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Abstract: The aim of this work was to validate the measurements of three physiological parameters,
namely, body temperature, heart rate, and peripheral oxygen saturation, captured with an out-of-the-
lab device using measurements taken with clinically proven devices. The out-of-the-lab specialized
device was integrated into a customized mHealth application, e-CoVig, developed within the AIM
Health project. To perform the analysis, single consecutive measurements of the three vital parameters
obtained with e-CoVig and with the standard devices from patients in an intensive care unit were
collected, preprocessed, and then analyzed through classical agreement analysis, where we used
Lin’s concordance coefficient to assess the agreement correlation and Bland–Altman plots with exact
confidence intervals for the limits of agreement to analyze the paired data readings. The existence of
possible systematic errors was also addressed, where we found the presence of additive errors, which
were corrected, and weak proportional biases. We obtained the mean overall agreement between
the measurements taken with the novel e-CoVig device and the reference devices for the measured
quantities. Although some limitations in this study were encountered, we present more advanced
methods for their further assessment.

Keywords: agreement analysis; Bland–Altman plot; body temperature; heart rate; peripheral oxygen
saturation

1. Introduction

Cardiovascular diseases are a major cause of mortality worldwide and are the leading
cause of hospital admissions in Europe and the U.S. Over 60 million premature deaths have
been attributed to cardiovascular diseases in Europe annually, and device-based prevention
and treatment can help tackle this pandemic [1]. The current annual expenditure for
cardiovascular diseases is estimated to be over EUR 200 million in Europe, accounting for
the largest proportion of the total health care expenditure, at over 16% [2].

Respiratory diseases also have a major impact worldwide. In 2017, almost 545 million
people had chronic respiratory disease (7.9% of the world’s population) and that figure
corresponded to a global increase of 39.8% compared to 1990 [3]. Chronic obstructive
pulmonary disease (COPD) was the third leading cause of death in 2020, following ischemic
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heart disease and stroke [4]. Lower respiratory tract infections (namely, pneumonia) and
lung cancer were the fourth and sixth leading causes of mortality in the same year. Further
impacts on society are also observed in days lost due to disease-related disability. In
fact, after analyzing all ages and levels of country income, four of the “big five” lung
diseases are among the top 20 causes of disability-adjusted life years (DALY): lower tract
respiratory infection is the 4th, COPD is the 6th, tuberculosis is the 12th, and lung cancer
is the 17th leading cause [4]. Altogether these diseases have a major contribution to
premature death and disability. Among the tools and strategies used to monitor and
treat respiratory diseases, telemedicine is among the most promising, bringing the patient
closer to the healthcare team. By providing the ability to perform remote monitoring,
tele-spirometry, and home-based tele-rehabilitation, it is already a game-changer in modern
clinical practice [5].

Multiple physiologic or vital parameters, such as heart rate, respiratory rate, and
peripheral oxygen saturation, can be used to evaluate the diagnosis, outcome, and severity
of cardiovascular and pulmonary diseases. In the intensive care setting and during hospi-
talization, these parameters are used to monitor disease progression, support therapeutic
decisions, and determine the length of hospital stay. Ambulatory patients with chronic
pulmonary and cardiovascular diseases could benefit from similar evaluation if an outpa-
tient monitoring system was available and reliable. Chronic diseases, such as heart and
chronic obstructive pulmonary diseases, that involve acute decompensations may benefit
from outpatient monitoring to make therapeutic decisions and avoid hospital admissions.
Proper outpatient monitoring may also allow for outpatient care after hospitalization and
reduce the hospital length of stay.

The e-CoVig device, previously developed within the scope of the AIM Health project
and described in [6], can be used to directly measure body temperature and peripheral
oxygen saturation (SpO2) and indirectly to calculate heart rate (HR). A previous evaluation
in healthy volunteers had promising results in the normal physiological range for the three
parameters [6,7]. e-CoVig has an architecture based on the ESP32 chipset, coupled with two
off-the-shelf biomedical sensors, namely, a pulse oximeter by Maxim Integrated (San Jose,
CA, USA) and an Infra-Red (IR) thermometer by Melexis (Ypres, Belgium). The device has
Bluetooth connectivity to communicate, e.g., with a smartphone, as is the case in this work.

This study was designed to compare the e-CoVig-determined physiologic parame-
ters with those determined with current certified devices in a clinical setting within the
pathologic range of variation by means of agreement data analysis.

2. Materials and Methods

Figure 1 depicts the e-CoVig device; an ESP32 module is used as the microcontroller,
coupled with a Maxim MAX30101 and a Maxim MAX32664 by Maxim Integrated (San
Jose, CA, USA) for cardiovascular measurements, and with a Melexis MLX90615 sensor
by Melexis (Ypres, Belgium) for body temperature measurement (we refer the reader to
the Supplementary Material for the datasheets with more information on these modules).
From the MAX30101 and MAX32664, oxygen saturation and heart rate values are obtained
using reflective photoplethysmography; a confidence level indicator and a finger placement
status are also computed.

