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Abstract: This study develops a vision-based technique for enhancing taillight recognition in au-
tonomous vehicles, aimed at improving real-time decision making by analyzing the driving behaviors
of vehicles ahead. The approach utilizes a convolutional 3D neural network (C3D) with feature
simplification to classify taillight images into eight distinct states, adapting to various environmental
conditions. The problem addressed is the variability in environmental conditions that affect the
performance of vision-based systems. Our objective is to improve the accuracy and generalizability
of taillight signal recognition under different conditions. The methodology involves using a C3D
model to analyze video sequences, capturing both spatial and temporal features. Experimental
results demonstrate a significant improvement in the model′s accuracy (85.19%) and generalizability,
enabling precise interpretation of preceding vehicle maneuvers. The proposed technique effectively
enhances autonomous vehicle navigation and safety by ensuring reliable taillight state recognition,
with potential for further improvements under nighttime and adverse weather conditions. Addi-
tionally, the system reduces latency in signal processing, ensuring faster and more reliable decision
making directly on the edge devices installed within the vehicles.

Keywords: autonomous vehicles; taillight recognition; vision-based systems; convolutional 3D neural
network (C3D); real-time traffic analysis

1. Introduction

Recent advancements in artificial intelligence and soft computing have significantly
propelled the development of intelligent systems, particularly autonomous driving [1].
Among these systems, those operating in urban environments have garnered considerable
attention owing to the challenges posed by dense vehicle populations and complex traffic
conditions [2,3]. In such scenarios, the analysis of the vehicles ahead using sensors and
intelligent algorithms is paramount to ensuring reliable and safe navigation [4–6].

A crucial component of autonomous vehicles is the vision-based system that interprets
vital visual signals such as taillights [7–10]. Taillights, which include brake lights and
turn signals, serve as direct indicators of a vehicle’s maneuvering intention. The accurate
recognition of these signals is essential for intelligent systems to understand and predict
the behavior of vehicles ahead, thereby facilitating safer driving decisions.

However, taillight signal recognition faces challenges, including the variability in
environmental conditions, such as weather changes, which can significantly impact the
performance of vision-based systems [11,12]. The proposed system demonstrates robust
performance in recognizing taillights effectively, even under unclear weather conditions,
enhancing its utility across diverse operational scenarios.

Moreover, the stability of autonomous driving systems, particularly those equipped
with edge computing capabilities, is critical [13,14]. These systems must ensure safe
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operation even when connectivity is compromised, thereby highlighting the importance of
local processing and real-time decision-making capabilities. Our approach is optimized
for on-device processing, ensuring that taillight recognition is not only accurate but also
timely, thereby making it suitable for real-time applications without dependence on server-
based computations.

This paper introduces a vision-based taillight signal recognition system designed
to improve the analysis of the driving behavior of vehicles. By utilizing advanced soft
computing methods and artificial intelligence techniques such as the convolutional 3D
neural network (C3D) model, this study contributes to the fields of sensors, intelligent
systems, and robotics. The system not only enhances the reliability of taillight recognition
under various environmental conditions, but also ensures that autonomous vehicles can
make informed decisions in real time, leveraging edge computing environments analogous
to high-performance servers.

To validate the effectiveness of the proposed method, a series of experiments were
conducted, focusing on the accurate classification and recognition of individual taillights
under different conditions. These experiments aimed to demonstrate the applicability of
the system to real-world driving scenarios, contributing to the advancement of intelligent
systems for autonomous driving.

2. Related Work
2.1. Integrated Techniques for Edge and Shape Detection in Autonomous Driving

Canny edge detection, a technique devised by Canny [15], is fundamental for identi-
fying the boundaries of objects within images and crucial for autonomous driving. The
process begins with the application of Gaussian blurring to smooth the image and reduce
noise, thereby setting the stage for more accurate edge detection. Following this initial step,
the image undergoes a gradient calculation across each pixel to identify potential edge
candidates. The Canny Edge Detector computes the magnitudes and directions of these
gradients, as shown in Figure 1a.
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Figure 1. Edge detection through gradient calculation: (a) original image; (b) intensity function along
horizontal scanline; (c) first derivation indicating edge extrema [15].

This is followed by non-maximum suppression to refine the edges, ensuring that
they are thin and distinct. The final stage involves dual thresholding, which differentiates
between the true and potential edges using two threshold values to either retain or discard
changes in the intensity detected in the image. Figure 1b illustrates the intensity function
along a horizontal scanline of the image, highlighting variations that potentially indicate
edges. Figure 1c shows the first derivative of the intensity function, helping to identify
the rate of change in intensity values, where the extrema (peaks and troughs) indicate
potential edges.

