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Abstract: To achieve Level 4 and above autonomous driving, a robust and stable autonomous driving
system is essential to adapt to various environmental changes. This paper aims to perform vehicle
pose estimation, a crucial element in forming autonomous driving systems, more universally and
robustly. The prevalent method for vehicle pose estimation in autonomous driving systems relies
on Real-Time Kinematic (RTK) sensor data, ensuring accurate location acquisition. However, due to
the characteristics of RTK sensors, precise positioning is challenging or impossible in indoor spaces
or areas with signal interference, leading to inaccurate pose estimation and hindering autonomous
driving in such scenarios. This paper proposes a method to overcome these challenges by leveraging
objects registered in a high-precision map. The proposed approach involves creating a semantic
high-definition (HD) map with added objects, forming object-centric features, recognizing locations
using these features, and accurately estimating the vehicle’s pose from the recognized location. This
proposed method enhances the precision of vehicle pose estimation in environments where acquiring
RTK sensor data is challenging, enabling more robust and stable autonomous driving. The paper
demonstrates the proposed method’s effectiveness through simulation and real-world experiments,
showcasing its capability for more precise pose estimation.

Keywords: autonomous driving; object recognition; place recognition; pose estimation; high-
definition map

1. Introduction

Among numerous research topics, autonomous driving has recently become one of
the most actively researched subjects, particularly accelerating with advancements in deep
learning technologies. As a result, automobile manufacturers are increasingly focusing on
developing vehicles that can drive autonomously without human intervention, moving
beyond just assisting human drivers through Advanced Driver Assistance Systems (ADAS).
However, developing fully autonomous vehicles remains challenging, with many unre-
solved issues. These issues are not just technical, but also institutional and legal, requiring
significant effort and time to address. This leads companies like Waymo (Waymo LLC,
Mountain View, California, USA), GM (General Motors Corporation, Detroit, Michigan,
USA), and Tesla (Tesla Motors, Inc., Austin, Texas, USA) to dedicate substantial efforts to
develop fully autonomous vehicles, yet they need help achieving complete autonomy.

As we know, multiple technologies have to be integrated into a single vehicle to
achieve full vehicle autonomy. Among these technologies, the vehicle’s ability to perceive
its current state and surroundings is the most crucial. For this purpose, various sensors such
as cameras, LiDAR, radar, ultrasound, and GPS are utilized. Recently, with the advance-
ment of deep learning, perception technologies using sensor data have also progressed
rapidly, significantly enhancing performance and reliability compared to previous levels.
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These advancements have greatly contributed to lane detection [1–10] and object detection
around the vehicle [11–16]. Thanks to these advancements in autonomous driving, higher
levels of autonomous driving research are being conducted and immediately applied to
commercial vehicles.

To further differentiate levels of autonomy in autonomous driving, ref. [17] classified
autonomous driving into six levels. Levels 0 to 2 require human intervention, meaning
the driver must be seated in the driver’s seat and be ready to take control in emergencies.
Levels 3 to 5 represent higher degrees of autonomy, from conditional to complete indepen-
dence. Commercial vehicles generally fall into the Level 1 to 2 range, corresponding to
Advanced Driver Assistance Systems (ADAS). Many researchers conduct extensive studies
to achieve Level 4 and above, representing highly to fully autonomous driving. Level
3 and above require the autonomous system to manage all driving tasks under certain
conditions without driver intervention. In other words, the vehicle must be capable of
stable autonomous driving without any issues when the system is active.

Autonomous driving involves numerous variables, and these variables, whether large
or small, inevitably influence the performance of autonomous driving. Despite many
variables, autonomous driving must be performed stably to be considered Level 4 and
above. While various elements comprise the independent driving system, this paper
focuses on vehicle pose estimation. Methods for estimating the vehicle’s pose are diverse,
with the most common approach using Real-Time Kinematic (RTK) sensors, which allow
the acquisition of the vehicle’s pose without additional computations. Unlike conventional
GPS sensors, RTK sensors can provide highly accurate location information with only a few
centimeters of error. However, these sensors require good signal sensitivity, and if not
available, may result in errors comparable to those of regular GPS sensors or make data
acquisition impossible; such situations often occur in indoor spaces, areas with obstructed
ceilings, or environments with solid signal reflection. Various studies have been proposed
to address the signal problem mentioned above [18–22], most of which aim to complement
inaccuracies in RTK sensors by utilizing feature information from other sensors. However,
these methods may accumulate errors if RTK sensors remain consistently inaccurate.