With the MLX90615, body temperature is measured using an IR-based approach; the
sensor also enables ambient temperature measurement. A moving average filter (N = 3) is
implemented on the device to smooth temperature measurements, and a linear regression
is used to estimate the body temperature; the parameters for this regression are described
in [6]. The device measures SpO2, HR, and temperature two times per second and, once
a Bluetooth connection is established, all the measurements are continuously streamed
via Bluetooth Serial in JavaScript Object Notation (JSON) format to the smartphone, as
illustrated below:

{“HR”: 72, “Confidence”: 100, “SpO2”: 99, “Status”: 3,
“Object Temperature”: 33.0, “Ambient Temperature”: 15.1}
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Figure 1. Photos of device and reading sensor. (a) e-CoVig device, extracted from [6]; (b) finger 
sensor with identical application to the one used, extracted from [8]. 
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Bluetooth Serial in JavaScript Object Notation (JSON) format to the smartphone, as 
illustrated below: 

{“HR”: 72, “Confidence”: 100, “SpO2”: 99, “Status”: 3, 
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Lisboa/Hospital de Santa Maria Ethics Committee (Ref. 132/22) including its informed 
consent form. The Institution Data Protection Officer was informed of the study 
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The health care professional (HCP) in charge of the data collection had two sets of a 
mobile phone with the AIM Health app and an e-CoVig device and was responsible for 
ensuring their proper functioning; technical support for the AIM Health app was 
provided through direct contact with the team whenever necessary.  

The measurements were performed on patients admitted to the respiratory intensive 
care unit of a pulmonology department in two distinct periods of time: from 17 October 
2021 to 16 February 2022 and from 24 March 2023 to 15 June 2023. A total of 86 
measurements were taken. In each instance of data collection, the readings obtained 
through the e-CoVig device were directly transferred to the connected AIM Health app 
on the mobile phone. Immediately after successfully obtaining readings with the AIM 
Health app, the measurements were repeated using certified medical devices in the 
intensive care unit, and the values obtained were registered directly in the app by the 
HCP. Temperature measurement was taken at the forehead with the experimental e-
CoVig device and from the ear canal with the reference thermometer. The different 

Figure 1. Photos of device and reading sensor. (a) e-CoVig device, extracted from [6]; (b) finger sensor
with identical application to the one used, extracted from [8].

From the operator’s point of view, this device has a very fast learning curve. To use
e-CoVig, the healthcare professional needs to have a smartphone with the AIM Health
application installed, a Bluetooth connection available, and Internet access for data transfer.
The only steps required are to launch the app, start a new measurement, and then turn on
the e-CoVig device. The device automatically connects to the app. Once the measurements
are underway, the readings appear on the phone screen in the app. Successful readings are
saved by the app and transferred to a remote server. Poor internet access at the time of the
measurements does not preclude the actual readings collection, since the app saves the
data and transfers the data automatically as soon as internet access is available.

2.1. Data Collection

The AIM Health Study was approved by the Centro Médico Académico de Lis-
boa/Hospital de Santa Maria Ethics Committee (Ref. 132/22) including its informed con-
sent form. The Institution Data Protection Officer was informed of the study procedures.

The health care professional (HCP) in charge of the data collection had two sets of a
mobile phone with the AIM Health app and an e-CoVig device and was responsible for
ensuring their proper functioning; technical support for the AIM Health app was provided
through direct contact with the team whenever necessary.

The measurements were performed on patients admitted to the respiratory intensive
care unit of a pulmonology department in two distinct periods of time: from 17 October 2021
to 16 February 2022 and from 24 March 2023 to 15 June 2023. A total of 86 measurements
were taken. In each instance of data collection, the readings obtained through the e-
CoVig device were directly transferred to the connected AIM Health app on the mobile
phone. Immediately after successfully obtaining readings with the AIM Health app, the
measurements were repeated using certified medical devices in the intensive care unit,
and the values obtained were registered directly in the app by the HCP. Temperature
measurement was taken at the forehead with the experimental e-CoVig device and from
the ear canal with the reference thermometer. The different measurement techniques for
each device implied measurement at different locations for this parameter. Heart rate and
peripheral oxygen saturation were both obtained from contact with a finger. The same
finger was used to collect the data with both devices. Once all the measurements were
taken and registered, the HCP provided data on the age, sex, and perceived quality of the
measurements taken in the AIM Health app. After completing the form, the data were
transferred to the remote server by the app. All the measurement episodes were registered
by the HCP in a spreadsheet for validation purposes.

The standard clinically validated devices used to collect the data were as follows:
(1) For body temperature, a Welch Allyn Thermometer (Braun Thermoscan PRO 6000) by
Welch Allyn (Skaneateles Falls, New York, NY, USA) was used, which had an error margin
of ±0.2 ◦C. (2) For heart rate and peripheral oxygen saturation (SpO2), a Spacelabs Multi-
paramether Monitor, model 94267 PRO-19370030B by Spacelabs (Snoqualmie, Washington,
DC, USA), was used, which had an error margin for heart rate ±3 beats per minute (BPM)
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(Quality Institute, ISQ and Portuguese Institute of Accreditation, IPAC report) and, for
SpO2, ±4% (specification ISO 80601-2-61:2017 see [9] for more details). Both devices had
updated quality certification reports, ensuring accurate measurements during the entire
study period.

Participants agreed to take part in the AIM Health study and signed the informed
consent form before any measurement was taken.

2.2. Statistical Methodology

The clinically validated e-CoVig readings were compared by means of agreement
analysis, based on Lin’s concordance correlation and on Bland–Altman plots, to which
we added exact confidence intervals for the limits of agreement. The measurements were
obtained sequentially with the devices for each participant and for each prespecified
physiological variable: body temperature, heart rate and peripheral oxygen saturation.

