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Abstract: With the rapid development of the Industrial Internet of Things in rotating machinery,
the amount of data sampled by mechanical vibration wireless sensor networks (MvWSNs) has
increased significantly, straining bandwidth capacity. Concurrently, the safety requirements for
rotating machinery have escalated, necessitating enhanced real-time data processing capabilities.
Conventional methods, reliant on experiential approaches, have proven inefficient in meeting these
evolving challenges. To this end, a fault detection method for rotating machinery based on mobileNet
in MvWSNs is proposed to address these intractable issues. The small and light deep learning
model is helpful to realize nearly real-time sensing and fault detection, lightening the communication
pressure of MvWSNs. The well-trained deep learning is implanted on the MvWSNs sensor node,
an edge computing platform developed via embedded STM32 microcontrollers (STMicroelectronics
International NV, Geneva, Switzerland). Data acquisition, data processing, and data classification
are all executed on the computing- and energy-constrained sensor node. The experimental results
demonstrate that the proposed fault detection method can achieve about 0.99 for the DDS dataset and
an accuracy of 0.98 in the MvWSNs sensor node. Furthermore, the final transmission data size is only
0.1% compared to the original data size. It is also a time-saving method that can be accomplished
within 135 ms while the raw data will take about 1000 ms to transmit to the monitoring center when
there are four sensor nodes in the network. Thus, the proposed edge computing method shows good
application prospects in fault detection and control of rotating machinery with high time sensitivity.

Keywords: mechanical equipment monitoring; wireless sensor networks; mobileNet; fault diagnosis;
edge computing

1. Introduction

Advanced equipment serving as the backbone of the national economy and na-
tional defense has become increasingly complex and intelligent. Among these, rotating
machinery—an essential and pivotal component of modern industrial machinery—operates
in environments characterized by extreme conditions such as high temperature, high pres-
sure, high speed, and enduring alternating loads [1–3]. Given the prolonged exposure to
such an operating environment, these machines are susceptible to failures that not only re-
sult in substantial economic losses but also pose a risk of severe safety incidents. Moreover,
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the complicated architecture of advanced mechanical equipment leads to the difficulty of
the decision-making process for maintenance [4]. The assurance of security, reliability, and
informed maintenance decisions for rotating machinery remains a formidable challenge
in the field of prognostics and health management [5–7]. To address this challenge, the
integration of edge computing and intelligent fault diagnosis emerges as a promising
methodology. This approach holds the potential to guarantee the intelligent operation
and maintenance of advanced equipment, thereby mitigating risks and enhancing overall
system performance [8].

In contrast to conventional wired acquisition systems, mechanical vibration wireless
sensor networks (MvWSNs) are a self-organizing distributed system coupled with the
capacity for on-chip processing, which is a near-sensing monitoring system [9–11]. This
unique characteristic allows them to be seamlessly deployed in rotating and sealed envi-
ronments for efficient data collection without posing risks to the monitoring equipment,
such as those found in wind power gearboxes.

Typically comprising processors with computing capabilities like STM32 [12] or
MSP430 [13], MvWSNs operate with limited processing power and is considered an edge
platform in comparison to high-performance computers. In addition, MvWSNs collect a
large amount of vibrational data in a short period of time. The sheer volume of data gener-
ated in these short intervals not only highlights the processing constraints but also amplifies
the communication burden placed on the network [14]. For instance, at a sampling fre-
quency of 25,600 Hz and utilizing a 24-bit analog-to-digital converter (ADC), MvWSNs can
generate a substantial 75 kB of data in just one second. The limited bandwidth of existing
MvWSNs lead to data blocking once the sampling data is simultaneously uploading due to
the limited bandwidth of the MvWSNs, resulting in a large amount of energy consumption.
In previous research [15], data compression for MvWSNs is proposed to address the issue
of mass data, but the uploaded data is still up to 50% of the original data.

The advancement of deep learning (DL) has ushered in the development of lightweight
models, offering a promising avenue for integrating edge computing with DL in MvWSNs.
This integration aims to deploy the fault detection model on MvWSNs nodes, reducing the
size of data transmissions and facilitating prompt decision making. Such an approach holds
the potential to elevate the real-time performance of data processing within MvWSNs [16].