This paper presents a novel approach to the critical need for a robust autonomous
driving system capable of Level 4 and above autonomy. To address the challenge posed
by inaccurate pose estimation due to the limitations of RTK sensors in specific environ-
ments like tunnels or under bridges, we propose a unique solution using a semantic high-
definition (HD) map integrated with object-centric features to enhance pose estimation
accuracy where RTK data are unreliable. This method significantly improves autonomous
driving stability and reliability in diverse environmental conditions, as simulations and
real-world experiments demonstrate. In this paper, we composed a semantic HD map with
object registration (Section 3), proposed how to make object-centric features (Section 4.1),
how can we recognize place using these features (Section 4.2), presented pose estimation
method with features and places (Section 4.3), and experimented in simulations and real
environments we targeted (Section 5) to ensure our system works.

2. Related Works

Understanding the surrounding environment is an essential part of autonomous
driving systems. Autonomous vehicles recognize the environment through surrounding
sensors, just as humans recognize their surroundings as objects or situations immediately
with their eyes. The most used method is semantic segmentation, which recently has
achieved considerable improvements with deep learning. To solve the misclassification
cases in network-based semantic segmentation using images, Liu et al. [11] presented
a severity-aware reinforcement learning using the Wasserstein distance between the seman-
tic segmentation label of the image extracted from the Carla simulator [23]. Chen et al. [12]
presented a semantic segmentation method in urban scenes using reality-oriented adapta-
tion networks (ROAD-Net) to convert synthetic data acquired in a virtual environment to
an actual data domain. Moreover, Li et al. [13] proposed an Efficient Symmetric Network
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(ESNet) of a real-time semantic segmentation model for autonomous driving. In addition
to images, studies on semantic segmentation using LiDAR have also been conducted.
Aksoy et al. [14] developed a semantic segmentation network by constructing an encoder–
decoder structured network of 3D LiDAR point clouds. In contrast, Cortinhal et al. [15]
showed a more robust 3D LiDAR semantic segmentation network composed of applying
the context module to the front part of the SalsaNet [15] constructed above. Moreover,
researchers have also conducted sensor fusion methods to recognize the surrounding en-
vironment. Florea et al. [16] presented a real-time perception component based on the
low-level fusion between point clouds and semantic scene information. Furthermore, Hem-
mati et al. [24] introduced an adaptive system with a hardware-software co-design on Zynq
UltraScale+ MPSoC that detects pedestrians and vehicles in different lighting conditions
on the road.

As described above, current environmental recognition methods, such as lane recogni-
tion and semantic segmentation, have achieved many results, according to active research in
deep learning. One of the most critical factors in such deep learning networks is the collec-
tion of datasets and their labeling. However, it is challenging to construct a dataset because
of time, money, and human resources constraints. Therefore, we generally teach networks
to utilize public datasets matching our intended purposes. Recently, many datasets related
to autonomous driving have been created and published. Caesar et al. [25] collected data
with six cameras, five radars, and one LiDAR every 20 s in 1000 scenes and published
a fully annotated dataset with 3D bounding boxes for 23 classes of eight attributes. Instead
of the existing simple and small amount lane dataset, Pan et al. [26] published a dataset of
133,235 labeled images for lanes with various shapes extracted from multiple scenarios and
performed lane detection with spatial CNN (SCNN) using a 3-D kernel tensor. Yu et al. [27]
collected 100 K driving videos from various weather, scenes, and day hours, which were
annotated by scene tagging, object bounding boxes, drivable areas, lane markings, and
full-frame instance segmentation.