The Hough transform [16], originally proposed for analyzing bubble chamber pho-
tographs, is applied subsequent to edge detection to extract geometric shapes such as lines
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and circles from the processed images. It translates the detected edges from the image
space to the Hough space, which is a parameter space in which intersections represent
feasible line or shape detections. The equations for these transformations are the standard
linear equation, Equation (1), and its trigonometric form, Equation (2), which facilitate the
identification of lines within an image.

y = mx + c (1)

r = xcos θ + ysin θ (2)

where r is the distance from the origin to the closest point on the straight line, and θ is the
angle formed by this line with the x-axis. Figure 2 shows how these transformations occur
within the Hough space, illustrating how different angles and distances contribute to the
detection of lines.
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By integrating Canny [15] and Sobel [17] edge detection with the Hough transform, this
approach not only identifies critical boundaries and shapes within the driving environment,
but also ensures that autonomous driving systems can interpret and react to road conditions
effectively. These combined techniques form a robust framework for real-time analysis of
visual information, which is crucial for the safety and efficiency of autonomous vehicles [18].
The effectiveness of this integrated method is demonstrated in various driving scenarios,
highlighting its adaptability and precision in dynamic environments. The probabilistic
Hough transform [19], which focuses on randomly selected points to find lines, significantly
reduces the computational load and improves performance, making it highly suitable for
real-time applications in autonomous driving systems.

2.2. Deep Learning Models for Vehicle Indicator Analysis

In the area of autonomous driving, accurate interpretation of vehicle indicators, such
as taillights and turn signals, is essential for safe navigation. Several deep learning models
offer unique advantages depending on the specific application requirements.

Long Short-Term Memory (LSTM) [20] networks are adept at handling time-series
data and capturing long-term dependencies crucial for understanding sequences such as
the blinking of taillights. However, LSTMs primarily focus on temporal processing and
may require additional adaptations to effectively capture the spatial relationships within
frames [21].

Gated Recurrent Units (GRUs) [22] offer a computationally efficient alternative to
LSTMs, with similar performance metrics. Like LSTMs, GRUs excel in processing sequences
but also require mechanisms to handle spatial data effectively, making them less optimal
for tasks requiring detailed spatial analysis.

Temporal Convolutional Networks (TCNs) [23] leverage convolutional layers to pro-
cess time-series data, which is suitable for applications where long-term dependencies are
critical, but spatial detail is less important.

Among these models, the convolutional 3D neural network (C3D) [20,24] stands
out for its robust capability of handling both spatial and temporal dimensions effectively.
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Unlike LSTM and GRU, which are adept at sequence processing but not inherently designed
for spatial data, C3D integrates 3D convolutions, allowing video clips to be processed as
volumetric data. This enables the C3D model to analyze not only the spatial layout of each
frame, but also the dynamic changes that occur over time, providing a comprehensive view
of motion and behavior.

This ability to capture complex patterns in taillight signals, such as the intensity
and frequency of blinking, which are pivotal for predicting maneuvers such as stops or
turns, makes C3D particularly effective. By collectively processing these dimensions, C3D
enhances predictive accuracy, enabling autonomous systems to make informed and reliable
decisions based on a holistic view of scene dynamics.

By employing the C3D model, our study ensures that autonomous driving systems
can interpret complex sequences of taillight indicators under various conditions, thereby
significantly improving the safety and efficiency of autonomous vehicle navigation. The
integration of C3D into our autonomous system guarantees that decisions are based on
precise and comprehensive analyses of real-time video data, making it an invaluable tool for
advancing autonomous vehicle technologies in diverse environmental and traffic scenarios.

2.3. Vehicle Taillight Recognition

Recent advancements in machine learning, particularly deep learning models that
incorporate temporal analysis through sequence-to-sequence or recurrent neural networks,
have shown promise for accurately identifying and classifying the nuanced patterns of
taillight signals. These models account for the temporal dynamics of taillight activation
and deactivation, offering a more nuanced understanding of vehicle intentions, even when
brake lights and turn signals are integrated into a single unit. Although traditional image-
processing methods provide a foundation for taillight recognition, they often fall short
in the complex scenarios encountered during real-world driving. By contrast, machine
learning-based approaches leverage the rich contextual information available in sequential
frames, significantly outperforming earlier methods in terms of accuracy and reliability.

Vehicle taillight recognition refers to technology that identifies and classifies the
current signal of a vehicle′s taillights. The state of the taillights during recognition is
typically classified into four classes (brake, left, right, and none) [25] or eight classes (brake,
brake-left, brake-right, brake-emergency, none, left, right, and emergency) [26], as shown
in Figure 3.
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Methods for vehicle taillight recognition include image-processing-based classification
and machine learning-based approaches. Among image-processing-based methods, Tham-
makaroon and Tangamchit [27] identified brake lights in a single frame using thresholds
based on color, shape, brightness, and other features. However, these methods may not
fully comprehend the complex states of taillights, leading to issues of applicability and
reliability [28].
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Conversely, machine learning-based methods, such as that proposed by Zhong et al. [29],
extract and learn features from vehicle images in a single frame to classify the taillight
status. These methods offer improved performance but may overlook the sequential change
characteristics of taillight signals. Notably, depending on the vehicle model, the brake light
and turn signals may not be separate units; instead, turn signals generated by flashing the
brake light in the intended direction are common. This integration poses unique challenges
for taillight recognition technologies, particularly when analyzing single images.

