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Abstract: The primary objective of the research presented in this article is to introduce an artificial
neural network that demands less computational power than a conventional deep neural network.
The development of this ANN was achieved through the application of Ordered Fuzzy Numbers
(OFNs). In the context of Industry 4.0, there are numerous applications where this solution could
be utilized for data processing. It allows the deployment of Artificial Intelligence at the network
edge on small devices, eliminating the need to transfer large amounts of data to a cloud server for
analysis. Such networks will be easier to implement in small-scale solutions, like those for the Internet
of Things, in the future. This paper presents test results where a real system was monitored, and
anomalies were detected and predicted.
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1. Introduction

Industry 4.0, also known as the Fourth Industrial Revolution, refers to the current
trend of automation and data exchange in manufacturing technologies. One of the key
features of Industry 4.0 is the use of data analytics and machine learning to optimize manu-
facturing processes and improve product quality. This involves collecting and analyzing
data from sensors and other sources throughout the manufacturing process, and the use
of this information to identify inefficiencies, predict maintenance needs, and optimize
the production schedules [1]. Another important aspect of Industry 4.0 is the use of in-
terconnected devices and systems, known as the “Internet of Things” (IoT), to create a
more integrated and responsive manufacturing ecosystem. This comprises connecting
machines, sensors, and other devices to each other and to the cloud, allowing users to
monitor and control manufacturing processes. Industry 4.0 is also seen as an innovation
driver, enabling manufacturers to develop new products and services more quickly and
efficiently than ever before. By using advanced digital technologies to create smarter, more
flexible production systems, manufacturers can respond more rapidly to market-changing
demands and customer preferences. Overall, Industry 4.0 represents a significant opportu-
nity for manufacturers to improve productivity, increase efficiency, and drive innovation
in an increasingly competitive global market. The proposed solution has the following
advantages of using it for local data analysis on IoT devices:

• Decentralization of data analysis: IoT devices can independently process data and
make decisions, which increases their autonomy and reduces the latency associated
with transmitting data to a central server;

• Optimization of energy consumption: thanks to local data processing, IoT devices
can more efficiently manage their energy usage, which is crucial for battery-powered
devices;

• Increased data security through local processing: processing data on the device reduces
the risk of data interception during transmission, therefore enhancing information
security;

• System modularity: with local processing capabilities, IoT systems can be more easily
expanded with new devices without the need to modify the central infrastructure;
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• Shorter response time to events: local analysis and decision-making allow for faster
responses to anomalies or other events in real-time;

• Reduced data transmission costs: fewer data to be sent to central servers means lower
costs associated with data transmission and less demand for network bandwidth;

• Lower infrastructure cost: reduced requirements for central data centers and a reduced
need for complex cloud-based analytical algorithms;

• Local customization of algorithms: IoT devices can be equipped with algorithms
tailored to the specific needs of local users or operating conditions;

• Offline functionality: devices can continue their operations and analyze data, even in
areas with poor network access, which is crucial in remote or hard-to-reach locations.

The primary value of this paper lies in its proposed solution to an academic challenge.
The goal of this article is to present a solution for data analysis on edge devices, where
analysis requires the following:

• Data transmission to a central analysis center, which causes data transmission energy
costs, and a steady connection may not always be available;

• Alternatively, the need for local data analysis, which, over a long period, with battery-
powered devices, will generate energy consumption.

The use of a fuzzy artificial neural network with Ordered Fuzzy Numbers can result
in energy savings in some cases due to lower computational power requirements while
maintaining the same quality of solution. The proposed solution has been tested in terms of
solving logical problems (OR, AND, and XOR functions) and linear function approximation.
In the mentioned cases, the proposed solution achieved very good results in solving the
same problems, but with smaller network architecture requirements. The author of this
article compares the proposed solution with commonly used deep networks and LSTM
networks. The author suggests that an artificial neural network can be built using fuzzy
logic, particularly employing Ordered Fuzzy Numbers (OFNs) within its neurons. Subse-
quently, he proposes its application in compact IoT devices, aligning with the principles of
Industry 4.0. In this paper, a brief introduction to the fuzzy network with OFN is presented,
and some test results are provided. Therefore, I conducted research on my hypothesis,
implemented a network, and compared it with an ordinary network that could be used on
devices with limited computational power.

