Characterisation and Application of Bio-Inspired Hybrid Composite Sensors for Detecting Barely Visible Damage under Out-of-Plane Loadings
Abstract
:1. Introduction
2. Design Principles of the Sensor
3. Materials and Manufacturing
4. Test Methods
4.1. Quasi-Static Indentation
4.2. Low-Velocity Impact
4.3. Visual Inspection, Ultrasonic C-Scan, and Image Processing
5. Results and Discussion
5.1. Quasi-Static Indentation
5.1.1. Global Behaviour
5.1.2. Influence of Adding Sensors on Indentation Properties
5.1.3. Sensor Activation and Visual Inspection
5.2. Low-Velocity Impact
5.2.1. Definition of BVID
5.2.2. Global Behaviour
5.2.3. Influence of Adding Sensors on Impact Properties
5.2.4. Ultrasonic C-Scan and Visual Inspection
5.3. Comparison of Low-Velocity Impact and Quasi-Static Indentation
6. Conclusions
- Both indentation and impact test results showed that adding sensors on the two sides of a composite sample slightly changes its mechanical properties. A slight increase in absorbed energy was observed in the sensor samples compared to the reference samples. The changes in the fibre direction of the sensing layer affects the out-of-plane loading response, indicating that the effect of adding sensors on mechanical properties can be managed by adjusting this parameter through an appropriate design.
- Visual inspection results demonstrated the effectiveness of the sensor in visualising damage under both static indentation and impact loadings. Regarding the indentation test, the sensor on the back face activates before the first load drop, which is considerably earlier than the activation on the front face. This can stem from different damage mechanisms on each side. Moreover, applying the sensor could decrease the threshold energy for visually detectable damage on the back face from nearly 27J in a reference sample to less than 5J in sensor samples. Furthermore, changing the fibre orientation of the sensing layer influences the sensor activation threshold load, though it does not influence the shape or size of the visual damage pattern.
- C-scan and microscopy images confirmed that impacted samples at all studied energies had undergone delamination damage. Nevertheless, in reference samples, the damage was barely visible on the front face of 27J samples and not visible on the front face and back face of all other samples. In sensor samples, however, the impact-induced damage could be detected at energies as low as 12J, with the size of the activated area increasing in-line with the impact energy. Different sensor-activated patterns and sizes on the back face and front face of the sensor samples signified different damage modes on each side, with the back face showing a larger activated area at all energies.
- Comparing the C-scan and visual inspection images at different impact energies provided a correlation between the size of the internal damage and surface visible damage.
- Finally, a comparison was conducted between the results of the indentation and impact tests to evaluate their degree of similarity as potential substitutes. It was observed that despite a lower delamination threshold energy in the indentation test compared with the impact test, the static indentation effectively captures the barely visible damage induced in impact tests of quasi-isotropic CFRP laminates.