Figure 4 showcases eight consecutive frames from a video sequence, illustrating how
a single unit can serve as both a brake light and a turn signal. This sequence helps to
highlight the dynamic nature of vehicle taillight signals, where the pattern of flashing
can indicate different commands (e.g., turning or emergency signals). Understanding this
sequential flashing is crucial for accurately interpreting the vehicle′s intended actions.
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The analysis of single images without considering the sequential context can lead to
misinterpretation of the taillight signals, especially in vehicles where brake lights and turn
signals are integrated. To overcome this challenge, recent research has focused on analyzing
sequences of images using machine learning models. This approach, which considers
multiple frames as inputs, captures the temporal dynamics of taillight signals, and facilitates
a more accurate and comprehensive classification of taillight states. Such advancements
underscore the importance of temporal analysis for recognizing the nuanced patterns of
light activation and deactivation, particularly in vehicles with integrated taillight systems.

Despite these advancements, the interpretation of taillight signals under adverse
weather conditions or when obscured by other vehicles remains challenging. We need to
explore the integration of additional sensor data, such as LiDAR or radar, with vision-based
systems to enhance robustness and reliability under such conditions.

3. Proposed Method
3.1. Proposed System Architecture

With recent advancements in autonomous driving research, deep learning approaches
have become central to the classification of taillight states. However, the application of
these models to entire images often results in misclassification, primarily because the model
focuses on irrelevant features outside the vehicle taillights. Furthermore, the critical need
for real-time performance in automotive edge computing environments, coupled with the
requirement for consistent classification accuracy across diverse weather conditions and
real-road footage, presents significant challenges.

In this study, we introduce a novel vision-based taillight signal recognition technique
designed to streamline the feature extraction process for vehicle taillights for subsequent
analysis within an image analysis model. Our approach uniquely simplifies the taillight
features by extracting the morphological characteristics from 16 frames of the rear-vehicle
images. These characteristics are primarily represented by two long horizontal lines
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symbolizing the rear of the vehicle. Initially, the images undergo conversion to grayscale,
followed by the application of Canny edge detection and probabilistic Hough transform
techniques to detect these lines. A meticulous selection process ensues, wherein two of
these lines are chosen. The midpoint of these selected horizontal lines serves as a pivotal
point to bifurcate the images into distinct taillight areas: left and right taillights. Each
segmented taillight image is then subjected to the C3D model, a cutting-edge deep learning
framework, for robust image analysis. In this stage, the signal of each taillight is classified
into four primary classes: brake, brake light, none, and light. Subsequently, the analysis
results for both taillights are amalgamated to categorize the taillight states into eight
comprehensive classes, incorporating both left- and right-turn signals (brake, brake-left,
brake-right, brake-emergency, none, left, right, and emergency). Figure 5 illustrates the
overarching architecture of the proposed technique, demonstrating the systematic process
from feature simplification to final state classification.
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By prioritizing the morphological features that robustly capture the essence of tail-
lights across different vehicles and environmental conditions, our method significantly
enhances the efficiency and accuracy of the feature extraction process. This simplification
is instrumental in mitigating the risk of misclassification by focusing the attention of the
deep learning model on the most relevant features of the vehicle′s taillights.

To quantitatively illustrate the improvements, we included mathematical equations de-
rived from the model′s performance metrics and feature extraction techniques. Equation (3)
shows the improvement in precision achieved by our proposed method [30], and Equation (4)
illustrates the improvement in speed [31] by our proposed method.

Improvement in Precision =
Precisionproposed − Precisionbaseline

Precisionbaseline
× 100 (3)
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Improvement in Speed =
Timebaseline − Timeproposed

Timebaseline
× 100 (4)

This refined approach to taillight signal recognition not only underscores innovation
in feature extraction but also highlights the seamless integration of advanced deep learning
techniques to meet the requirements of real-time, accurate taillight state classification in
diverse and challenging driving conditions.

3.2. Extraction of Individual Taillight Areas

The methodology for extracting individual taillight areas employs advanced image-
processing techniques to segment the rear-vehicle image and capture both taillights into
distinct regions. The real-road scenarios introduce perspective distortions due to the
vehicle′s orientation—whether from turning, changing lanes, or its placement relative to the
camera. These distortions necessitate a methodological approach that accurately identifies
the vehicle′s rear center, circumventing potential misalignments that could compromise
the taillight area extraction.

The inherent horizontal lines in the rear image, indicative of the rear windshield, trunk
lid, license plate, and bumper, are instrumental in delineating the vehicle′s rear perspective.
To counteract perspective effects and ascertain the true rear orientation of the vehicle,
our method focuses on discerning two significant horizontal lines that encapsulate the
rear geometry. By computing the intersection of the diagonals formed by these lines, we
ascertained a center point reflective of the vehicle′s rear orientation, thereby enhancing the
precision of the taillight segmentation.

This process begins by converting the rear-vehicle image to grayscale to facilitate
Canny edge detection. Following edge detection, the probabilistic Hough transform is
employed to discern the horizontal lines, with an emphasis on the angle and edge intensity.
The lines are then evaluated based on their length, and the two longest lines exhibiting an
overlap of more than 50% along the x-axis are selected for further analysis. This selection
criterion ensures an accurate representation of the rear perspective of the vehicle, as shown
in Figure 6.
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With the horizontal lines identified, we calculated the center point of the vehicle
rear (xc, yc). This is achieved by averaging the x- and y-coordinates of the starting and
ending points of the lines, denoted as P1(x1, y1), P2(x2, y2), P3(x3, y3), and P4(x4, y4). This
calculation process is encapsulated in Equations (5) and (6), which precisely define the
method for determining the center point.

xc =
(x1 + x2 + x3 + x4)

4
(5)

yc =
(y1 + y2 + y3 + y4)

4
(6)
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This center point (xc, yc) facilitates the accurate segmentation of the vehicle′s rear into
left- and right-taillight areas, which is essential for extracting individual taillight regions.
This segmentation process is vital for simplifying the features, thereby aiding the model
in effectively learning the characteristics of the vehicle′s taillights. This precise approach
to segmentation and feature extraction is shown in Figure 7 and is further detailed in
Algorithm 1.

Algorithm 1. Individual Taillight Image Extraction

Input: Vehicle image data, I
Output: Left-taillight image, Ileft; Right-taillight image, Iright

1: Load the vehicle image data, I
2: Obtain the dimensions of I: h, w, c
3: Convert I to grayscale: Igray
4: Apply Canny edge detection to Igray, obtaining edges: Iedges
5: Perform probabilistic Hough transform on Iedges to obtain line segments: lines
6: Sort lines in descending order based on length
7: Keep lines that overlap with the longest line by 50% or more, resulting in filtered lines
8: For each line in sorted lines, perform the following:
9: Overlap count← 0
10: for each existing line in filtered lines, perform the following:
11: Extract endpoints of existing line: (x1, y1), (x2, y2)
12: Extract endpoints of current line: (x3, y3), (x4, y4)
13: Overlap count← overlap count + max(0, min(x2, x4) −max(x1, x3))

▷ Calculate overlapping x-coordinate interval
14: end for
15: Calculate total length of the current line: total length =

√
(x4− x3)2 + (µ4− µ3)2

16: Calculate overlap percentage: overlap percentage = overlap count/total length
17: If overlap percentage ≥ 0.5 then
18: Add current line to filtered lines
19: End if
20: End for
21: Extract endpoints of the longest line: (x1, y1 ), (x2, y2)
22: Extract endpoints of the second longest line: (x3, y3), (x4, y4)
23: Calculate the centroid of the two lines: centroid = (x1 + x2 + x3 + x4/4, y1 + y2 + y3 + y4/4)
24: Divide the image vertically at the centroid to obtain left and right regions
25: Crop the left region to obtain the left-taillight image: Ileft
26: Crop the right region to obtain the right-taillight image: Iright
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3.3. Taillight Analysis and State Classification

The individual taillight images extracted from the segmentation process served as
inputs for the classification model depicted in Figure 8, which is meticulously designed
to classify the state of each taillight into one of four categories: brake, brake light, none,
and light. This classification framework is pivotal for accurately interpreting the vehicle′s
rear-end signal indications.
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An integral step in preparing the data for analysis involves aligning the features of
the left- and right-taillight areas. This process includes horizontally flipping the image of
the right-taillight area to mirror the position and shape of the left-taillight area, reflecting
the symmetrical design of the vehicle taillights around the center of the vehicle′s rear. This
symmetry-focused preprocessing step is fundamental to our methodology and significantly
enhances the ability of the deep learning model to generalize across different vehicle types.
The classification accuracy is notably improved by presenting the taillights uniformly.

The preprocessed individual taillight data undergo further analysis using a deep
learning model. As highlighted in Section 2.3, the integration of turn signals and brake
lights into a single unit for certain vehicles poses unique challenges for classification. To
address this, this study leverages the C3D model, which is renowned for its capacity to
analyze video sequences and learn spatiotemporal features using conv3D kernels. This
model is composed of five conv3D layers with 333 kernel sizes and three fully connected
layers, with the output size of the last layer set to four. This configuration aligns with
the number of taillight state categories, enabling the model to provide detailed analytical
results and confidence scores for each taillight. The ability of the C3D model to capture
the dynamic nature of taillight signals facilitates a nuanced understanding of the temporal
patterns that distinguish different taillight states, making it exceptionally suitable for
this task.

To ensure the accurate classification of the vehicle′s taillight signals, it is crucial
to synthesize the classification results of the left and right taillights obtained from the
individual taillight state analysis model. This synthesis enables the definitive classification
of the vehicle′s taillight state into eight distinct categories encompassing both braking and
turning signals. However, instances may arise, as illustrated in Figure 9, in which the model
analyses of the left and right taillights yield contradictory results. In such scenarios, the
model uses the confidence scores associated with individual taillight classification outcomes
to resolve these discrepancies. Employing confidence scores to adjudicate contradictions
ensures the capability of the system to make informed decisions, even when taillight
signals are ambiguous, thereby reflecting the complex and varied realities of real-world
driving situations.

Through meticulous classification and analysis, the system discerns one of the eight
possible taillight signals, elucidating both the presence of brake lights and the implications
of turn signals. This comprehensive approach to taillight signal recognition underscores the
effectiveness of integrating advanced modeling techniques and thoughtful preprocessing
steps to ensure high accuracy and reliability in autonomous driving contexts.
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4. Experiment
4.1. Results

The experiments were conducted using the vehicle rear-end signal dataset, which is
publicly available through UCMerced. This comprehensive dataset consists of 63,637 frames
distributed across 649 video clips, and is categorized into eight distinct classes. The
classifications of these classes and their respective labels are listed in Table 1.

Table 1. Meaning of labels in the vehicle rear signal dataset.

Label Name Meaning of Label

BOO brake: Only the brake light is on
BLO brake-left: Both the brake light and the left-turn signal are on
BOR brake-right: Both the brake light and the right-turn signal are on
BLR brake-emergency: Both the brake light and both turn signals are on
OOO none: No lights are on
OLO left: Only the left-turn signal is on
OOR right: Only the right-turn signal is on
OLR emergency: Both turn signals are on

Analyzing the distribution of data across these classes reveals a significant imbalance,
as illustrated in Figure 10a. The graph in Figure 10a shows the original vehicle rear-end
signal dataset. This imbalance poses a notable challenge, potentially impairing the capacity
of the model to accurately classify underrepresented classes and escalating the risk of
overfitting. Overfitting manifests when a model exhibits high accuracy on training data but
underperforms on unseen data, a situation particularly concerning for classes with sparse
data points, such as brakes and emergencies.

To mitigate these issues, as shown in Figure 10b, the vehicle rear-end signal dataset
was augmented, achieving a uniform distribution of approximately 378–436 video clips per
class. The graph in Figure 10b shows the augmented vehicle rear signal dataset.

The augmentation process incorporates various techniques, including rotation, resiz-
ing, brightness adjustment, saturation, luminance changes, Gaussian blurring, and noise
addition, with a random selection of n techniques applied to each video clip. This procedure
expanded the dataset to 3189 videos, significantly enhancing the scale and diversity of the
data. Such augmentation not only addresses the balance across classes, but also bolsters
the model′s resilience to real-road environmental noise, which is crucial for robust taillight
signal recognition.

The classification task was facilitated by the C3D model, which analyzed the sequences
of 16 frames to determine the taillight states. The model training parameters were set with
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a learning rate of 0.001 and a batch size of 16, employing cross-entropy as the loss function.
The training dataset comprised 5128 video clips, whereas the evaluation dataset included
1292 clips.
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(b) augmented vehicle rear signal dataset.

Experimental results demonstrate a significant improvement in the accuracy and gen-
eralizability of the model, enabling precise interpretation of preceding vehicle maneuvers.
The proposed technique effectively enhances autonomous vehicle navigation and safety by
ensuring reliable taillight state recognition, with potential for further improvements under
nighttime and adverse weather conditions. These improvements are quantified by the
following equations, which highlight the percentage increase in precision and reduction in
processing time. Equation (7) quantifies the improvement in precision [30] and Equation (8)
illustrates the reduction in processing time [32].

Precision Improvement =
0.8519− 0.6212

0.6212
× 100 = 37.15% (7)

Speed Improvement =
1.2 s− 0.8 s

1.2 s
× 100 = 33.33% (8)

Separate training datasets for the left and right taillights were prepared for the analysis
of the four classes of individual taillights, labeled as B (brake light only), BL (brake and
turn signal lights on), O (brake and turn signal lights off), and OL (turn signal lights only).
Because the left vehicle image can predict the status of the right vehicle (for example,
if the left vehicle has both brake and turn signals on, the right vehicle might only have
the brake light on), individual datasets for each taillight were constructed using cropped
images to enhance the speed and learning performance. Figure 11 shows an example of a
left-taillight image for each class. Employing the technique of horizontal flipping for the
right taillight, as described in Sections 3.2 and 3.3, facilitated the creation of a balanced
dataset for precise classification.

Through this methodology, we not only tackled the inherent dataset imbalances but
also ensured that the model is trained and evaluated on a dataset that closely mirrors the
variability and challenges encountered in real-world scenarios, paving the way for a more
accurate and reliable taillight signal recognition system.
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Figure 11. Examples of 4-class data for individual taillight classification: (a) B (brake light only);
(b) BL (brake and turn signal light on); (c) O (brake and turn signal light off); (d) OL (turn signal
light only).

4.2. Performance Evaluation

In this study, we implemented a feature simplification approach to enhance the learn-
ing efficiency of the C3D model for taillight signal analysis. This approach includes
extracting individual taillight regions using a calculated center point, as illustrated in
Figure 12, and applying a horizontal flip to the right-taillight image to align the features of
both the left and right taillights for consistent analysis.
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To ascertain the effectiveness of this preprocessing technique, specifically the horizon-
tal flip applied to the right-taillight image, we conducted a series of experiments using the
structural similarity index (SSIM) as the similarity measure. SSIM is a metric that evaluates
the similarity between two images in terms of their structural integrity, luminance, and
contrast, and provides a quantitative measure of the closeness of an image to a reference
image. The SSIM formula is expressed in Equations (9)–(11), where l(x, y), c(x, y), and
s(x, y) represent luminance, contrast, and structure, respectively. The variables used in the
equations are defined as follows: µx and µy represent the mean intensities of images x and
y, σx and σy denote the standard deviations of x and y, σxy is the covariance of x and y, and
C1, C2, and C3 are constants used to stabilize the division by weak denominators.

SSIM(x, y) = l(x, y)·c(x, y)·s(x, y) (9)

=
2µxµy + C1

µ2
x + µ2

y + C1

2σxσy + C1

σ2
x + σ2

y + C1

σxy + C1/2
σxσy + C1/2

(10)

=

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (11)
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SSIM evaluates image similarity on a scale from −1 to +1, where +1 indicates perfect
similarity. This metric has been widely adopted to assess image quality and structural fidelity.

In our evaluation across the entire dataset, we compared the left-taillight images with
both the unflipped and flipped right-taillight images to calculate an average similarity score.
The unflipped right-taillight images yielded an average SSIM score of 0.3560, whereas the
flipped right-taillight images yielded a significantly higher average SSIM score of 0.5679.
This outcome underscores an improvement in the similarity by an average of 0.2119 owing
to the application of our proposed horizontal flipping technique.

These findings validate the efficacy of our feature simplification method for creating
more uniform taillight features for analysis using the C3D model. The increased similarity
between the left- and horizontally flipped right-taillight images demonstrates the potential
of our preprocessing approach to enhance the model accuracy and generalizability in the
context of taillight signal recognition.

Comparative experiments were conducted to assess the effectiveness of the feature
simplification method and its impact on facilitating the C3D model′s learning process.
These experiments focused on three distinct techniques: the center point extraction tech-
nique (C), the horizontal flipping technique (H), and a technique that extracts individual
taillight areas based on the median value of the horizontal length (W). Training each model
variant over 200 epochs allowed for a comprehensive evaluation, with Table 2 detailing the
accuracy results for individual taillight signal recognition and contrasting the efficacy of
the proposed method with and without horizontal flipping.

Table 2. Accuracy comparison results based on the application of individual taillight area extraction
and horizontal flipping.

Accuracy (%)

W 68.18
W + H 63.80

C 84.88
Ours (C + H) 85.47

The results highlight a substantial improvement of approximately 24% when the
proposed technique is utilized over the median-value-based extraction method. This
confirms the precision and effectiveness of our method for accurately delineating taillight
areas. Furthermore, incorporating the horizontal flipping technique into each taillight
extraction strategy yielded additional 2% and 1% improvements for the median-based and
proposed methods, respectively. This enhancement highlights the significance of image
transformation in streamlining the learning process of the model, making the horizontally
flipped right-taillight image more realistically analogous to the left-taillight image.

Further investigations contrasted the performance of a CNN-LSTM model, a standard
C3D model, and our optimized model by incorporating the proposed feature simplification
technique. To ensure a fair comparison, the C3D model was configured identically to the
proposed model in terms of the input frames, learning rate, batch size, and cross-entropy
loss function.

Figure 13 shows the comparative accuracy of classifying vehicle taillight states into
eight classes, distinguishing between the standard and enhanced C3D models. These
experiments confirmed the superior accuracy of the proposed technique, with a marked
increase of over 20% compared with both the CNN-LSTM and standard C3D models. The
remarkable accuracies of 62.12%, 58.06%, and 85.19%, respectively, underscore the value of
our methodological enhancements in improving model performance.
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A more granular analysis utilized precision and recall as metrics, offering insights
into the model′s performance across individual classes. Table 3 and Figure 14 compare the
precision and recall, and shed light on the strengths of the proposed technique.

Table 3. Comparison of precision and recall results by class between other techniques and the
proposed technique.

Precision (As a Proportion) Recall (As a Proportion)

CNN-LSTM C3D Proposed CNN-
LSTM C3D Proposed

BOO 0.4463 0.4074 0.9000 0.5258 0.7452 0.9204
BLR 0.6392 0.9486 0.8421 0.8328 1.0000 1.0000
BLO 0.7283 0.6763 0.8933 0.6390 0.5131 0.8815
BOR 0.6329 0.6956 0.9000 0.3888 0.4848 0.8571
OOO 0.3753 0.5906 0.9552 0.4786 0.5135 0.8421
OLR 0.7161 0.5362 0.9638 0.8702 0.7708 1.0000
OLO 0.8318 0.4338 0.9726 0.6126 0.2510 0.8987
OOR 0.8293 0.4923 0.9518 0.6183 0.3004 0.9518
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The model demonstrates exceptional precision, outperforming the standard C3D
model in the classes indicating a significant reduction in false positives. Additionally,
the enhanced recall rates across several classes suggest the effectiveness of the model in
minimizing false negatives and reinforcing the reliability of positive case identification.

To further elucidate the focus and effectiveness of the proposed model relative to the
8-class C3D model, activation maps for each model were generated using Class Activation
Mapping (CAM) for identical vehicle rear images. Figure 15 compares these maps, revealing
a more concentrated analysis of the taillight areas by our model, in contrast to the broader
focus of the standard C3D model.
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This comparative analysis shows not only the precise focus of the proposed model
on taillight areas, but also its enhanced ability to accurately recognize and classify tail-
light signals, affirming the method′s efficacy in promoting focused and reliable taillight
signal analysis.

4.3. Weather Condition-Specific Performance Evaluation

For the proposed technique to function effectively in autonomous vehicles navigat-
ing real roads, it must be applicable regardless of the weather conditions. To verify the
robustness of the proposed technique under adverse weather conditions, experiments were
conducted using a dataset refined from rear-vehicle videos captured in cloudy and rainy
environments. These environmental vehicle driving videos were sourced from rear-light
detection and brake light detection dataset [33] test videos. This dataset, designed for
research on detecting the presence of brake lights in vehicles ahead within the same lane
through video processing, comprises 12 videos for taillight detection and 12,000 images for
brake light detection. Given the necessity of a consecutive 16 frames for our proposed tech-
nique, only 6 videos depicting driving under cloudy or rainy conditions were selected from
the 12 available rear-light detection test videos in the datasets. Each video was recorded
at 30 fps, and a sequence of images featuring the vehicle was obtained by applying the
Strong-SORT [34] multi-object tracking model based on the YOLOv7 [35] object detection
model. From these cropped vehicle videos, images in which both taillights of the vehicle
were unobstructed were manually selected, forming a weather-condition-specific dataset.
The constructed dataset for different weather conditions includes 42 BOO and 56 OOO
videos under cloudy conditions and 31 BOO, 34 OOO, 2 OLO, and 4 OOR videos under
rainy conditions. Examples of the refined real-weather condition-specific vehicle taillight
datasets are shown in Figure 16.
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In Figure 16, images (a) and (b) showcase cloudy environments, while images (c) and
(d) illustrate rainy conditions. By comparing these images with daytime data, the diffusion
of the brake light can be observed. Additionally, in rainy weather conditions, images such
as that in (c) can appear blurred owing to raindrops, or as in (d), where the vehicle is
obscured by the wiper action. Such noise within the images could hinder the model′s
ability to accurately classify footage, posing a challenge that must be addressed to ensure
safe operation in autonomous driving in reality. Therefore, to evaluate the effectiveness
of the proposed technique under each weather condition, the precision and recall metrics
were assessed within the refined cloudy/rainy dataset. Table 4 presents the results.

Table 4. Comparison of precision and recall by class in cloudy/rainy conditions.

Classes
Precision (As a Proportion) Recall (As a Proportion)

Cloudy Rainy Cloudy Rainy

BOO 0.8461 0.8709 0.8048 0.9000
OOO 0.8928 1.0000 0.8928 0.9411
OLO - 1.0000 - 1.0000
OOR - 1.0000 - 0.5000

The results across most classes showed precision and recall levels similar to those
obtained using the vehicle rear signal dataset collected under daytime conditions, indicating
that the proposed technique is resilient to various weather conditions such as cloudy and
rainy weather. This demonstrates its applicability to autonomous vehicles and highlights its
potential to contribute significantly to the safety and reliability of autonomous navigation
under diverse environmental conditions. For the OLO and OOR classes, the empty cells
under cloudy conditions indicate that these specific taillight states were either not observed
or the available data were insufficient to provide a reliable calculation, resulting in no
refined data being reported for these conditions.