2. Short Review of Fuzzy Neural Network

Numerous papers explore the realm of fuzzy neural networks. Some researchers
attempted to utilize the McCulloch–Pitts model of a neuron, which has been expanded
into a more versatile framework allowing neuron activity to be a “fuzzy”, rather than an
“all-or-none” process [2]. Others propose architectures of fuzzy neural networks featuring
triangular fuzzy weights [3]. These networks are capable of handling both fuzzy and real
input vectors, resulting in fuzzy vector outputs. The input–output relationship of each
unit within the fuzzy neural network is determined by Zadeh’s extension principle. Many
studies utilize fuzzy signals and/or weights [4]. For example, Paulo Vitor et al. introduced
a new logical fuzzy neuron, termed null-unineuron, based on the concept of null-uniform,
contributing to the architecture of evolving neuro-fuzzy models [5]. The primary applica-
tion of fuzzy networks is to develop controllers that outperform conventional ones [6–17].
In [18], the authors proposed a novel multi-functional recurrent fuzzy neural network.
Their architecture comprised two fuzzy neural networks employing Takagi–Sugeno–Kang
fuzzy rules; one network is utilized for output generation, while the other determines
the system’s state, with a feedback connection between them. Additionally, there have
been studies that provide reviews of fuzzy systems and artificial neural networks [19].
In the paper referenced as [20], the author introduced a novel approach to fuzzy logic
systems—the adaptive network-based fuzzy interface system (ANFIS). This approach
differs from traditional fuzzy logic systems in that it utilizes not only logical rules, but
also connections between layers of the network that are not necessarily close in proximity.
This allows for a more flexible and adaptive system that can better handle complex and
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dynamic problems. In [21], the authors proposed a low-rank tensor regularized graph
fuzzy learning method for multi-view data processing in which fuzzy learning is adopted
to make graph clustering a soft clustering method. The fuzzy learning method is also
used in many solutions [3,22,23]. It can be noticed that some hybrid approaches to fuzzy
supervised learning were developed [24].

In this study, the author introduces an innovative approach absent from existing
literature. We employ a conventional deep neural network and transform individual
neurons into fuzzy neurons through the application of Ordered Fuzzy Numbers arithmetic.
This adaptation enables us to utilize not only the triangular form of fuzzy numbers, as seen
in the ANFIS model, but also the trapezoidal form.

3. Fuzzy Neural Network with Ordered Fuzzy Numbers

Artificial Neural Networks, encompassing Deep Networks, are widely favored tools
within the realm of Artificial Intelligence today. These networks are built using neurons,
and one common type of neuron is the McCulloch–Pitts neuron. This neuron can have
many inputs, each of which is assigned a weight and produces one output. Professor Witold
Kosiński, along with his team, proposed a generalization of fuzzy numbers by introducing a
trend to them, which proved to be helpful in many event analyses. Ordered Fuzzy Number
is an ordered pair A = ( fA, gA) of continuous functions F : fA, gA : [0, 1] → R referred to
respectively as parts (presented in Figure 1):

• upA_A—beginning, rising slope;
• downA—end, falling slope.
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Basic arithmetic operations on Ordered Fuzzy Numbers:

• Sum: ordered fuzzy number C = ( fC, gC) is the sum of numbers A = ( fA, gA) and
B = ( fB, gB), when:

∀y∈[0,1][ fA(y) + fB(y) = fC(y) ∧ gA(y) + gB(y) = gC(y)], (1)

• Difference: ordered fuzzy number C = ( fC, gC) is the difference between numbers
A = ( fA, gA) and B = ( fB, gB), when:

∀y∈[0,1][ fA(y)− fB(y) = fC(y) ∧ gA(y)− gB(y) = gC(y)], (2)

• Multiplication by scalar: ordered fuzzy number C = ( fC, gC) is the result of the
multiplication of number A = ( fA, gA) by scalar r ∈ R, when:

∀y∈[0,1][r· f A(y) = fC(y) ∧ r·gA(y) = gC(y)], (3)

• Product: ordered fuzzy number C = ( fC, gC) is the product of numbers A = ( fA, gA)
and B = ( fB, gB), when:

∀y∈[0,1][ fA(y)· fB(y) = fC(y) ∧ gA(y)·gB(y) = gC(y)], (4)
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• Quotient: ordered fuzzy number C = ( fC, gC) is the quotient of numbers A =
( fA, gA) by B = ( fB, gB), when:

∀y∈[0,1][ fA(y)/ fB(y) = fC(y) ∧ gA(y)/gB(y) = gC(y)], (5)

While fuzzy networks have been explored in the previous literature [21], none have
incorporated Ordered Fuzzy Numbers (OFNs) in Artificial Neural Networks. The OFNs
were chosen for use in artificial neural networks because:

• They allow calculations to be performed while avoiding the identified drawbacks of
traditional L-R numbers;

• No attempt has yet been made to implement a network using this solution, so that is
why this is a novel solution.