- Building on the foundation of sensor design and application established here, further studies could expand into other areas. For instance, the sensors might be applied to structures that undergo regular thermal cycling [47], such as hydrogen storage tanks or wind turbine blades. Additionally, the sensors may face extreme temperatures in certain applications, potentially compromising their functionality and integrity. Future research can, therefore, examine how real-world environmental conditions affect the sensors and their sensing performance. Another practical issue to address is the effect of multiple impacts, a scenario commonly encountered in real-world applications and extensively discussed in the literature [48]. Investigating how the sensors perform under repeated impacts and exploring design improvements, such as integrating self-healing capabilities with microcapsules, could enhance their durability and functionality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huan, S.; Lu, L.; Shen, T.; Du, J. Low Velocity Impact Monitoring of Composite Tubes Based on FBG Sensors. Sensors 2024, 24, 1279. [Google Scholar] [CrossRef] [PubMed]
- Katunin, A.; Wronkowicz-Katunin, A.; Dragan, K. Impact Damage Evaluation in Composite Structures Based on Fusion of Results of Ultrasonic Testing and X-ray Computed Tomography. Sensors 2020, 20, 1867. [Google Scholar] [CrossRef] [PubMed]
- Wronkowicz-Katunin, A.; Katunin, A.; Dragan, K. Reconstruction of Barely Visible Impact Damage in Composite Structures Based on Non-Destructive Evaluation Results. Sensors 2019, 19, 4629. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, Q.-A.; Jiao, G.; Dang, P.; Nie, G.; Liu, Z.; Sun, J.; Liu, G.; Wang, Q.-A.; Jiao, G.; et al. Review of Wireless RFID Strain Sensing Technology in Structural Health Monitoring. Sensors 2023, 23, 6925. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.A.; Zhang, C.; Ma, Z.G.; Jiao, G.Y.; Jiang, X.W.; Ni, Y.Q.; Wang, Y.C.; Du, Y.T.; Qu, G.B.; Huang, J. Towards Long-Transmission-Distance and Semi-Active Wireless Strain Sensing Enabled by Dual-Interrogation-Mode RFID Technology. Struct. Control Health Monit. 2022, 29, e3069. [Google Scholar] [CrossRef]
- Chung, D.D.L. A Critical Review of Piezoresistivity and Its Application in Electrical-Resistance-Based Strain Sensing. J. Mater. Sci. 2020, 55, 15367–15396. [Google Scholar] [CrossRef]
- Chung, D.D.L. A Review of Multifunctional Polymer-Matrix Structural Composites. Compos. Part B Eng. 2019, 160, 644–660. [Google Scholar] [CrossRef]
- Wang, Q.A.; Dai, Y.; Ma, Z.G.; Ni, Y.Q.; Tang, J.Q.; Xu, X.Q.; Wu, Z.Y. Towards Probabilistic Data-Driven Damage Detection in SHM Using Sparse Bayesian Learning Scheme. Struct. Control Health Monit. 2022, 29, e3070. [Google Scholar] [CrossRef]
- Tabatabaeian, A.; Jerkovic, B.; Harrison, P.; Marchiori, E.; Fotouhi, M. Barely Visible Impact Damage Detection in Composite Structures Using Deep Learning Networks with Varying Complexities. Compos. Part B Eng. 2023, 264, 110907. [Google Scholar] [CrossRef]
- Tabatabaeian, A.; Liu, S.; Harrison, P.; Schlangen, E.; Fotouhi, M. A Review on Self-Reporting Mechanochromic Composites: An Emerging Technology for Structural Health Monitoring. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107236. [Google Scholar] [CrossRef]
- Calvino, C.; Weder, C. Microcapsule-Containing Self-Reporting Polymers. Small 2018, 14, 1802489. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Zhang, W.; Xu, K.; Zhao, Y. Bio-Inspired Intelligent Structural Color Materials. Mater. Horiz. 2019, 6, 945–958. [Google Scholar] [CrossRef]
