Hybrid Bright-Dark-Field Microscopic Fringe Projection System for Cu Pillar Height Measurement in Wafer-Level Package
Abstract
:1. Introduction
2. Issues with Large Curvature, Smooth Surface-Induced Light Signal Detection
3. Methods
3.1. Concept of Hybrid Bright-Dark-Field MFPP System
3.1.1. Optical System Architecture
3.1.2. Spatial Distribution of Scattered Light on the Cu Pillar
3.1.3. Detectable Region of Cu Pillar
3.2. Three-Dimensional Sensing Principle
3.2.1. Phase Shifting Algorithm
3.2.2. Three-Dimensional Point Cloud Registration
4. Experiment
4.1. Validation of the Detectable Region for Cu Pillar
4.2. Measurement and Performance Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roshanghias, A.; Rodrigues, A.; Kaczynski, J.; Binder, A.; Schmidt, A. Cu Pillar Planarization to Enhance Thermosonic Flipchip Bonding. In Proceedings of the 2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC), Online, 13–16 September 2021; pp. 1–3. [Google Scholar]
- Asgari, R. Copper Pillar and Micro Bump Inspection Requirements and Challenges. In Proceedings of the Proceedings International Wafer-Level Packaging Conference, Santa Clara, CA, USA, 27–30 October 2009; pp. 186–188. [Google Scholar]
- Asgari, R. Challenges in 3D Inspection of Micro Bumps Used in 3D Packaging. Int. Symp. Microelectron. 2012, 2012, 000542–000547. [Google Scholar] [CrossRef]
- Liang, H.; Yao, D.; Shen, H. Pseudo Wigner-Ville Distribution for 3D White Light Scanning Interferometric Measurement. Opt. Express 2022, 30, 40540. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Veluvolu, K.C.; Lee, S.-G. Lateral Scanning Linnik Interferometry for Large Field of View and Fast Scanning: Wafer Bump Inspection. Int. J. Optomechatronics 2011, 5, 271–285. [Google Scholar] [CrossRef]
- Timoney, P.; Ko, Y.-U.; Fisher, D.; Lu, C.K.; Ramnath, Y.; Vaid, A.; Thangaraju, S.; Smith, D.; Kamineni, H.; Zhang, D.; et al. Metrology of White Light Interferometer for TSV Processing. In Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 2 April 2014; Cain, J.P., Sanchez, M.I., Eds.; SPIE: Bellingham, WA, USA, 2014; p. 90500F. [Google Scholar]
- Kim, C.-S.; Kim, W.; Lee, K.; Yoo, H. High-Speed Color Three-Dimensional Measurement Based on Parallel Confocal Detection with a Focus Tunable Lens. Opt. Express 2019, 27, 28466–28479. [Google Scholar] [CrossRef]
- Panchenko, I.; Panchenko, I.; Boettcher, M.; Wolf, J.M.; Kunz, M.; Lehmann, L.; Atanasova, T.; Wieland, M. In-Line Metrology for Cu Pillar Applications in Interposer Based Packages for 2. 5D Integration. In Proceedings of the 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, Warsaw, Poland, 10–13 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Meng, F.; Zhang, Z.; Kang, Y.; Li, Y.; Wang, P.; Cui, C.; Wang, S.; Zhou, W. Height Measurement of Microbumps Using a White-Light Triangulation Method. Appl. Opt. 2022, 61, 2036. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, Z.; Kang, Y.; Cui, C.; Wang, D.; Zhang, X.; Zhou, W. Research on Defect Inspection Technology for Bump Height in Wafer-Level Packaging Based on the Triangulation Method. Appl. Sci. 2023, 13, 1997. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Q.; Feng, S.; Zuo, C. Microscopic Fringe Projection Profilometry: A Review. Opt. Lasers Eng. 2020, 135, 106192. [Google Scholar] [CrossRef]
- Ku, Y.-S.; Chang, P.-Y.; Lee, H.-W.; Lo, C.-W.; Chen, Y.-C.; Cho, C.-H. Metrology for Measuring Bumps in a Protection Layer Based on Phase Shifting Fringe Projection. Appl. Sci. 2022, 12, 898. [Google Scholar] [CrossRef]
- Hong, H.; Liu, Q.; Zhu, Y.; Xu, P.; Shen, Y.; Bian, S. An Area Modulation Binary Defocusing Based Digital Fringe Projection 3D Shape Measurement Method for Print Circuit Board Inspection. IEEE Trans. Instrum. Meas. 2023, 72, 7006613. [Google Scholar] [CrossRef]