To build a fuzzy network, a modification of the McCulloch–Pitts neuron model has
been suggested. Nonetheless, rather than employing standard numerical values, inputs,
weights, and outputs are depicted using OFN notation [22]. OFN notation is used to express
imprecision and uncertainty in numerical values. To perform arithmetic operations with
OFN numbers, two specific steps are followed:

Step 1: The calculation involves multiplying the input values by their corresponding
weights and then adding up the products to obtain a final value:

S = W0 + ∑n
i=0 XiWi, (6)

Step 2: Then, the output using the OFN arithmetic is calculated:

Y = f (S) (7)

The elements within S, W, X, and Y are represented as values in OFN notation. This
methodology necessitates subsequent layers to be implemented:

• First layer—a fuzzification process is employed to convert input data into the network
into OFN notation;

• Last layer—defuzzification is utilized for processing the output data from the network;
• Deep layer—network learning/training algorithms are adapted to operate effectively

with OFN network arithmetic in network layers.

In the proposed network, a deep fuzzy network is employed, where traditional neu-
rons are replaced with fuzzy neurons whose weights are directed fuzzy numbers, and the
arithmetic of these numbers is used for calculation. The first layer is responsible for fuzzify-
ing the input data, which is crucial from the perspective of the solution’s application. Each
implementation will require a specific approach to the fuzzification process and the repre-
sentation of data in the domain of fuzzy numbers. Multidimensional data will also require
analysis and the introduction of fuzzification methods. However, many solutions have
already been developed from which researchers can draw methods for data fuzzification
for further analysis. This process should not pose a problem. The subsequent deep layers
are responsible for generalizing the information. A deep network with fully connected
neurons, a type of FFN, has been developed. The last layer is responsible for defuzzifying
the result. In the literature, one can also find numerous methods for defuzzifying results,
allowing a return from the domain of fuzzy numbers to the domain of real numbers.

The operational framework of the developed deep network is illustrated in Figure 2.



Sensors 2024, 24, 5169 5 of 14Sensors 2024, 24, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. Proposed novel fuzzy network with OFN. 

A network according to these rules with a fuzzy learning algorithm was developed. 
The test was performed. This network was prepared in Python language. 

The code for preparing the network layer is presented in Table 1. The Layer class has 
three methods, __init__(), forward(), and backward(), which define the behavior of the 
layer during both forward and backward passes of the network. The __init__() method 
initializes two instance variables, input and output, which will be used to store the input 
and output of the layer during the forward pass. The forward() method takes an input and 
performs some operations on it to produce an output. However, the pass keyword indi-
cates that no specific operations are defined here and it must be overridden by a subclass 
that inherits from Layer. The backward() method takes the gradient of the loss function 
concerning the output of the layer and computes the gradient with respect to the input. 
As with forward(), the pass keyword indicates that this method must also be overridden 
by a subclass. Overall, this code defines the basic structure for a neural network layer, but 
specific operations and gradients need to be implemented in a subclass. 

Table 1. The code for the network class layers. 

Class Layer 
class Layer: 

    def __init__(self): 

        self.input = None 

        self.output = None 

    def forward(self, input): 

        pass 

    def backward(self, output_gradient): 
        pass 

The code presented in Table 2 defines a subclass, Dense, of the Layer class. This sub-
class represents a fully connected neural network layer, where each neuron in the layer is 
connected to every neuron in the previous layer. The __init__() method takes two argu-
ments: input_size and output_size, which represent the number of neurons in the previ-
ous layer and the current layer, respectively. The method initializes the layer�s weights 
and bias parameters as two NumPy arrays of the specified shapes. The OFN() function 
represents the Ordered Fuzzy Number class. 

The forward() method takes an input tensor, performs the linear transformation by 
multiplying the input tensor by the weights, and adds the bias. The method stores the 
input tensor in the self.input variable, which is used in the backward pass to compute 
gradients. The method then returns the output tensor. 

The backward() method takes the gradient of the loss function with respect to the 
output of the layer, output_gradient, and the learning rate. The method computes the gra-
dient of the loss function concerning the weights, weights_gradient, and updates the 
weights and bias parameters using the gradient descent optimization algorithm. Finally, 
the method returns the gradient of the loss function with respect to the input of the layer, 
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A network according to these rules with a fuzzy learning algorithm was developed.
The test was performed. This network was prepared in Python language.

The code for preparing the network layer is presented in Table 1. The Layer class has
three methods, __init__(), forward(), and backward(), which define the behavior of the layer
during both forward and backward passes of the network. The __init__() method initializes
two instance variables, input and output, which will be used to store the input and output
of the layer during the forward pass. The forward() method takes an input and performs
some operations on it to produce an output. However, the pass keyword indicates that no
specific operations are defined here and it must be overridden by a subclass that inherits
from Layer. The backward() method takes the gradient of the loss function concerning the
output of the layer and computes the gradient with respect to the input. As with forward(),
the pass keyword indicates that this method must also be overridden by a subclass. Overall,
this code defines the basic structure for a neural network layer, but specific operations and
gradients need to be implemented in a subclass.

Table 1. The code for the network class layers.

Class Layer

class Layer:
def __init__(self):

self.input = None
self.output = None

def forward(self, input):
pass

def backward(self, output_gradient):
pass

The code presented in Table 2 defines a subclass, Dense, of the Layer class. This
subclass represents a fully connected neural network layer, where each neuron in the
layer is connected to every neuron in the previous layer. The __init__() method takes two
arguments: input_size and output_size, which represent the number of neurons in the
previous layer and the current layer, respectively. The method initializes the layer’s weights
and bias parameters as two NumPy arrays of the specified shapes. The OFN() function
represents the Ordered Fuzzy Number class.

The forward() method takes an input tensor, performs the linear transformation by
multiplying the input tensor by the weights, and adds the bias. The method stores the input
tensor in the self.input variable, which is used in the backward pass to compute gradients.
The method then returns the output tensor.

The backward() method takes the gradient of the loss function with respect to the
output of the layer, output_gradient, and the learning rate. The method computes the
gradient of the loss function concerning the weights, weights_gradient, and updates the
weights and bias parameters using the gradient descent optimization algorithm. Finally,
the method returns the gradient of the loss function with respect to the input of the layer,
which will be used to propagate the gradient backward to the previous layer. Overall, this
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code defines a fully connected neural network layer with the ability to perform forward
and backward passes, and update its parameters during training.

Table 2. The code for the network’s Dense layers.

Class Dense

class Dense(Layer):
def __init__(self, input_size, output_size):

self.weights = np.ndarray(shape=(output_size,input_size),dtype=object)
self.weights.fill(OFN())
self.bias = np.ndarray(shape=(output_size, 1), dtype=object)
self.bias.fill(OFN())

def forward(self, input):
self.input = input
return np.dot(self.weights, self.input) + self.bias

def backward(self, output_gradient, learning_rate):
weights_gradient = np.dot(output_gradient, self.input.T)
self.weights -= weights_gradient * learning_rate
self.bias -= output_gradient * learning_rate
return np.dot(self.weights.T, output_gradient)

The code presented in Table 3 defines an activation function layer with the ability to
perform forward and backward passes and compute the gradient of the loss function with
respect to its input. A NumPy table np was used for multiplication calculations.

Table 3. The code for the neurons’ activation class.

Class Activation

Class Activation(Layer):
def __init__(self, activation, activation_prime):

self.activation = activation
self.activation_prime = activation_prime

def forward(self, input):
self.input = input
return self.activation(self.input)

def backward(self, output_gradient, learning_rate):
return np.multiply(output_gradient, self.activation_prime(self.input))

Also, the mean square error function was defined. The code presented in Table 4
defines an example of a network with two layers:

• First layer with 2 inputs and 4 neurons;
• Second layer with 4 inputs and 2 neurons;
• Second layer with 2 neurons on input side and 1 output.

Table 4. The code for network definition.

Network Definition

network = [
Dense(2, 4),
Tanh(),
Dense(4, 2),
Tanh(),
Dense(2, 1),
Tanh()

]
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The activation function used in this network is tanh(). The authors are still performing
experiments with different activation functions.

The code in Table 5 represents the implementation of training a neural network using
the backpropagation algorithm. There is a loop that runs for a specified number of epochs,
using X and Y and calculating the error, and the learning rate parameter is then used to
update the weights in each layer during backpropagation.

Table 5. The code for network training.