- Czél, G.; Wisnom, M.R. Demonstration of Pseudo-Ductility in High Performance Glass/Epoxy Composites by Hybridisation with Thin-Ply Carbon Prepreg. Compos. Part A Appl. Sci. Manuf. 2013, 52, 23–30. [Google Scholar] [CrossRef]
- Rev, T.; Jalalvand, M.; Fuller, J.; Wisnom, M.R.; Czél, G. A Simple and Robust Approach for Visual Overload Indication—UD Thin-Ply Hybrid Composite Sensors. Compos. Part A Appl. Sci. Manuf. 2019, 121, 376–385. [Google Scholar] [CrossRef]
- Fotouhi, M.; Suwarta, P.; Tabatabaeian, A.; Fotouhi, S.; Jenkin, R.; Jalalvand, M.; Wisnom, M.R. Investigating the Fatigue Behaviour of Quasi-Isotropic Pseudo-Ductile Thin-Ply Carbon/Glass Epoxy Hybrid Composites. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107206. [Google Scholar] [CrossRef]
- Fotouhi, S.; Jalalvand, M.; Wisnom, M.R.; Fotouhi, M. Smart Hybrid Composite Sensor Technology to Enhance the Detection of Low Energy Impact Damage in Composite Structures. Compos. Part A Appl. Sci. Manuf. 2023, 172, 107595. [Google Scholar] [CrossRef]
- Wisnom, M.R.; Pimenta, S.; Shaffer, M.S.P.; Robinson, P.; Potter, K.D.; Hamerton, I.; Czél, G.; Jalalvand, M.; Fotouhi, M.; Anthony, D.B.; et al. High Performance Ductile and Pseudo-Ductile Polymer Matrix Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2024, 181, 108029. [Google Scholar] [CrossRef]
- Davies, G.A.O.; Zhang, X. Impact Damage Prediction in Carbon Composite Structures. Int. J. Impact Eng. 1995, 16, 149–170. [Google Scholar] [CrossRef]
- Fotouhi, M.; Damghani, M.; Leong, M.C.; Fotouhi, S.; Jalalvand, M.; Wisnom, M.R. A Comparative Study on Glass and Carbon Fibre Reinforced Laminated Composites in Scaled Quasi-Static Indentation Tests. Compos. Struct. 2020, 245, 112327. [Google Scholar] [CrossRef]
- Olsson, R.; Nilsson, S. Simplified Prediction of Stresses in Transversely Isotropic Composite Plates under Hertzian Contact Load. Compos. Struct. 2006, 73, 70–77. [Google Scholar] [CrossRef]
- Abisset, E.; Daghia, F.; Sun, X.C.; Wisnom, M.R.; Hallett, S.R. Interaction of Inter- and Intralaminar Damage in Scaled Quasi-Static Indentation Tests: Part 1—Experiments. Compos. Struct. 2016, 136, 712–726. [Google Scholar] [CrossRef]
- Sun, X.C.; Hallett, S.R. Barely Visible Impact Damage in Scaled Composite Laminates: Experiments and Numerical Simulations. Int. J. Impact Eng. 2017, 109, 178–195. [Google Scholar] [CrossRef]
- Jalalvand, M.; Czél, G.; Wisnom, M.R. Numerical Modelling of the Damage Modes in UD Thin Carbon/Glass Hybrid Laminates. Compos. Sci. Technol. 2014, 94, 39–47. [Google Scholar] [CrossRef]
- ASTM D7136/D7136M-20; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM: West Conshohocken, PA, USA, 2012; pp. 1–16.
- Ubago Torres, M.; Jalalvand, M. Additive Binding Layers to Suppress Free Edge Delamination in Composite Laminates under Tension. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106902. [Google Scholar] [CrossRef]
- Marino, S.G.; Czél, G. Improving the Performance of Pseudo-Ductile Hybrid Composites by Film-Interleaving. Compos. Part A Appl. Sci. Manuf. 2021, 142, 106233. [Google Scholar] [CrossRef]
- Sutherland, L.S.; Guedes Soares, C. The Use of Quasi-Static Testing to Obtain the Low-Velocity Impact Damage Resistance of Marine GRP Laminates. Compos. Part B Eng. 2012, 43, 1459–1467. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Maison, S. Comparative Ultrasonic Analysis of Damage in CFRP under Static Indentation and Low-Velocity Impact. Compos. Sci. Technol. 1994, 51, 11–26. [Google Scholar] [CrossRef]
- Nettles, A.T.; Douglas, M.J. A Comparison of Quasi-Static Indentation to Low-Velocity Impact; NASA/TP-20; NASA: Washington, DA, USA, 2000. [Google Scholar]
- Industrial-Ndt. Available online: https://www.industrial-ndt.com/dolphitech-dolphicam-2 (accessed on 5 March 2024).