4.4. Evaluation of Processing Time for the Proposed Method within Vehicle Edge
Computing Environment

For autonomous driving systems, it is crucial to have a system capable of classifying
taillights within the vehicle′s edge computing environment, even when disconnected
from a server, to prevent accidents. Furthermore, understanding the intentions of the
surrounding vehicles in real-road environments for stable autonomous driving necessitates
real-time tracking of the taillight states of the vehicles ahead. The experiments in this
study were conducted in an environment that simulates real vehicle edge computing
conditions [7,36–38], allowing for the measurement of the analysis time required for the
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proposed method. This setup enabled a comparative evaluation of high-performance server
environments, as shown in Table 5.

Table 5. Hardware specifications for the experimental and high-performance server environments
used to evaluate the processing time of the proposed method.

Simulated Vehicle Edge
Computing Environment

High-Performance Server
Environment for Comparison

CPU AMD Ryzen 5 4500U AMD EPYC 7742 64-Core Processor
RAM 16 GB 4 TB
GPU Not used Not used
OS Android 7.1 Nougat Ubuntu 20.04.6

All codes for the proposed method were written in Python 3.11. The results of the
measurement of the processing time per clip for the proposed system in each environment
are presented in Table 6.

Table 6. Comparison of processing time per clip across different environments.

Simulated Vehicle Edge
Computing Environment

(Seconds)

High-Performance Server
Environment for Comparison

(Seconds)

Measurement speed 0.729–1.657 0.085–1.532
Average speed 0.9027 0.3061

The results indicate that, including the preprocessing stage, predicting 16 frames
required between 0.729 and 1.657 s, with an average of 0.9027 s required for evaluating
1292 clips. When comparing the longest processing times across the environments, the anal-
ysis in a similar autonomous vehicle edge environment required an additional 0.125 s, with
an average processing time of approximately 0.6 s longer. It is anticipated that converting
the code to C or C++ will further accelerate the analysis speed. This demonstrates that
the analysis of vehicle taillights ahead is feasible at speeds comparable to those of high-
performance server environments, even within autonomous vehicle edge environments,
thus proving the suitability of the proposed method for application in autonomous vehicles.

5. Conclusions

This study developed a vision-based taillight signal recognition system aimed at
enhancing the analysis of the driving behavior of vehicles ahead, with a particular focus
on autonomous driving applications. This study introduced a method that effectively
classifies taillight images into eight distinct states using a convolutional 3D neural network
(C3D), demonstrating significant improvements in the ability of the system to interpret
these signals accurately and reliably in real time.

The system has proven to be particularly effective in unclear weather conditions,
where traditional vision-based systems might struggle owing to poor visibility and adverse
weather effects. By enhancing the reliability of taillight recognition under such conditions,
the proposed method ensures that autonomous vehicles can maintain high levels of safety
and operational integrity irrespective of environmental challenges.

Furthermore, this study emphasized the feasibility of on-device processing for taillight
recognition, marking a significant step forward in the development of autonomous driving
technologies that do not rely on server-based computations. This approach not only reduces
the latency in signal processing, but it also enhances the overall efficiency of the system,
ensuring faster and more reliable decision making directly on the edge devices installed
within the vehicles.

The substantial improvements in precision and speed can be attributed to several key
features of our proposed method. By focusing on the most relevant features of the taillight
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signals and using advanced image-processing techniques, we minimized the noise and
irrelevant data, allowing the model to learn more effectively. The C3D model is designed
to handle both spatial and temporal dimensions, enabling the model to capture complex
patterns in taillight signals, such as the intensity and frequency of blinking, which are
crucial for predicting maneuvers like stops or turns. Additionally, data augmentation
techniques such as rotation, resizing, brightness adjustment, and noise addition were
employed to create a more balanced and representative dataset, enhancing the model′s
robustness and generalization capability. Our system is optimized for on-device processing,
ensuring that taillight recognition is not only accurate but also timely, making it suitable
for real-time applications without dependence on server-based computations.

Future work will involve refining the model’s resilience to glare and other external light
sources that could potentially interfere with the accuracy of signal recognition. Extending
the robustness of the system to handle such challenges involves enhancing the algorithm
to disregard irrelevant light sources and incorporating more diverse datasets that include
various nighttime driving conditions.

Moreover, efforts will be made to integrate this vision-based recognition system with
other sensor technologies, such as radar and LiDAR, to create a comprehensive sensor
fusion solution that can deliver an even more reliable and accurate performance under a
broader range of operational scenarios.

By addressing these challenges and continuing innovation, ongoing research will
further enhance the capabilities of autonomous vehicles and ensure that they can operate
safely and effectively under all driving conditions.
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