Network Training

# train
for e in range(epochs):

error = 0
for x, y in zip(X, Y):

# forward
output = x
for layer in network:

output = layer.forward(output)
# error
error += mse(y, output)
# backward
grad = mse_prime(y, output)
for layer in reversed(network):

grad = layer.backward(grad, learning_rate)
error /= len(X)

Finally, the class for OFN definition (Table 6), which could be seen in the previous
code, was developed. In this class, the operators used for arithmetic on the OFNs were
defined: +, -, *, /. This allows the use of the NumPy library for the calculation of the
necessary values during network learning process. This class is used for generating weights
and bias in a proposed network, which is presented in Table 2.

Table 6. The code for class OFN definition.

Class OFN

Class OFN:
def __init__(self, x1 = None, x2 = None, x3 = None, x4 = None):
self.x1 = random.random() if (x1 is None) else x1
self.x2 = random.random() if (x2 is None) else x2
self.x3 = random.random() if (x3 is None) else x3
self.x4 = random.random() if (x4 is None) else x4

def __add__(self, other):
if isinstance(other, OFN):
return OFN(self.x1 + other.x1, self.x2 + other.x2, self.x3 + other.x3, self.x4 + other.x4)

else:
return OFN(self.x1 + float(other), self.x2 + float(other), self.x3 + float(other), self.x4 +

float(other))
def __sub__(self, other):
if isinstance(other, OFN):
return OFN(self.x1 - other.x1, self.x2 - other.x2, self.x3 - other.x3, self.x4 - other.x4)

else:
return OFN(self.x1 - float(other), self.x2 - float(other), self.x3 - float(other), self.x4 -

float(other))
def __mul__(self, other):
if isinstance(other, OFN):
return OFN(self.x1 * other.x1, self.x2 * other.x2, self.x3 * other.x3, self.x4 * other.x4)

else:
return OFN(self.x1 * float(other), self.x2 * float(other), self.x3 * float(other), self.x4 *

float(other))
def __div__(self, other):
if isinstance(other, OFN):

return OFN(self.x1 / other.x1, self.x2 / other.x2, self.x3 / other.x3, self.x4 / other.x4)
else:
return OFN(self.x1 / float(other), self.x2 / float(other), self.x3 / float(other), self.x4 /

float(other))

One of the important functions in this class is the definition of the defuzzification
function.
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One of the most important functions of the OFN class is the defuzzification function. A
lot depends on the value of this function, as it affects the value that the fuzzy variable will
take in the domain of real numbers. Different defuzzification functions will therefore return
slightly different results. To date, many defuzzification functions have been developed that
can be applied to OFNs, such as:

• LOM—Largest of Maximum is a method used in fuzzy logic to determine the degree of
probability for each element of a fuzzy set by finding the maximum membership value.
This approach is commonly applied when assigned values carry greater significance,
and is particularly useful in decision-making systems where minimizing errors and
achieving high-quality defuzzification are crucial. Essentially, LOM selects the largest
value from the maximum membership values of the fuzzy set elements, making it a
valuable tool for optimizing the accuracy and reliability of fuzzy logic-based systems;

• MOM—Mean of Maximus is a method used in fuzzy logic to determine the degree of
probability for each element of a fuzzy set by calculating the arithmetic mean of the
maximum membership values. This approach is commonly applied when different
membership values are equally important, unlike the LOM method, where certain
values hold more significance. MOM is particularly useful in decision-making systems
where less precision is required compared with LOM, but where different membership
values must still be considered. Essentially, MOM provides a way to balance the
importance of different membership values, resulting in a more versatile and flexible
approach to fuzzy logic-based systems;

• FOM—First of Maximus is a method used in fuzzy logic to determine the degree
of probability for each element of a fuzzy set by selecting the maximum value that
occurs first on the variable axis. This approach is commonly applied when the most
important value is the degree of membership that first reaches its maximum value, and
when a quick decision is required. FOM can be particularly useful in decision-making
systems where there is only one degree of membership that is significantly higher than
the others, or where precision is not a major concern. Essentially, FOM provides a way
to quickly identify the most important value of a fuzzy set, making it a valuable tool
for time-sensitive applications;

• Golden Ratio is a method that uses a mathematical constant with a value of approxi-
mately 1.618 to determine the real value.

There are, of course, many other defuzzyfication methods and not all of them have
indications for use based on their characteristic features. Therefore, the selection of the
sharpening function will be the subject of further experimental work.