The most common way to perform place recognition is to handle images. Since the
image projects everything visible in the scene, extracting features or recognizing objects
is easy. Most methods for performing place recognition using images are the descriptor
extraction or scene graph method. Neuber et al. [28] composed a place description cell
from the minicolumn network (MCN) through an image binary vector that is represented
as NetVLAD [29]. Peng et al. [30] generated an image descriptor from an attention-aware
feature embedding using the semantic prior method to focus on the critical local features.
Garg et al. [31] presented a local descriptor composed of local semantic tensors to aware
invariant features, regardless of directions or day and night. Chancan et al. [32] perform the
place recognition process through the global image descriptor associated with 2D global
position using recurrent neural networks (RNNs). Ozdemir et al. [33] estimated place
through echo state networks (ESN) using NetVLAD features from an image sequence.
Woo et al. [34] generated a scene graph from an image using the geometric encoding
and relationship embedding method. Also, Yang et al. [35] presented an attentional graph
convolutional network (aGCN) with a relation proposal network (RePN) to generate a scene
graph. Zellers et al. [36] solved this scene graph generation problem with bidirectional
LSTM. JiZhang et al. [37] proposed a relationship detection network (RelDN) with graphical
contrastive losses to cope with the confusing classification problem. Li et al. [38] suggested
an end-to-end scene graph generation method with region captioning. Arandjelovi et al. [39]
composed a network with a vector of locally aggregated descriptors (VLAD) to generate
invariant global descriptors. Hausler et al. [40] composed a patch-level descriptor with
a more robust invariant feature than the NetVLAD descriptor. Gu et al. [41] presented
a scene graph generation process to refine features using external knowledge and image
reconstruction. Cong et al. [42] performed scene graph generation with spatial and temporal
relationship encoder. Cui et al. [43] composed a context-dependent diffusion network
(CDDN) with a work semantic graph and spatial scene graph to generate relationships.
Zareian et al. [44] presented a commonsense graph to generalize the scene graph from an



Sensors 2024, 24, 5191 4 of 41

image. Suhail et al. [45] presented an energy value to reduce reasoning errors or biases
during the scene graph training.

In addition to the place recognition method through images, the place recognition
method using the point cloud is also being actively studied. Since the point cloud has
distance information, acquiring features of a different type from the picture is possible.
Vidanapathirana et al. [46] presented a global descriptor generation using point cloud
through second-order pooling and Eigen-value power normalization. Fan et al. [47] gener-
ated rotation invariant features from the point cloud using an attentive rotation invariant
convolution (ARIConv) network. Uy et al. [29] combined PointNet [48] and NetVLAD [39]
to perform the point cloud based place recognition. Wang et al. [49] presented end-to-
end object recognition using dynamic graphs CNN (DGCNN) with k-NN feature graph.
Chen et al. [50] proposed a network for finding the equivariant of point cloud features
using reduced separable point convolution (SPConv) and invariant features through an
attentive fusing mechanism. Komorowski et al. [51] generated a descriptor fused with lidar
and an image and can be used as an application for loop closure.

Another critical element of autonomous driving is determining a vehicle’s current
location. When people are driving, they can decide on their location and drive with the help
of the GPS and navigation system installed in the vehicle. Similarly, autonomous vehicles
determine their location using GPS sensors and HD maps instead of navigation systems.
The difference between people and an autonomous vehicle is that people have no hindrance
to driving, even if they only know the approximate location. In the case of an autonomous
vehicle, it is only possible to drive when the location is precisely determined. However,
deciding the accurate location requires a precise GPS sensor, which is very expensive.
Therefore, many studies have been conducted to improve the performance by combining
a general GPS sensor with a camera sensor. Chen et al. [18] developed a GNSS-Visual-
ORB-SLAM (GVORB) method that combines low-cost GNSS and ORB-SLAM [19] for
a monocular camera to compensate for the shortcomings of the GNSS sensor. Cai et al. [20]
showed the correct localization method of the vehicle using the EKF with the distance
between the vehicle location from the GPS sensor and the discrepancies between the lanes
in the HD map and those detected by the monocular camera. In addition to camera sensors,
many studies have been conducted to improve the accuracy of IMU sensors. Lee et al. [21]
improved the localization accuracy through the EKF using the information of the driving
lane and stop lane from the lane recognition [52] through a monocular camera to refine
errors occurring in GPS, IMU, and onboard odometers. