on cover glass and take spectral measurement with fiber spectrometer. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, G.; Kavokin, A.; Sawan, M. Optical Biosensor Based on Porous Silicon and Tamm Plasmon Polariton for Detection of CagA Antigen of Helicobacter pylori. Sensors 2024, 24, 5153. https://doi.org/10.3390/s24165153
Rong G, Kavokin A, Sawan M. Optical Biosensor Based on Porous Silicon and Tamm Plasmon Polariton for Detection of CagA Antigen of Helicobacter pylori. Sensors. 2024; 24(16):5153. https://doi.org/10.3390/s24165153
Chicago/Turabian StyleRong, Guoguang, Alexey Kavokin, and Mohamad Sawan. 2024. "Optical Biosensor Based on Porous Silicon and Tamm Plasmon Polariton for Detection of CagA Antigen of Helicobacter pylori" Sensors 24, no. 16: 5153. https://doi.org/10.3390/s24165153
APA StyleRong, G., Kavokin, A., & Sawan, M. (2024). Optical Biosensor Based on Porous Silicon and Tamm Plasmon Polariton for Detection of CagA Antigen of Helicobacter pylori. Sensors, 24(16), 5153. https://doi.org/10.3390/s24165153