4. Monitoring System—Solution Tests

A monitoring system that used Java on web browsers was used. During the test, the
data analysis was performed. As part of the task, the system of logs used in the produced
applications was analyzed. Several systems were selected, from which logs were taken for
testing, as follows:

• Cafeteria system—application (event) log;
• System of internal legal acts—application (event) log;
• Logs of Apache Tomcat application servers;
• MariaDB database system logs;
• operating system status logs.

As part of the prepared set of logs, they were segregated and segmented, creating
a coherent set of logs. A fixed number was assigned to each of the logs, specifying the
maximum number of log types per 10,000 for testing. The log number–log type is a dictio-
nary, while the file for training the neural network collects the number of log occurrences
in a fixed period of observation time—5 min. This time was chosen so that it was neither
too large nor too small and allowed for subsequent summation to periods of, for example,
15 min, 30 min, or 1 h.
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As part of the collection of logs, a collection of over 1 million system logs was built,
which were classified in accordance with the established type base. This set was used for
research on a fuzzy neural network.

In addition, a detailed description of selected anomalies for prediction has been
defined, as follows:

• Type 1: Increased number of repetitive system errors;
• Type 2: Specific repetitive sequences of events leading to system failure;
• Type 3: Resource-consuming system actions leading to errors occurring in a short time;
• Type 4: Abnormal events related to an attempt to access the system;
• Type 5: Analysis of trends related to specific actions in the system and finding situa-

tions deviating from the norms;
• Type 6: Detecting errors related to communication between different systems;
• Type 7: Detection of point increased load on the system that may suggest errors or

attacks.

These data were selected for the following reasons:

• It came from an existing system, thus addressing a practical problem of anomaly
detection and prediction;

• It can represent logs from any device, such as a network edge device: router, firewall,
access device, or edge sensor solution.

This demonstrates that they can represent an IoT solution, allowing the connection of
virtually all types of sensors to the network.

4.1. Research Methodology

To present the solution, it was decided to evaluate the developed fuzzy neural network
alongside two example solutions: a deep network and an LSTM network. A series of studies
were conducted to determine the network size whose parameters would be satisfactory in
terms of the results achieved. The research began with the fuzzy network, working on the
number of layers and neurons to achieve a practical detection and prediction parameter
for anomalies in the developed dataset at around 90%, with the dataset split in an 80/20%
ratio (training data, test data). During the studies, different values for the learning rate
parameter and varying numbers of epochs were used. It was not assumed that the network
had to learn within a specific number of epochs; instead, the focus was on the duration of
the network training process, as detailed in the subsequent sections. After establishing a
network architecture that yielded satisfactory results, the performances of the traditional
network and the LSTM network were evaluated. For the deep network, attention was also
given to the training time, and an architecture was sought that would achieve comparable
results with the fuzzy network on the test set. Only by increasing the number of layers were
comparable results obtained. However, the LSTM network did not achieve results sufficient
for anomaly prediction, and the training time did not allow for further experiments, leading
to the cessation of its optimization process. This does not imply that a different architecture
might not yield better results for this network.

To train the network, the prepared data were labeled with the types and times of
anomaly occurrences. These prepared data were then used in the network training process.
Subsequently, the data were labeled with the time of anomaly prediction, assumed to be
60 min before the anomaly’s occurrence. Thus, the task of the network was to learn to
predict the occurrence of anomalies before they actually happened. This was intended to
give the system administrator the necessary time to take action. Next, according to the data
division, the network’s performance was tested on the test data, with the assumption that
the false positive and false negative rates should be below 5% of the anomaly occurrences.
As the end-user was interested in the percentage of correctly detected and predicted
anomalies while ensuring a low false positive and false negative rate, the collected results
were presented as percentages.



Sensors 2024, 24, 5169 10 of 14

4.2. Research Results Achieved

A Fuzzy Neural Network was used, which consisted of the following layers:

• Input layer: 10,000;
• Deep layer: 64;
• Deep layer: 64;
• Output layer: 1.

There were 150 epochs used, which lasted for 15 min on the machine with Intel Core i7
with 8 GB RAM. At first, the anomaly was detected on the data; then, there was a learning
process of the network to predict the anomaly one hour earlier than it will occur. The results
are presented in Table 7.

Table 7. Test results on fuzzy neural network with Ordered Fuzzy Numbers.

Type of Anomaly Percentage of Anomaly
Detection on Test Data

Percentage of Anomaly
Prediction on Test Data

1 95 91
2 94 89
3 94 91
4 91 85
5 92 84
6 93 88
7 92 87

According to the type of data, the literature claims that the LSTM (Long–Short-Term
Memory) network should be used. LSTM is a recurrent neural network (RNN) structure
that has gained popularity in various natural language processing tasks, such as speech
recognition, machine translation, and sentiment analysis. Traditional RNNs often face the
problem of vanishing and exploding gradients, where the gradients become very small or
very large, making it difficult for the network to learn long-term dependencies.