In medical studies, comparisons of new measurement equipment with established
equipment is needed to prove they are equivalent for clinical use. Correlation studies
are notably used to assess such comparison; however, correlation measures the linear
relationship between one variable and another and not the difference between them, in the
sense that the variables may very well correlate but may disagree significantly in value, so
correlation measures are not recommended as a method for such analysis of comparability.

Bland and Altman proposed a method to analyze the agreement between measure-
ment quantities collected from two different devices, which sums up to producing a plot
where the differences, the means of differences, and the limits of agreement between the
measurements from the two devices can be analyzed. For each pair of measurements, their
difference is plotted against their respective mean, a horizontal reference line is added, the
mean of the differences and other two horizontal lines are added; typically, mean difference
± 1.96 times the standard deviation of the differences, is taken, which are known as the
limits of agreement (LOA) [10,11]. Bland–Altman agreement analysis has been extensively
used to evaluate the agreement between measurements from two different devices and al-
lows the identification of any systematic differences between measurements, i.e., fixed bias,
as well as any possible discrepancies in the differences along the range of measurements,
i.e., proportional bias, and the identification of possible outliers in the data.

The limits of agreement provide a way of assessing the range of variability between
two types of measurements; however, the LOA is sample-size-dependent, so it becomes a
biased estimate of the population’s LOA. Therefore, the inclusion of confidence intervals
for the LOA should be standard practice, describing the range for the estimated LOA to lie
in the population LOA, with a probability or confidence level of (typically) 95% [12]. For
this reason, we included confidence intervals for the LOA. We considered exact confidence
intervals for the LOA, as proposed in [12], which are more relevant for small sample sizes
but also appropriate and useful for any sample size, as opposed to the approximate classical
ones presented in [11].

The Bland–Altman method of analysis is based mainly on two assumptions:
(1) Normally distributed differences between measurements, according to which a value of
1.96 represents the z-score at a significance level of 5%, which guarantees that approximately
95% of the data lies between the limits of agreement; (2) a lack of proportional bias, indicat-
ing that the two different measurements agree equally through the range of measurements;
that is, the limits of agreement does not depend on the range of measurements.

To address the normality of the differences, we considered the Kolmogorov-Smirnov
(K-S) and Shapiro-Wilk (S-W) tests, whose null hypothesis is that the differences follow
a Normal distribution. However, even in the case of a non-normality test result, if ap-
proximately 95% of the data points lie within the LOA, it is still valid to proceed with
Bland–Altman analysis [11]. The K-S test was used because taking the difference in the
means removes a significant amount of the variability in paired data, which underlies the
assumption that the differences are likely to follow a Normal distribution. However, if the
distribution of the differences is skewed or has long tails, the assumption of normality may
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not be valid; for this reason, we also considered the S-W test, which does not assume the
normality of the differences.

To measure the agreement correlation between the paired data measurements, we
used Lin’s concordance correlation coefficient, which is a measure of inter-rater agreement.
It measures how close the data points are to the line of best fit and how far they are from
the line of equality or total agreement. Lin’s coefficient enabled more accurate estimates of
the agreement between the measurements from the two devices, as opposed to Pearson’s
correlation coefficient, which measures a linear relationship but fails to detect any departure
from the 45-degree line through the origin, i.e., the line of equality or total agreement
between the paired measurements [13].

In addition to the agreement analysis, we also considered the acceptance limits be-
tween measurements with regard to the admissible physiological limits of agreement in
each measured quantity. For body temperature, the standard acceptable limit is ±0.5 ◦C,
that of heart rate ranges from 60 to 100 BPM in mild conditions and at rest [14], and the
clinically allowable error is ±5 BPM. Oxygen saturation ranges from 92 to 100% at rest [15],
with an acceptable error limit of ±4%. We have to point out that these limiting error values
are standard for any type of measuring equipment, in particular for the certified equipment
used in the ICU (clinically validated). With the e-CoVig device being a low-cost mobile
device, we decided to add one more acceptance limit for each quantity. We also considered
a limit of ±1 ◦C for body temperature, a limit of ±8 BPM for heart rate, and a limit of ±6%
for oxygen saturation.

In order to determine the possible existence of systematic additive errors in the differ-
ences of means of the measurements, we used the paired t-test and Wilcoxon signed-rank
tests, whose null hypothesis in the present context was that the difference in the means in
the measurements was zero. The paired t-test assumes the normality of the differences and
the equality of the variance in the samples collected from both the e-CoVig and standard
devices. In case of difference in variances, we used the Welch t-test. The Wilcoxon test was
used in the case of non-normally distributed data (the case in which the differences failed
the K-S normality test). To test for proportional bias, we performed a linear regression
between the means and the differences and calculated the respective coefficient of determi-
nation, which, in this context, represents the proportion of the variance in the differences
that is explained by the range of measurements. If zero or close to zero, it means there is
none or a very small multiplicative or proportional effect of the range of measurements on
the differences. These types of errors are typically constant or proportional to the true value,
the clinically validated value, and should be eliminated as they may compromise the overall
accuracy of the measurements, producing biased results in relation to validated ones.

To assess the equality of variances between the independent samples obtained from
the readings of the devices, we used the Levene test, whose null hypothesis is that the
variance from the two independent samples is equal. This test is not very accurate for
distributions that deviate from a Normal distribution, and three location measures were
considered in the evaluation of the Levene test statistics due to existence of skewness and
tails in the sample distributions: (1) in case of a symmetric distribution, the mean is used;
(2) in case of skewness, the median is used; (3) in case of long tails, the trimmed mean
is used.

In this study, to assess the conclusiveness of the tests of the differences in the means
between the independent samples, we calculated their respective statistical power, given
the sample size and the effect size of the samples, which corresponds to the probability
of identifying a real effect in the differences if there is one. For such, the effect size of the
independent samples collected by the devices was determined using Cohen’s d measure,
and the pooled standard deviation was used to measure the spread between the two groups
of collected data. The effect size of the independent samples of equal size is a measure
of the magnitude of the observed effect of the hypothesis being tested; in other words, it
represents the practical importance difference in the parameter of interest, in this case, the
mean of the differences.
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With regard to existence of potential outliers, as previously mentioned, these were
detected as the points that were outside of the range of the LOA, and it is known that these
types of points may compromise the results of the performed analysis. For instance, in this
work, the measurements of body temperature, HR, and SpO2 collected with the e-CoVig
were taken from the forehead, and the last two quantities were taken with a finger probe,
from which we inferred that some of these measurements might have been affected by the
occurrence of involuntary errors while taking the measurements and not due to issues with
the device. After initial preprocessing of the data, we found an anomalous paired data
point in SpO2, the pair (52,70)%, which is clinically an invalid value, and so it was omitted
from the data.

In all statistical tests, a two-sided hypothesis with a significance level of 5% (α = 0.05)
was considered, as well as 95% confidence intervals. All numerical values are presented
with two decimal places. The data were preprocessed and analyzed using Python.

3. Results

From the agreement analysis between the e-CoVig device and the standard clinically
validated ones, we first present the summary statistics of the gathered data; then, for each
measured quantity, we present the normality tests, the systemic error assessment, the Lin
concordance correlation estimates, and, finally, the results of Bland–Altman analysis.

We evaluated the influence of the outlying points by calculating the elements of
considered with the outliers removed and commenting on the differences obtained in the
results. These data points were not excluded from the analysis, even if some of them could
have been related to some type of error (non-random), as mentioned in the previous section.
The outliers were determined by the data points that were outside the range of the limits of
agreement in the Bland–Altman plots for each measured quantity.

3.1. Summary Statistics

The analysis comprised 86 participants, 48 men and 38 women, with an age distribu-
tion of 2 people aged 18–25 years old (y.o.), 14 aged 36–45 y.o., 12 aged 46–55 y.o., 16 aged
56–65 y.o., and 42 aged > 65 y.o., from which body temperature, heart rate, and oxygen
saturation measurements were collected using both devices. In Table 1, we present the
summary statistics of the measured quantities, where we include the mean, the standard
deviation (sd), the minimum (min), the quartiles (Q1 = 25%; Q2 = 50%, which corresponds
to the median; and Q3 = 75%), and the maximum (max).

Table 1. Summary statistics of the measured physiological variables for the standard and
e-CoVig devices.

Variable Mean SD Min 25% 50% 75% Max

Standard Temp (◦C) 36.36 0.87 34 36 36.4 37 38.5

e-CoVig Temp (◦C) 35.76 0.74 34.2 35.3 35.7 36.3 37.6

Standard HR (BPM) 83.1 17.05 48 71.25 85 93.75 116

e-CoVig HR (BPM) 81.87 18.59 48 65 83 94.75 138

Standard SpO2 (%) 96.23 3.06 85 94 97 98 100

e-CoVig SpO2 (%) 94.26 3.71 84 92 95 97 100

3.2. Normality Tests

Concerning the normality tests of the differences in the observed values for body
temperature, we obtained a p-value of 0.36 for the K-S test and a p-value of 0.008 for the
S-W test, which suggested the Normal distribution of the differences for the K-S test. As for
the data with the outliers removed, we obtained p-values of 0.23 and 0.27 for the K-S and
S-W tests, indicating that these points had a considerable influence on the distribution of the
differences in the S-W test. In Figure A2a, we present the QQ plot of the differences for this
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variable, which shows a slight negative skewness as the data appear as a negative concave
curve, showing an extended lower tail, a few outliers, and a reduced upper tail. This might
explain the departure from the Normal distribution in the S-W test, since this test is more
sensitive to deviations from the Normal distribution than the K-S test; nonetheless, the
majority of points are approximately in line with the 45-degree line.

For heart rate, we obtained a p-value of 0.0003 for the K-S test, a p-value of << 0.05 for
the S-W test, and p-values of 0.05 and of 0.003 on the K-S and S-W tests when the outliers
were removed, from which we deduced that these points had a considerable influence on
the deviance from normality. In Figure A4a, from the QQ plot of the HR differences, we
can observe a flipped S shape formed by the points, presenting a positive excess kurtosis,
where the lower and upper tails are extended. We can also observe that the majority of the
points are not in line with the line of equality, although they are apparently symmetric; this
might explain the non-normality of the result for both tests for the case with all data.

For oxygen saturation, we obtained a p-value of 0.14 for the K-S test and a p-value of
0.0008 for the S-W test, which suggest the normality of the differences on the K-S test. For
the data with the outliers removed, we obtained p-values of 0.17 and of 0.009 for the K-S
and S-W tests, verifying the same results described previously and indicating that these
data points had an influence on the deviation from normality. In Figure A6a, from the
QQ plot of the SpO2 differences, we observe a positive concave curve, showing that the
lower tail is reduced, and the upper tail is extended; a few outliers are present, similar to
the QQ plot for body temperature but with the opposite concavity. This might explain the
deviation from the Normal distribution in the S-W test; nonetheless, the majority of the
points are approximately in line with the 45-degree line.

Hence, we confirmed the statistical significance of approximate normality of the
differences in the body temperature and SpO2 measurements for the K-S test with all data
points; when outliers are removed, for body temperature, HR, and SpO2, we verified the
approximate normality in the differences in the K-S test with higher p-values, and the S-W
test indicated the normality of the body temperature differences.

3.3. Systematic Errors and Power of Tests

Concerning the equality of the variance tests between the independent samples from
the readings, for body temperature, we obtained p-values of 0.30, 0.27, and 0.45 when
using the mean, median, and the trimmed mean respectively, in the estimation of the
test statistics, which indicate the significance of the equality. Analyzing the data with the
outliers removed, we obtained the same result but with higher p-values, indicating that the
result was more significant when these data points were removed. For HR, the equality of
the variance was statistically significant with p-values of 0.37, 0.36, and 0.38 when using the
mean, the median and the trimmed mean, respectively. For the case without the outliers,
we obtained higher p-values, indicating an equivalent result to the one obtained for body
temperature. For SpO2, we obtained p-values of 0.05, 0.03, and 0.02 for the mean, median,
and trimmed mean, respectively, meaning that only the equality of the variance for the
mean was statistically significant. When the outliers were removed, we obtained p-values
of 0.23, 0.14, and 0.09 for the mean, median, trimmed mean, respectively, indicating the
significance of the equality of the variances between the samples.

In sequence, we present the results of the evaluation of the systematic additive bias in
the difference in the means between the two measuring devices. For body temperature, the
mean difference dTemp = 0.6 ◦C, with standard deviation sdTemp

= 0.74 ◦C. For both the paired
t-test and Wilcoxon test, we obtained a p-value << 0.05, meaning that there was a systematic
additive difference between the measuring devices. We see the QQ plot of the sample
quantiles between the measurements from both devices in Figure A2b, showing a slight
positive skewness, and the points on the tails depart from the main ones, which indicates
deviation between the means. For heart rate, we had a mean difference dHR = 1.23 BPM
with sdHR

= 9.85 BPM and a p-value of 0.61 for the paired t-test and 0.74 for the Wilcoxon
test, indicating in this case that there was no additive bias. In Figure A4b, we present
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the sampled quantiles of the standard measurements against the e-CoVig measurements,
where we can observe very few points in the tails that are not in line with the majority of
the points. In turn, the vast majority of the points are approximately in line with the line
of equality; this is thus a visual confirmation of the lack of additive bias in heart rate. For
SpO2, we had dSpO2 = 2% with sdSpO2

= 3.70% and a p-value < 0.05 for the paired Welch t-test
and Wilcoxon test, indicating the existence of additive bias. In Figure A6b, showing the QQ
plot of the sample quantiles for oxygen saturation, we can observe a slightly positive skew
pattern of the points, constituting a graphical confirmation of the presence of bias in this
measured quantity. Thus, we inferred that there was a statistically significant additive bias
in the mean difference in the body temperature and SpO2 measurements but no evidence
of this in the heart rate measurements.

Regarding the proportional bias, after correcting the additive bias in the e-CoVig
readings of the physiological quantities, we performed linear regressions between the
differences and means of the measurements. In Figure A1b, we present the regression
lines for body temperature, where we obtained R2 = 0.04 for all data, meaning that about
4% of the variability in the differences was explained by the range of measurements, and
R2 = 0.003 for the data with the outliers removed, indicating that the multiplicative shift in
this variable was not very significant and that the outliers were considerably influential.
In Figure A3b, the same plot is presented for the heart rate differences and means, where
R2 = 0.03 for all data points, and R2 = 0.01 for the data without the outliers, where the
(multiplicative) shift is also not very significant. As for oxygen saturation, the regres-
sion plot can be seen in Figure A5b, with R2 = 0.04 for all data points and R2 = 0.02 for
the case without the outliers. Again, we observe a small multiplicative bias. In these
two quantities, we observed a decrease of 2% in the explained variance of the differences
in the means. These results indicate that the relationship between the differences and the
means of the measurements, across the range of measurements, was weak, and that the
outliers contributed to the deviation of the regression line between the differences and
the means from the zero line of a lack of proportional bias. Therefore, having found little
influence of the range of measurements on the differences, the validity of the Bland–Altman
plots was sufficiently assured [11].

The power of the tests of additive bias is now presented. For body temperature, the
statistical power was 99.8% for an effect size of 0.74 for all data points, suggesting that
the identification of the bias was conclusive, and the effect of the existing bias was easy to
identify. The statistical power was 99.9% for an effect size of 0.83 when the outliers were
removed. For SpO2, we obtained a power of 96.9% for an effect size of 0.59, and a power
of 87.4% for an effect size of 0.49 for the data without outliers, so the same conclusion
applied to this result, despite the fact that, in this parameter, the effects were weaker but
still admissible for the identification of the effect. For heart rate, because the effect size was
very small, 0.07 for all data points and 0.02 when outliers were removed, the effect of the
differences of measurements collected from both devices could not be identified, suggesting
that the differences were not important. Although we had a relatively small sample size,
the power of the tests, as we showed, indicated that the sample size was adequate for the
performed tests.

3.4. Body Temperature Agreement Analysis

Figure 2 shows the paired data measurements of body temperature from the standard
device on the horizontal axis and from the novel e-CoVig device on the vertical axis. In
the figure on the left, note the systematic additive shift, 0.6 ± 0.74 ◦C, and on the right,
we present the rectified version, which was created by adding the additive bias for its
correction; that is, the corrected e-CoVig reading equals the e-CoVig reading plus the mean
of the differences between the clinically validated readings and e-CoVig readings.
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Figure 2. Scatter plots of body temperature measurements from standard clinically validated and
e-CoVig devices. The darker points are the outliers determined by Bland–Altman LOA. (a) Plot with
the raw measurements; (b) plot with the corrected bias.

For the raw data measurements, we had an estimated Lin’s correlation ρC = 0.46,
with a confidence interval of [0.32, 0.56], and for the data with corrected bias, we had
ρC = 0.59, with a confidence interval of [0.43, 0.71], which is a significant increase of 13% in
the estimate of concordance, since, in this case, the data points were more in line with the
line of equality. When the outliers were removed, we obtained ρC = 0.71 in the additive
correction case, which is an increase of 12% compared to the case with all data points, which
is not surprising since the outlying points were removed from the regression in relation to
the line of equality, indicating a noticeable influence of this correlation.

We next present the Bland–Altman plots with exact confidence intervals. In Figure 3a,
we present the results of the raw measurements, i.e., without the bias correction, and, in
Figure 3b, we present the results for the rectified version of the data, i.e., with the bias
corrected, which is equal to 0.6 ◦C.
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For the corrected additive bias case, we obtained a confidence interval of [−0.16, 0.16] ◦C,
and lower and upper LOAs of −1.45 and 1.45 ◦C, respectively, with exact confidence
intervals of [−1.71, −1.26] and [1.26, 1.71] ◦C, respectively. Removing the outliers, we
observed a slight increase in the fixed bias, given the removal of the three points below the
lower LOA, but with a lesser deviation from it, 0.64 ± 0.59 ◦C, and the lower and upper
LOAs were ±1.15 ◦C, with the span between the LOA being reduced from 2.9 ◦C to 2.3 ◦C,
a reduction of 0.6 ◦C, which is somewhat significant.

Concerning the acceptance limits, we found that 61.6% of the points were within the
clinically admissible margin, with the differences being ±0.5 ◦C and including 65.4% of
the points of the data without the outliers. As for differences of ±1 ◦C, we found 87.2%
and 92.6% of the points belonging to it for the cases with all data and with the outliers
removed, respectively.

With about 95% of the total points being within the limits of agreement and having
found no significant relationship between the differences and the range of measurements,
we verified the validity of the Bland–Altman plots and obtained fair concordance among
the estimates, being almost moderate for the case with the bias corrected.

3.5. Heart Rate Agreement Analysis

For this physiological parameter, despite the absence of a systematic additive shift
from the statistical point of view, we still considered its value correction by adding the
additive shift to the e-CoVig readings in order to numerically adjust the values obtained
with the new equipment, with the shift being 1.23 ± 9.85 BPM. In Figure 4, we present the
paired data for the heart rate measurements, with the outliers depicted in the plots.
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We obtained a concordance estimate of ρC = 0.85, with a confidence interval
of [0.77, 0.90] BPM and no significant differences between the coefficients and confidence
intervals in both uncorrected and corrected additive shift cases, which was somehow ex-
pected as there was no statistically significant bias in these paired data. If the outliers were
removed, we then had a remarkable ρC = 0.96, revealing that all other points were much in
line with the line of equality when the additive correction was applied.

For this variable, we did not observe approximate normality in the differences’ distribu-
tion and, in particular, we found about 91% of the data within the LOA. The Bland–Altman
plots are presented in Figure 5, for which we present the values of the LOA and the respec-



Sensors 2024, 24, 5164 11 of 18

tive exact confidence intervals: for the raw data in Figure 5a, and for the rectified version in
Figure 5b.
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Figure 5. Bland–Altman plots of heart rate measurements. The darker points correspond to the
outliers determined by the LOA: (a) plot with the raw differences and means; (b) plot with the
corrected additive shift (not considered as systematic bias).

For the corrected mean shift, we obtained a confidence interval of [−2.11, 2.11] BPM,
a lower LOA of −19.30 BPM, and an upper LOA of 19.30 BPM, with exact confidence
intervals of [−22.86, −16.86] BPM and [16.86, 22.86] BPM, respectively. After discarding
the outliers, the additive shift was 0.3 ± 5.07 BPM, which decreased with the removal of the
most outlying points above the upper LOA, as well as decreased the deviation from it, as
the outlying points ceased to influence it. The lower and upper LOAs became ±9.93 BPM,
with the span between the LOA being reduced from 38.6 BPM to 19.86 BPM, a considerable
reduction of 18.74 BPM in the range.

With regard to the acceptable limits in this physiological parameter, we found 69.8%
between the clinically allowable range of ±5 BPM and 76.9% of the points within it when
with the outliers removed. For the acceptable limits defined by the ±8 BPM margin, we
found 76.7% of the points within it for the all-data case and 84.6% of the points within it in
the case without the outliers.