Existing intelligent fault diagnosis models primarily target high-performance comput-
ers, and are incompatible with the computing and storage constraints of the MvWSNs. This
incompatibility stems from several key challenges: (1) Excessive model parameters: existing
fault diagnosis models, designed for high-performance processors, prioritize detection
accuracy during training, resulting in the generation of a substantial number of model
parameters. (2) Limited on-chip resources: the MvWSN nodes possess constrained on-chip
resources, making it challenging to load and calculate an extensive set of model parameters
simultaneously. (3) Floating-point calculation constraints: the micro center unit (MCU)
in MvWSNs often grapple with limited floating-point calculation capabilities, especially
when dealing with complex computations, such as multiplication and division. Model
parameters, typically represented as double precision floating-point numbers, exacerbate
these challenges.

To address the problem of DL models with many parameters, long operation times
and, difficulties in running in the MvWSNs, an improved and lightweight MobileNet fault
diagnosis method was proposed. The main contributions are as follows:

(1) The operational status of rotating machinery is acquired noninvasively, eliminat-
ing the need for intricate wired cable installations and averting any damage to the
monitoring equipment.

(2) Inspired by the small and lightweight DL model for mechanical equipment monitor-
ing, a lightweight compressed MobileNet for MvWSNs senor node is proposed.

(3) The proposed method was tested on a sensor node to demonstrate its efficiency
on a source-constrained embedded platform, including model size, time efficiency,
and accuracy.
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The rest of the paper is organized as follows: Related work and motivation of
lightweight DL model are analyzed in Section 2. Section 3 introduces the design of the
optimized MobileNet model and its deployment in MvWSNs. The experiments are set to
analyze the performance in Section 4. Finally, Section 5 concludes this paper.

2. Related Work

Nowadays, researchers pay attention to the lightweight model for near-sensing appli-
cations and they make efforts to design CNN-based modes to improve the performance of
the model while reduing the parameters and the computing costs of the model. In this way,
the model can be implemented on source-constrained edge computing platforms. So, in
this section, we will introduce the related work on the development of a mobileNet model
in order to provide a deeper understanding of the lightweight model.

2.1. Lightweight Deep Learning Model

The classical machine learning (ML) methods have been extensively adopted in ma-
chine feature extraction and fault information recognition before the widespread adoption
of DL methods. In contrast to DL models that often have massive parameters, classical ML
models demand lower computational costs. This characteristic makes them well-suited
for deployment on edge nodes, which typically have limited computing resources [17].
Even though the classical ML methods for fault diagnoses can achieve good application
results and occupy less memory space, there are still two major issues: (1) Traditional
signal processing techniques often rely heavily on the prior knowledge and expertise of
domain specialists. The selection and design of feature extraction methods are guided by
the insights and understanding of these experts. (2) The fault classifiers built upon extracted
features may not be universally applicable across different applications or scenarios.

Recently, there has been a swift and robust development of DL methods in the field
of machine fault diagnosis applications. On the other hand, edge computing, as a novel
computing paradigm, has been introduced recently to specifically tackle the challenge
posed by substantial data transmissions and their potential impact on energy consumption
in MvWSNs. Therefore, a combination of edge computing and DL shows great potentials
in real-time machine signal processing and fault recognition, which is helpful to reduce the
size of the transmission data and allow the control of rotation machinery with high time
sensitivity [18].

To execute DL models on edge devices with limited computational power and memory,
it is essential to prune and optimize the models to minimize the number of parameters.
Park et al. [19] proposed a lightweight real-time fault detection method named LiReD and
the model was deployed on a Raspberry Pi for an industrial robot manipulator, which
enables the monitoring system to perform necessary detection and control tasks in a short
time. Lu et al. [20] proposed an in situ motor fault diagnosis method via implementing
an enhanced CNN on a Raspberry Pi sensor node, an edge platform with up to 8-GB
memory and a 1.5-GHz Quad-Core 64-bit CPU. The data acquisition and data processing
were executed on the edge node for in situ fault diagnosis. Malviya et al. [21] proposed
a lightweight convolutional autoencoder implemented on a low-cost FPGA platform to
discern anomalies in vibration data sets. According to above analysis, numerous DL
methods for edge device are proposed; however, these edge devices are still operating on
the high-performance platform.