LSTM addresses this problem by incorporating a memory cell that can selectively
add, delete, or modify information from previous time steps. This mechanism enables
LSTM to preserve long-term dependencies while also mitigating the issue of vanishing and
exploding gradients. LSTM networks are trained using a variant of backpropagation called
backpropagation through time (BPTT), which optimizes the weights and biases of the gates
and memory cell by minimizing a loss function. Common loss functions include the mean
squared error or cross-entropy loss.

First, it should be noticed that the learning process of this network lasted much longer.
The fuzzy neural network requires only 15 min, while on the same machine, the LSTM
network requires approximately 20 min per epoch, so 150 epochs last 50 h. Then, according
to the data used, it do not recognize the anomaly or predict them. This network was
prepared in Tensorflow opensource library. The LSTM network has the following structure:

• Input layer: 10,000;
• LSTM layer: 64;
• Deep layer 64;
• Output layer: 1.

Then, an ordinal deep neural network was used with three hidden layers. There were
more network layers to achieve the results that could be compared with the fuzzy neural
network. The following layers were included:

• Input layer: 10,000;
• Deep layer: 512;
• Deep layer: 256;
• Deep layer 64;
• Output layer: 1.
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The learning process lasts for approximately 80 s per epoch, so the 150 epochs last for
approximately 3 h 20 min. The results are presented in Table 8.

Table 8. Test results of deep neural network.

Type of Anomaly Percentage of Anomaly
Detection on Test Data

Percentage of Anomaly
Prediction on Test Data

1 96 92
2 92 86
3 91 88
4 90 86
5 91 83
6 91 86
7 94 88

These three presented networks possess the following numbers of neurons in their
structure:

• Fuzzy Neural Network with OFN: 129;
• LSTM network: 129;
• Deep Neural Network: 833.

5. Discussion

Employing a fuzzy neuron network with fuzzy neurons, utilizing OFN, facilitated the
detection and prediction of anomalies. The test results have proven that such a network
is effective and comparable to an ordinary network, but requires a smaller number of
neurons. Additionally, the learning process is faster than that of a normal deep network.
The learning processes for different types of networks were as follows:

• Fuzzy Neural Network with OFN: 15 min;
• LSTM network: 50 h;
• Deep Neural Network: 3 h 20 min.

Of course, the proposed network model has been validated only for logical functions
(OR, AND, and XOR), linear function approximation, and the example of anomaly detection
and prediction provided, which accounts for an additional 14 applications. In total, this
amounts to 18 different use cases for the network with various input scenarios. It does not,
of course, cover all current use cases for deep networks or LSTM networks. Comparing
across all possible data types is a very time-consuming endeavor. However, the focus of
the research was to implement the solution and conduct an initial verification to determine
whether it has practical applicability, i.e., whether it can generalize knowledge, perform
detection, and make predictions based on prepared data. As the research results show,
this is a tool that can be further investigated and may prove to be better in some cases.
Certainly, there will be instances where the proposed fuzzy network will not outperform
many other solutions, but it can be considered as an additional tool for solving problems.
For the fuzzy network, ablation studies were conducted regarding the number of layers and
neurons in the network, examining models three to seven layers deep, with the following
numbers of neurons per layer: 48, 64, 92, 128, 256, and 512. The studies showed that smaller
networks than the target network exhibited an increase in the number of false positives,
while a larger number of layers generated fewer true positives. Sensitivity analysis of the
developed fuzzy network was mainly conducted during the preliminary training process
for linear function approximation. The prepared solution currently has two parameters
defining the learning process: learning rate and number of epochs. The learning rate
parameter was set to three values: 0.1, 0.01, and 0.001. The best learning results, measured
by accuracy, were obtained with a value of 0.01. It was noted, however, that the network
required a large number of epochs for function approximation. Nevertheless, training the
network for 100,000 epochs took under 2 min on the same computer used for anomaly
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detection and prediction. As the fuzzy network operated very quickly, the training process
was much shorter compared with the deep network implemented via the Keras API in
the TensorFlow environment—there was no justification for conducting further studies
with the current data (over 90,000 records). However, such studies should certainly be
conducted in the future.