Despite the assumption of 95% of the data points being between the limits of agreement
not being established, the difference was 4%, three data points, and so this was not very
relevant in quantitative terms. This lack of approximation to a Normal distribution of the
differences requires further treatment of the data. Nonetheless, we found very good results
of agreement between the measurements from both devices and no significant evidence of
proportional bias, which indicate the agreement validity for this parameter.

3.6. Peripheral Oxygen Saturation Agreement Analysis

For oxygen saturation, we found a statistically significant additive bias in the difference
in the means, 2 ± 3.7%, but it was not possible to correct it as there were a couple of
measurements with 100% readings from both devices.

We obtained a concordance estimate of ρC = 0.35, with confidence interval [0.18, 0.50] %.
This slightly fair concordance correlation was in part due to the non-correction of the addi-
tive bias and possibly to the presence of outlying pairs. After removing the outliers, we
obtained ρC = 0.53, a considerable increase of 18% from the former, as the outlying points
below the line of equality in Figure 6a deviated from the line of best fit to the points.
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In Figure 6a, we present the scatter plot with the measurements from the e-CoVig
device on the vertical axis and with the measurements from the standard device on the
horizontal axis, where we show evidence of the additive bias in the paired data.

The Bland–Altman plot is presented in Figure 6b, which shows a “funnel effect” [16]
(typical for SpO2 plots of means against differences), in which the variation in the differences
is larger for smaller mean values and decreases as the mean values become larger. However,
as previously mentioned, we found little expression of the effect size of the range of
the measurements on the differences; though, if further corrected, it might improve the
agreement between the readings of the two devices. The bias was 2% with a confidence
interval of [1.20, 2.80]%; the lower LOA was −5.25% with an exact confidence of interval
[−6.58, −4.33]%; and the upper LOA was 9.25%, with an exact confidence interval of
[8.33, 10.58]%. After removing the outliers, we observed a bias of 1.6 ± 2.9%, a decrease
with respect to the case with all points; the lower and upper LOAs became −4.09% and
7.29%, respectively, with the span between the LOAs being reduced from 14.5%to 11.38%, a
reduction of about 3.12%.

As for the acceptable limits for SpO2, we found that 82.4% of the data were between
the clinically allowable range of ±4% for the whole dataset and 87.5% within it when
removing the outliers. For the acceptable range defined by the ±6% margin, we found
92.9% and 98.8% of the points within this margin for the case with all data points and for
the case without the outliers, respectively.

Since 95% of the data points were within the limits of agreement, we considered the
Bland–Altman agreement analysis as valid; however, from a statistical point of view, given
the apparent dependency in the variation in the differences with respect to the means, even
though minor, further analysis is required.

4. Discussion

We assessed the agreement between the clinically validated devices and the novel
e-CoVig device for measuring selected physiological parameters, body temperature, heart
rate, and oxygen saturation, in patients admitted to a respiratory intensive care unit.
Using a combination of statistical methods, we analyzed the measurement errors between
the devices, from which we were able to validate the Bland–Altman plots and obtain
a more adequate measure of the agreement correlation between the single paired data
measurements using Lin’s correlation coefficient.
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The results obtained for body temperature are in line with those obtained by Cutuli S. L.
et al. [17]. The authors performed a prospective experimental study in critically ill patients
in an ICU, comparing invasive with noninvasive methods for measuring body temperature,
where they obtained a bias of 0.66 ◦C and lower and upper limits of agreement of −1.23 and
2.55 ◦C, respectively, through forehead measurements. Compared with the work presented
in [18] by Dolibog P. et al., our results are less concordant; the authors obtained a bias of
−0.2 ± 0.58 ◦C and lower and upper LOAs of −1.35 and 0.95 ◦C, respectively, with the
temperature being measured on the forehead with the tested device and in the tympanum
with the reference device.

Our results for heart rate are similar to the ones obtained in [19], in which Downey
C., et al. conducted an observational study on patients who had undergone major general
surgery, obtaining a bias of −1.85 BPM and lower and upper LOAs equal to −23.92 and
20.22 BPM, respectively, from measurements taken from a patch on the chest of the patient
with the testing device with wireless transmission and taken manually with the reference
device. The results we obtained are also in agreement with the ones in [20]; Jacobs F.
et al. conducted an observational study in patients recovering in a care unit after bariatric
surgery, where they obtained a bias of −0.8 BPM and lower and upper limits of agreement
of −19.3 and 17.8 BPM, respectively, where the measurements were also taken from a
patch on the patient’s chest. These results pertain to patients presumably in sinus rhythm,
whereas the validation of the e-CoVig device as an arrhythmia detector requires a different
patient population with significant prevalence of atrial and ventricular arrhythmia as well
as bradycardia.

The SpO2 results are somewhat in agreement with the those of Wilson B.J., et al. [21],
where the authors performed a retrospective analysis of patients in an ICU with severe
sepsis, having obtained a bias of 2.75% and limits of agreement of −3.4 and 8.9%, with
measurements taken through a finger probe. Our results are less in agreement with
those obtained by Thijssen M., et al. [22], where the authors performed a retrospective
study in patients admitted to an ICU taking supplemental oxygen therapy, where they
obtained a bias of 0.21 ± 2.04% and limits of agreement of −5.75 and 6.97%, and where the
measurements were also collected using a finger probe.