- Saeedifar, M. Impact Damage Assessment in Laminated Composites Using Acoustic Emission and Finite Element Methods. Polym. Compos. 2024, 45, 1036–1053. [Google Scholar] [CrossRef]
- Saeedifar, M.; Najafabadi, M.A.; Zarouchas, D.; Toudeshky, H.H.; Jalalvand, M. Clustering of Interlaminar and Intralaminar Damages in Laminated Composites under Indentation Loading Using Acoustic Emission. Compos. Part B Eng. 2018, 144, 206–219. [Google Scholar] [CrossRef]
- Sun, X.C.; Wisnom, M.R.; Hallett, S.R. Interaction of Inter- and Intralaminar Damage in Scaled Quasi-Static Indentation Tests: Part 2—Numerical Simulation. Compos. Struct. 2016, 136, 727–742. [Google Scholar] [CrossRef]
- Rev, T.; Czél, G.; Jalalvand, M.; Wisnom, M.R. Unidirectional Hybrid Composite Overload Sensors. In Proceedings of the 21st International Conferences on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Schoeppner, G.A.; Abrate, S. Delamination Threshold Loads for Low Velocity Impact on Composite Laminates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 903–915. [Google Scholar] [CrossRef]
- Tabatabaeian, A.; Fotouhi, S.; Harrison, P.; Fotouhi, M. On the Optimal Design of Smart Composite Sensors for Impact Damage Detection. In Proceedings of the 20th European Conference on Composite Materials (ECCM20), Lausanne, Switzerland, 26–30 June 2022. [Google Scholar]
- Tabatabaeian, A.; Campbell, B.; Harrison, P.; Fotouhi, M. Low Velocity Impact Behaviour of Mechanochromic Sandwich Composites. In Proceedings of the 17th International Conference on Advances in Experimental Mechanics, Glasgow, UK, 30 August–1 September 2023. [Google Scholar]
- Shah, S.Z.H.; Karuppanan, S.; Megat-Yusoff, P.S.M.; Sajid, Z. Impact Resistance and Damage Tolerance of Fiber Reinforced Composites: A Review. Compos. Struct. 2019, 217, 100–121. [Google Scholar] [CrossRef]
- Saeedifar, M.; Najafabadi, M.A.; Zarouchas, D.; Toudeshky, H.H.; Jalalvand, M. Barely Visible Impact Damage Assessment in Laminated Composites Using Acoustic Emission. Compos. Part B Eng. 2018, 152, 180–192. [Google Scholar] [CrossRef]
- Leroy, A.; Scida, D.; Roux, É.; Toussaint, F.; Ayad, R. Are There Similarities between Quasi-Static Indentation and Low Velocity Impact Tests for Flax-Fibre Composites? Ind. Crops Prod. 2021, 171, 113840. [Google Scholar] [CrossRef]
- Abdallah, E.A.; Bouvet, C.; Rivallant, S.; Broll, B.; Barrau, J.J. Experimental Analysis of Damage Creation and Permanent Indentation on Highly Oriented Plates. Compos. Sci. Technol. 2009, 69, 1238–1245. [Google Scholar] [CrossRef]
- Hachemane, B.; Zitoune, R.; Bezzazi, B.; Bouvet, C. Sandwich Composites Impact and Indentation Behaviour Study. Compos. Part B Eng. 2013, 51, 1–10. [Google Scholar] [CrossRef]
- Allen, T.; Ahmed, S.; Hepples, W.; Reed, P.A.; Sinclair, I.; Spearing, M. A Comparison of Quasi-Static Indentation and Low-Velocity Impact on Composite Overwrapped Pressure Vessels. J. Compos. Mater. 2018, 52, 4051–4060. [Google Scholar] [CrossRef]
- De Marco Muscat-Fenech, C.; Cortis, J.; Cassar, C. Impact Damage Testing on Composite Marine Sandwich Panels. Part 2: Instrumented Drop Weight. J. Sandw. Struct. Mater. 2014, 16, 443–480. [Google Scholar] [CrossRef]
- Aoki, Y.; Suemasu, H.; Ishikawa, T. Damage Propagation in CFRP Laminates Subjected to Low Velocity Impact and Static Indentation. Adv. Compos. Mater. 2007, 16, 45–61. [Google Scholar] [CrossRef]
- Wang, A.; Liu, X.; Yue, Q.; Xian, G. Comparative Study on the Low-Velocity Impact Properties of Unidirectional Flax and Carbon Fiber Reinforced Epoxy Plates. Mech. Adv. Mater. Struct. 2023, 31, 3531–3542. [Google Scholar] [CrossRef]
- Tabatabaeian, A.; Ghasemi, A.R.; Asghari, B. Specification of Non-Uniform Residual Stresses and Tensile Characteristic in Laminated Composite Materials Exposed to Simulated Space Environment. Polym. Test. 2019, 80, 106147. [Google Scholar] [CrossRef]
- Sadighi, M.; Alderliesten, R. Impact Fatigue, Multiple and Repeated Low-Velocity Impacts on FRP Composites: A Review. Compos. Struct. 2022, 297, 115962. [Google Scholar] [CrossRef]
Prepreg | Cured Ply Thickness (mm) | Strain to Failure (%) | Tensile Modulus (GPa) |
---|---|---|---|
IM7 carbon/8552 epoxy [19] | 0.125 | 1.6 | 161 |
S glass/913 epoxy [26] | 0.153 | 3.7 | 45.6 |
YS-90A carbon/epoxy [16] | 0.070 | 0.5 | 520 |
Sample | First Load Drop (Delamination) | Second Load Drop (Fibre Failure) | ||||||
---|---|---|---|---|---|---|---|---|
Force (N) | Displacement (mm) | Energy Absorbed (J) | Load Drop Rate (%) | Force (N) | Displacement (mm) | Energy Absorbed (J) | Load Drop Rate (%) | |
IM7/8552-Reference | 5542.28 | 1.99 | 5.43 | 25.85 | 10445.30 | 4.89 | 27.81 | 34.63 |
IM7/8552-Sensor(0) | 5506.07 | 1.824 | 5.01 | 27.12 | 13780.18 | 5.97 | 43.37 | 46.73 |
IM7/8552-Sensor(45) | 5284.29 | 1.70 | 4.498 | 26.47 | 12304.06 | 5.40 | 35.24 | 31.05 |
Maximum Force (N) | Maximum Displacement (mm) | Total Energy (J) | Elastic Energy (J) | Absorbed Energy (J) | |
---|---|---|---|---|---|
Reference-12J | 6626.23 | 3.29 | 12 | 5.27 | 6.73 |
Reference-18J | 8340.01 | 4.13 | 18 | 8.49 | 9.51 |
Reference-27J | 10,347.64 | 5.05 | 27 | 12.31 | 14.69 |
Sensor-12J | 6686.51 | 3.14 | 12 | 5.10 | 6.90 |
Sensor-18J | 8509.39 | 3.93 | 18 | 8.31 | 9.69 |
Sensor-27J | 10,949.49 | 4.88 | 27 | 11.98 | 15.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabatabaeian, A.; Mohammadi, R.; Harrison, P.; Fotouhi, M. Characterisation and Application of Bio-Inspired Hybrid Composite Sensors for Detecting Barely Visible Damage under Out-of-Plane Loadings. Sensors 2024, 24, 5170. https://doi.org/10.3390/s24165170
Tabatabaeian A, Mohammadi R, Harrison P, Fotouhi M. Characterisation and Application of Bio-Inspired Hybrid Composite Sensors for Detecting Barely Visible Damage under Out-of-Plane Loadings. Sensors. 2024; 24(16):5170. https://doi.org/10.3390/s24165170
Chicago/Turabian StyleTabatabaeian, Ali, Reza Mohammadi, Philip Harrison, and Mohammad Fotouhi. 2024. "Characterisation and Application of Bio-Inspired Hybrid Composite Sensors for Detecting Barely Visible Damage under Out-of-Plane Loadings" Sensors 24, no. 16: 5170. https://doi.org/10.3390/s24165170
APA StyleTabatabaeian, A., Mohammadi, R., Harrison, P., & Fotouhi, M. (2024). Characterisation and Application of Bio-Inspired Hybrid Composite Sensors for Detecting Barely Visible Damage under Out-of-Plane Loadings. Sensors, 24(16), 5170. https://doi.org/10.3390/s24165170