The nodes in MvWSNs are expected to process the essential capabilities for acquisition
tasks while minimizing energy consumption for long-term monitoring. Therefore, the
existing MvWSNs node is occupied with a STM32 MCU, which has only less than 1 MB
of memory and the core frequency is usually less than 200 MHz [22]. With the demands
of DL models for source-constrained edge devices, some lightweight networks have been
emerged, such as MobileNet [23], SqueezeNet [24], and ShuffleNet [25], and been proposed
successively, wherein MobileNet is a typical lightweight CNN model. The research found
that MobileNet V1 can significantly reduce the model size while ensuring accuracy.
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Yu et al. [26] proposed an end-to-end intelligent diagnosis method for bearings based
on MobileNet V1. Pham et al. [27] established a lightweight model for bearing fault
diagnosis based on MobileNet V2 to optimize the requirements of the system resources.
Yao et al. [28] used a butterfly-transform module to replace the pointwise convolution
based on MobileNet V3, which can achieve high efficiency and high accuracy. Among them,
MobileNet V1 is the most promising model for MvWSNs node due to its simple processing.

2.2. MobileNet

The MobileNet network [23] is a lightweight architecture that embraces depthwise
separable convolutions (DSC) instead of conventional convolutions. This innovative ap-
proach not only maintains model accuracy but also markedly diminishes the number of
parameters and computational requirements. As a result, the reliance on hardware comput-
ing resources is substantially reduced. MobileNet is currently recognized as an efficient
and lightweight architecture, particularly well-suited for embedded devices with limited
computing resources.

As shown in Figures 1 and 2, the depth separation convolution is divided into depth-
wise convolution (DW) and pointwise convolution. Depthwise convolution only has a
one-dimensional convolution kernel, which is not extended after completing the convo-
lution. To be specified, let us assume that the input channels and output channels are
represented by M and N, respectively. The kernel size is Dk × Dk and the input map size is
D f × D f . The cost of Cdw is considered as follows:

Cdw = Dk × Dk × M × D f × D f (1)

And the cost of the standard convolution is expressed as follows:

Cstd = Dk × Dk × M × N × D f × D f (2)
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Pointwise convolution uses a 1 × 1 convolution kernel to convolute only one region,
combining the features of each channel to achieve less computational and model parameter
requirements. The cost of a point convolution can be denoted as

M × N × D f × D f (3)

Consequently, the overall cost Cdws is represented as follows:

Cdws = Dk × Dk × M × D f × D f + M × N × D f × D f (4)

Then the ratio between Cstd and Cdws is as follows:

Cdws
Cstd

=
Dk×Dk×M×D f ×D f +M×N×D f ×D f

Dk×Dk×M×N×D f ×D f

= 1
N + 1

D2
k

(5)

Equation (5) indicates that if the convolution kernel is set to 3 × 3, the cost of DSC
can be reduced by about nine times compared to the standard convolution, which proves
that the separation of convolutions is helpful to lower the computational cost and that
MobileNet is a lightweight architecture. Such a lightweight architecture is hopefully applied
on source-constrained MvWSNs.

3. Proposed Method
3.1. Proposed Lightweight Model

Faced with the requirements of deploying the DL model in MvWSNs, a lightweight
network is proposed based on MobileNet V1. Figure 3 describes the steps of the proposed
method for MvWSNs. The specific steps are follows:

Step 1: Vibration signal acquisition. The MvWSNs node is deployed in the drivetrain
diagnostic simulator (DDS) to collect the vibration signals of the X and Y axes of the input
and output axes.
Step 2: Model training and dataset partitioning. The collected vibration data is divided into
multiple samples with a sample length of 1024. Then, the samples are divided into training
set data and testing set data. The training set data is annotated with five samples: normal
(N), gear pitting (F1), root crack (F2), bearing outer ring fault (F3), and inner ring fault (F4).
Note that the test set data is not labeled with samples.
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Step 3: Model construction and offline training. The limited computing resources of the
MvWSNs node is unable to support model training. Therefore, the model training is still
being conducted on a high-performance computer.
Step 4: Online testing of model accuracy. Unknown test set data is inputted into the
lightweight model trained in the previous step for fault diagnosis and classification, and
the accuracy of diagnostic testing is calculated.
Step 5: Model deployment. The model is deployed to MvWSNs nodes for online monitoring
and fault diagnosis.
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The proposed network structure of the lightweight fault diagnosis model based on
MobileNet is shown in Table 1.

Table 1. The network structure of fault diagnosis classification model based on MobileNet.