From the comparison of our results with those of the abovementioned previous works,
we found differences in the results, from which we confirmed that the process of measuring
physiological parameters is uncertain and demanding, which necessitates the continued
development, analysis, and testing of new low-cost and easy-to-use devices. These findings
should encourage the research community to improve the precision of readings of these new
mHealth device technologies, in particular in ICU environments, given the high standards
for the monitoring of vital signs in critically ill patients.

The strengths of the present study include the e-CoVig testing in patients with acute
severe respiratory diseases, for whom vital signs such as heart rate and pulse oximetry are
frequently and significantly deviated from the normal range, increasing the confidence in
the device’s performance in this specific population. In addition, measurements were taken
in patients with different severity levels within the ICU: patients with acute respiratory
failure on mechanical ventilation, patients in septic shock on vasopressor support, and less
severe cases with people on noninvasive ventilatory support or on supplemental oxygen
only. Finally, e-CoVig is a very user-friendly device, and its use does not require complex
procedures, making it a potentially valuable tool for vital sign monitoring given its easy
implementation process.

A unique aspect of this work, compared to many other similar studies, is the fact that
we used exact confidence intervals for the limits of agreement, while some of the other
studies in the literature did not make use of confidence intervals for the limits of agreement,
or, when used, in some cases the application of the classical Bland–Altman plot was made
in situations when the validation assumptions were not met.

From our retrospective reflection, some limitations were identified. Measurements
were collected and statistical analysis was performed without taking into account potential
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confounders, such as patient medication at the time of measurement. This might be particu-
larly relevant for drugs that interfere with peripheral perfusion, namely, vasoactive agents.
In addition, although patients presenting arrhythmias at the time of the measurements were
not excluded, the analysis was not stratified according to this factor; creating subgroups
would be problematic because of the resulting small sample sizes. Other important issues
to take into account would be device validation across different ethnicities and age groups.
These are potential aspects to explore in future investigations using the e-CoVig device.

In relation to future work, certain aspects need further analysis in the statistical
framework: (1) The deviation of the differences from the Normal distribution, even if
slight, needs further attention. (2) The proportional bias, even being weak, needs further
treatment. These aspects can be more thoroughly studied considering, for instance, (1)
Transformation techniques, such as logarithmic and ratio transformations of the differences
against the geometric mean and arithmetic mean of the means of the measurements. The
percentage differences with the logarithmic mean or arithmetic mean of the means can be
taken as denominators against the geometric and arithmetic means, respectively, having as
reference, for example, [23–25]. These techniques can help mitigate some of the deviation
from normality, as well as reduce some of the unwanted variability in the data. (2) A
regression-based analysis of the fit to the differences can be used, with the inclusion of
regressed horizontal limits around the line of best fit to the differences. This analysis
can be performed, for instance, based on the works in [24,25], which can help in the
estimation of the proportional bias and estimate possible trends in the data, enabling a
formulation for their correction over the readings from the device. (3) Tolerance limits and
prediction intervals around the line of best fit to the differences can be used, which may be
more accurate in determining the adequacy of the closeness or equality between the two
measuring methods in cases where any of the assumptions of the classical Bland–Altman
plot are not fulfilled. The inclusion of these elements for future work can use the studies
in [26–28] as a guide. By reanalyzing the data with the combination of the mentioned
techniques, more rigorous and robust analyses of the collected data can be performed, and
some of the outlying points can be better assessed.

We can state from this study that we were able to improve the state of the art by
investigating the accuracy of the e-CoVig out-of-the-lab mHealth device in an ICU, which
demonstrated a mean overall agreement with the standard clinically validated devices
in the analyzed physiological parameters, despite the limitations previously mentioned.
We also found considerable acceptance from the participants in this study regarding the
use of the novel equipment. Nonetheless, further assessment of the errors is required
with more general methods, taking into account methods for non-normally distributed
differences. We must also consider adjustment methods for the proportional bias, even
though weak, as well as a more thorough analysis of the outliers closest to the limits of
agreement, and we could consider a prospective observational study with repeated within-
subject measurements. We must add that we are working on implementing a healthcare
decision support system and that this method is not intended to replace any medical staff
or pre-established routines.
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Appendix A

In all plots presented below, the additive bias was rectified, except in the case of
oxygen saturation (SpO2), and the darker points in the plots correspond to the outliers
determined by the respective Bland–Altman plot.
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mined by the Bland-Altman LOA: (a) Normal quantiles against difference in measurements quan-
tiles; (b) standard Normal sample quantiles against e-CoVig Normal sample quantiles. 

Figure A1. (a) Plot of difference in body temperature measurements between the standard clinically
validated and e-CoVig devices; (b) plot of regression of the differences in the means of the mea-
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both plots.
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Figure A4. QQ plots of heart rate, where the darker points correspond to the outliers determined by 
the Bland-Altman LOA: (a) Normal quantiles against difference in measurements quantiles; (b) 
standard Normal sample quantiles against e-CoVig Normal sample quantiles. 

Figure A3. (a) Plot of difference in heart rate measurements between the standard clinically validated
and e-CoVig devices; (b) plot of regression of the differences in the means of the measurements. The
darker points correspond to the outliers determined by the Bland-Altaman LOA, in both plots.
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