There are numerous applications for the proposed solution, especially in compact
IoT devices with constrained computational capabilities. It could also be utilized in small
companies in their security operational centers for detecting and predicting anomalies in
the future.

Using the proposed solution in IoT devices allows avoiding such problems as:

• The necessity of transmitting the data to remote destinations within the area the
solution covers;

• The necessity of developing data transmission protocols required for efficiently trans-
ferring the data,

• Creating a huge data center for collecting and processing the data—producers do not
need to build a cloud architecture data center for collecting and store big amounts of
data, which we need to share with other systems;

• Developing the algorithms for big data analysis—the data could be analyzed in small
IoT devices and only the results could be passed to the management center;

• The necessity of connecting various devices working with different communications
protocols, which could be incompatible—there is no need to build some gateways or
converters for them.

To summarize, connecting all the IoT devices to the network will require transferring
a lot of data to the servers working in some cloud. This will also generate a lot of traffic
in the network. The proposed method provides the possibility to analyze the data in the
network border and allows avoiding this unnecessary traffic.

6. Limitations

The currently developed solution, of course, has its limitations:

• First and foremost, the solution has not yet been tested with different neuron activation
methods, which will be necessary for its widespread application;

• The second limitation of the solution is the necessity of fuzzifying the data. While
there are many examples of applying fuzzy logic in the literature, each use of the
proposed fuzzy neural network will require a separate analysis of the data’s nature.
Based on the nature of the data, it will be necessary to select a fuzzification method or
even develop a new one. Developing new fuzzification methods can be a challenging
task. Although various defuzzification methods are well-known in the literature, the
fuzzification process still requires a lot of work. Of course, there are certain types of
data for which fuzzy logic is ideally suited, particularly data defined by intervals;

• The third limitation of the solution is the necessity for possessing extensive expert
knowledge encompassing fuzzification, defuzzification, and neural network construc-
tion. A specialist using the proposed solution must combine knowledge of fuzzy logic
with neural networks, and the selection of fuzzification and defuzzification methods
can significantly impact the achieved results. As the use of the solution increases, it is
valuable to build knowledge on the selection of these fuzzification and defuzzification
methods

Future research also requires examining:

• The possibilities and results achieved with different sharpening functions, considering
that there are currently many sharpening methods, and new ones are continually
being developed. Studies show that they affect the output result, and their application
requires thorough research. It is estimated that they may even impact the network
training process, including its speed,
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• The impact of random weight selection, where, in the randomization process, weights
can take various shapes, not only trapezoidal. Limiting the shape of random weights
or their normalization can also affect the network training process, especially the speed
of learning and the quality of the obtained results.

The author is aware of the vast amount of research that can and should still be
conducted and encourages readers to pursue their own studies.

7. Conclusions

This article introduces the concept of employing the OFN arithmetic for IoT solutions
tailored to the Industry 4.0 paradigm. The primary innovation of this paper is a novel
fuzzy neural network incorporating Ordered Fuzzy Numbers in its weights. As it was
proven, such a network could use a lower number of neurons to detect or predict the same
information in the data. Also, the smaller structure allows for speeding up the learning
process. Therefore, the author claims that this network could be used in the future in
reinforcement learning solutions. The author is currently in the process of developing
a framework for TensorFlow, an open-source platform. This framework will enable the
utilization of various network types, including Convolutional Neural Networks (CNNs) or
Long–Short-Term Memory (LSTM) networks.

The proposed solution of Neural Network with Ordered Fuzzy Logic provides im-
provements in:

• Energy consumption, because it uses fewer neurons in the network architecture than a
Deep Neural Network, which provides the same level of accuracy. This was tested
during this work and in some previous tests in which the Iris database was used [22].
As a result, it requires less computational power from the processor, thus allowing for
the conservation of the energy needed to perform the calculations;

• Data security, because it allowed for the development of a solution for detecting and
predicting anomalies in running software. This enables the administrator to make
timely decisions and avoid system issues, thereby eliminating software vulnerabilities.
Consequently, this leads to an increase in the security of the processed data;

• Reduced data transmission costs, as the solution can be applied at the network edge
and allows for data analysis at the point of origin. This avoids the need to transmit data
to a data center, thereby eliminating the associated data transmission costs, including
the energy required for such transmission.

Of course, further work should involve investigating the proposed network in terms
of the selection of defuzzification methods. It is anticipated that different methods will
affect the speed of learning and the quality of the achieved results. Similarly, the choice of
neuron activation functions will also be the subject of further research.
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