Layer Input Shape

Convolution/2 (32, 32, 1)
Depth-wise convolution/1 (16, 16, 8)
Point-wise convolution/1 (16, 16, 16)
Depth-wise convolution/2 (8, 8, 16)
Point-wise convolution/2 (8, 8, 32)
Depth-wise convolution/1 (8, 8, 32)
Point-wise convolution/1 (8, 8, 64)
Depth-wise convolution/2 (4, 4, 64)
Point-wise convolution/2 (4, 4, 128)

Average pooling/1 (1, 1, 128)
Fully connected (1, 1, 128)

Softmax (1, 1, 5)

3.2. Model Deployment in MvWSNs

The MvWSNs node is composed of two main parts. A transmission chip (CC2530)
is mainly responsible for network communication and management. The main micropro-
cessor STM32F405 (STMicroelectronics International NV, Geneva, Switzerland) is adopted
for data acquisition and data processing. CC2530 integrates an enhanced 8051 but it can
only deal with some basic computation. The core of STM32F405 is a 32-bit Cortex-M4
CPU with FPU and its flash and SRAM memory can be up to 1 M byte and 196 k bytes,
respectively. Even though the computing and storage resources are limited, it still can
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handle floating-point and matrix operations, which provides the foundation condition for
the hardware for the lightweight model.

In addition, STMicroelectronics provide a tool named STM32Cube.AI (version 7.0.0),
which enables the deployment of DL networks on the microcontrollers [29]. It supports a
series of trained networks from several mainstream frameworks, including TensorFlow Lite,
Keras, qKeras, or Pytorch. Also, a wide range of DL networks are supported, such as multi-
layer perceptron and convolutional neural networks, including residual neural networks.

As for an imported model, it is necessary to first analyze the correctness of the model,
and then analyze the input data size, output data size, required computational complexity,
weight size, and activation function size of the network. Based on STM32Cube.AI, the
proposed network is shown in detail. Finally, the required computing and model-occupied
memory, including Flash and RAM, is analyzed to determine whether the model can be
deployed on the MCU or not. For the proposed model, the analysis results are shown in
Table 2.

Table 2. The parameter of the MobileNet implemented on the MvWSN node.

Parameter Size

Size of input data 1024 (4 kB)
Size of output data 5 (20 B)

Complexity 424,944 times
Size of weight 52,180 B

Size of activation function 20,994 B
Requirement of Flash memory 50.94 kB
Requirement of RAM memory 24.52 kB

4. Experiments and Analysis
4.1. Performance on Open Data

The performance of the proposed model was evaluated using open vibration data
sets, which can be acquired from the Case Western Reserve University (CWRU) Bearing
Data Center (accessed on 12 May 2023, https://engineering.case.edu/bearingdatacenter).
Data were collected at various locations, including the drive end, fan end, and base, with
defect depths of 0.007 inches, 0.014 inches, and 0.021 inches. The CWRU dataset comprises
drive-end-bearing data at 12 kHz and 48 kHz and fan-end-bearing data at 12 kHz.

This study focused on the drive-end data with a sampling frequency of 12 kHz. Four
data are adapted: normal (N), ball fault (BF), bearing outer ring fault (OF), and inner
ring fault (IF). The vibration signals were preprocessed and divided into training and
testing sets, with each sample containing 1024 points without overlap. Each class contains
100 samples, and the training data ratio was set at 60%.

The experimental results are shown in Figures 4 and 5. As can be seen from the results,
the four-condition data are classified clearly. The confusion matrix results also demonstrate
the good performance of the proposed model.
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4.2. Fault Simulator Dataset of DDS

DDS is an experimental object, consisting of a two-stage planetary gearbox and a two-
stage fixed shaft gearbox. The gears and transmissions of each gear on the experimental
platform are shown in Table 3.

Table 3. Description of the DDS.

Gearbox Category Level Gear Category Number of Teeth Number of Gears Gear Ratio

Planetary gearbox

1st
Sun gear 20 1

6Inner gear ring 100 1
Planetary gear 40 3

2nd
Sun gear 28 1

4.57Inner gear ring 100 1
Planetary gear 36 3

Fixed shaft
gearbox

1st
Driving gear 100 1

0.29Drive gear 29 1

2nd
Driving gear 36 1

2.5Drive gear 90 1

The layout of the DDS test bench status monitoring is shown in Figure 6, which
consists of four acquisition nodes (node numbers 1–4). Nodes 1 and 2 are connected to
IEPE sensors to collect vibration signals in the X and Y directions of the intermediate shaft.
Nodes 3 and 4 are connected to IEPE sensors to collect vibration signals in the X and Y
directions of the output shaft.
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4.3. Model Training

In the experiments, five kinds of states of planetary gear boxes are designed, including
two kinds of gear faults, two kinds of bearing faults, and a normal state. The description
of each condition of planetary gear is shown in Table 4. The sampling frequency is set
to 2560 Hz and the sampling length is 20,480. For each condition, we collect 40 sets of
condition data. The original data is divided into 800 samples according to a sampling
length of 1024, and the number of training sets and testing sets are 600 and 200, respectively.
The raw time waveform of each health condition is shown in Figure 7.

Table 4. Description of the health states.

Class Label Health States Description

0 Normal
1 Tooth surface pitting fault of gear
2 Tooth root crack fault of gear
3 Outer fault of bearing
4 Inner fault of bearing
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Figure 7. Vibration signals in different conditions from MvWSNs sensor node: (a) Normal; (b) Tooth
surface pitting fault of gear; (c) Tooth root crack fault of gear; (d) Outer fault of bearing; (e) Inner
fault of bearing.

During training, cross entropy is considered as the loss function. The initial learning
rate is set to 0.001, and the weights and biases are using the stochastic gradient descent
optimizer with a batch size of 50. The total training epochs are set to 50. After each convo-
lution operation, batch normalization is performed, as shown in Figure 1, which is able to
prevent gradient dispersion and improve the generalization ability of proposed model.

4.4. Testing Results

After training the model on a high-performance computer, the test sample of 1000 un-
known labels are tested via the training model, then the testing results are compared with
the real labels. Based on the test results, a confusion matrix was used to evaluate the
classification accuracy and visualization of the test results, as shown in Figure 8. The
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prediction accuracy ranged from 93% to 99%, indicating the effectiveness of the proposed
lightweight MobileNet network in classifying normal states and fault conditions.
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Figure 8. The confusion matrix results.

The t-distribution random neighborhood embedding t-SNE is used to reduce the
dimensionality and visually evaluate the quality of the learned high-dimensional features.
The proposed method’s feature clustering visualization results after the t-SNE dimension-
ality reduction are shown in Figure 9. From the figure, it can be seen that only a small
number of samples are misclassified, and the model’s feature clustering effect is good, with
only F3 faults overlapping more with N and F2 faults.
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As a result of the experiments, the proposed lightweight model was evaluated by open
vibration data sets and simulated data sets, these two data sets contain bearing fault data
under various conditions. Both experimental results demonstrated the good classification
performance of the proposed model, which indicates the good generalization performance
of fault diagnosis models.

4.5. Comparison Result on Mechanical WSN

The modified MobileNet model was analyzed by STM32Cube.AI and deployed on the
MvWSNs nodes. Firstly, the time consumption of the computation operation was evaluated.
Figure 10 shows the time consumption results of the monitoring data over 10 tests. The
average time consumption for obtaining the diagnostic results is about 136 ms.
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The diagnostic accuracy for each condition via on-chip computing of a sensor node is
shown in Table 5. The average accuracy is up to 98%. Compared to the transmitted raw
vibration data, there is only about 5 Bytes to transmit to the monitoring center, which is
about 0.1% of the original data.

Table 5. The test accuracy of five conditions.

Condition Accuracy

N 99.9%
F1 99.3%
F2 99%
F3 98.4%
F4 98.9%

Theoretically, the bandwidth of the MvWSNs node is 250 kbps, i.e., 31.25 kB/s. How-
ever, due to the influence of the network protocol and data packet structure, the maximum
throughput is only 163 kbps. In practice, the maximum achievable throughput is 100 kbps,
which is 12.5 kB/s. In our experiments, 1024 points are set to calculate the monitoring
result. For the MvWSNs node, a 24-bit ADC is occupied, so 3 Bytes of memory storage are
needed for one point. Therefore, the total packet to be transmitted towards the monitoring
center can be up to 3072 Bytes. In theory, the maximum data size is 127 Bytes, according to
IEEE 802.15.4 [30]. The available payload is 100 Bytes in each data frame. In addition, the
data information, including packet number and node number, is fixed in the front of the
data frame and the final frame is 96 Bytes for each packet. Therefore, the total number of
data packets that need to be transmitted is 3072/96 = 32. The time consumption for raw
data transmission is 240 ms. Note that it is tested under the condition of only one MvWSNs
node in the network. The transmission throughput of node 1 with an increasing number of
MvWSNs nodes is depicted in Figure 11.