- Du, J.; Luo, X.; Zhu, J.; An, S.; Zhou, P. Flexible and Accurate System Calibration Method in Microscopic Fringe Projection Profilometry. Appl. Opt. 2024, 63, 383. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-H.; Ku, Y.-S.; Chang, P.-Y.; Lee, H.-W.; Lo, C.-W.; Chen, Y.-C. System for Measuring Three-Dimensional Micro-Structure Based on Phase Shifting Fringe Projection. In Proceedings of the 2019 International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, 22–24 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Chen, L.-C.; Duong, D.-H.; Chen, C.-S. Optical 3-D Profilometry for Measuring Semiconductor Wafer Surfaces with Extremely Variant Reflectivities. Appl. Sci. 2019, 9, 2060. [Google Scholar] [CrossRef]
- Liu, C.-S.; Lin, J.-J.; Chen, B.-R. A Novel 3D Scanning Technique for Reflective Metal Surface Based on HDR-like Image from Pseudo Exposure Image Fusion Method. Opt. Lasers Eng. 2023, 168, 107688. [Google Scholar] [CrossRef]
- Zhao, H.; Liang, X.; Diao, X.; Jiang, H. Rapid In-Situ 3D Measurement of Shiny Object Based on Fast and High Dynamic Range Digital Fringe Projector. Opt. Lasers Eng. 2014, 54, 170–174. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Li, C.; Wu, F.; Chai, H.; Yan, K.; Zhou, L.; Li, Y.; Liu, D.; Bai, J.; et al. Defects Evaluation System for Spherical Optical Surfaces Based on Microscopic Scattering Dark-Field Imaging Method. Appl. Opt. 2016, 55, 6162. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, J.; Liu, C.; Wang, Y. 3D Dark-Field Confocal Microscopy for Subsurface Defects Detection. Opt. Lett. 2020, 45, 660. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, C.; Zou, C.; Zhao, Y.; Liu, J. Large Dynamic Range Dark-Field Imaging Based on Microscopic Images Fusion. Opt. Commun. 2023, 528, 128966. [Google Scholar] [CrossRef]
- Stover, J.C. Optical Scattering: Measurement and Analysis, 3rd ed.; SPIE Press: Bellingham, WA, USA, 2012; ISBN 978-0-8194-9251-7. [Google Scholar]
- Church, E.L.; Jenkinson, H.A.; Zavada, J.M. Relationship between Surface Scattering and Microtopographic Features. OE 1979, 18, 125–136. [Google Scholar] [CrossRef]
- Chen, J.; Sun, T.; Wang, J. Comparison of Optical Surface Roughness Measured by Stylus Profiler, AFM, and White Light Interferometer Using Power Spectral Density. In Proceedings of the 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, Dalian, China, 26–29 April 2010; Zhang, Y., Sasián, J., Xiang, L., To, S., Eds.; SPIE: Bellingham, WA, USA, 2010; p. 76562D. [Google Scholar]
- Wang, D.; Zhou, W.; Zhang, Z.; Kang, Y.; Meng, F.; Wang, N. Anti-Crosstalk Absolute Phase Retrieval Method for Microscopic Fringe Projection Profilometry Using Temporal Frequency-Division Multiplexing. Opt. Express 2023, 31, 39528. [Google Scholar] [CrossRef]
- Zhang, S. High-Speed 3D Imaging with Digital Fringe Projection Techniques; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-4822-3434-3. [Google Scholar]
- Register Images with Projection Distortion Using Control Points. Available online: https://ww2.mathworks.cn/help/images/registering-an-aerial-photo-to-an-orthophoto.html (accessed on 28 June 2024).
- Wang, D.; Zhou, W.; Zhang, Z.; Meng, F.; Gao, C. Focal Plane Coincidence Method for a Multi-View Telecentric 3D Imaging System. Opt. Lett. 2024, 49, 919. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhou, W.; Zhang, Z.; Meng, F. Hybrid Bright-Dark-Field Microscopic Fringe Projection System for Cu Pillar Height Measurement in Wafer-Level Package. Sensors 2024, 24, 5157. https://doi.org/10.3390/s24165157
Wang D, Zhou W, Zhang Z, Meng F. Hybrid Bright-Dark-Field Microscopic Fringe Projection System for Cu Pillar Height Measurement in Wafer-Level Package. Sensors. 2024; 24(16):5157. https://doi.org/10.3390/s24165157
Chicago/Turabian StyleWang, Dezhao, Weihu Zhou, Zili Zhang, and Fanchang Meng. 2024. "Hybrid Bright-Dark-Field Microscopic Fringe Projection System for Cu Pillar Height Measurement in Wafer-Level Package" Sensors 24, no. 16: 5157. https://doi.org/10.3390/s24165157
APA StyleWang, D., Zhou, W., Zhang, Z., & Meng, F. (2024). Hybrid Bright-Dark-Field Microscopic Fringe Projection System for Cu Pillar Height Measurement in Wafer-Level Package. Sensors, 24(16), 5157. https://doi.org/10.3390/s24165157