As Figure 11 shows, the transmission throughput is decreasing with an increasing
number of sensor nodes. Further analysis of the transmission throughput reveals that
throughput decreases by nearly half as nodes increase. This is because each node has equal
access to the channel to transmit data. Although the time consumption for one sensor node
to transmit 1024 points is double compared to the time consumption of the calculation
process for the modified MobileNet, both of them are controlled within one second. The
accumulated time consumption will increase. Furthermore, there are always at least four
monitoring points. Therefore, the proposed method is time-saving and energy-saving.



Sensors 2024, 24, 5156 12 of 14

Sensors 2024, 24, 5156 12 of 14 
 

 

vibration data, there is only about 5 Bytes to transmit to the monitoring center, which is 
about 0.1% of the original data. 

Table 5. The test accuracy of five conditions. 

Condition Accuracy 
N 99.9% 
F1 99.3% 
F2 99% 
F3 98.4% 
F4 98.9% 

Theoretically, the bandwidth of the MvWSNs node is 250 kbps, i.e., 31.25 kB/s. How-
ever, due to the influence of the network protocol and data packet structure, the maximum 
throughput is only 163 kbps. In practice, the maximum achievable throughput is 100 kbps, 
which is 12.5 kB/s. In our experiments, 1024 points are set to calculate the monitoring re-
sult. For the MvWSNs node, a 24-bit ADC is occupied, so 3 Bytes of memory storage are 
needed for one point. Therefore, the total packet to be transmitted towards the monitoring 
center can be up to 3072 Bytes. In theory, the maximum data size is 127 Bytes, according 
to IEEE 802.15.4 [30]. The available payload is 100 Bytes in each data frame. In addition, 
the data information, including packet number and node number, is fixed in the front of 
the data frame and the final frame is 96 Bytes for each packet. Therefore, the total number 
of data packets that need to be transmitted is 3072/96 = 32. The time consumption for raw 
data transmission is 240 ms. Note that it is tested under the condition of only one 
MvWSNs node in the network. The transmission throughput of node 1 with an increasing 
number of MvWSNs nodes is depicted in Figure 11. 

 
Figure 11. The throughput with increasing sensor node. 

As Figure 11 shows, the transmission throughput is decreasing with an increasing 
number of sensor nodes. Further analysis of the transmission throughput reveals that 
throughput decreases by nearly half as nodes increase. This is because each node has equal 
access to the channel to transmit data. Although the time consumption for one sensor node 
to transmit 1024 points is double compared to the time consumption of the calculation 
process for the modified MobileNet, both of them are controlled within one second. The 
accumulated time consumption will increase. Furthermore, there are always at least four 
monitoring points. Therefore, the proposed method is time-saving and energy-saving. 

  

One node Two nodes Three nodes Four nodes
20

40

60

80

100

Th
ro

ug
hp

ut
 (k

bp
s)

Number of sensor nodes

Figure 11. The throughput with increasing sensor node.

5. Conclusions

Due to increased computational expenses and demanding resources from the nu-
merous model parameters, DL is less affordable for embedded devices. However, the
increase in data transmission urgently requires the integration of edge computing and DL
for MvWSNs. In this article, we have proposed a lightweight rotating machinery fault
detection approach through transplanting a MobileNet-based model to source-constrained
edge devices. The well-trained model is implemented on the MvWSNs, a platform devel-
oped by STM32, to evaluated its performance. The performance of the proposed network
on MvWSNs sensor nodes is with an acceptable accuracy of 0.98. Regarding the data
transmission size, this method has the capacity to substantially reduce it to only 0.1% of the
original data. The study introduces a new edge computing paradigm by combining the DL
and IoT devices for applications such as high-speed trains and wind turbines.

Even though the proposed model shows good performance on sensor nodes, it can-
not handle increasing sample rates. Furthermore, the comprehensive condition of the
monitoring equipment is always evaluated using all the sampled data.

In the future, it would be interesting to develop a more efficient and lightweight
model by considering the complex operations and the various sensor signals, such as
temperature and pressure. to determine a comprehensive health condition for rotating
machinery. Future studies should also consider how to integrate all the sampled data and
the interpretability of the proposed model.
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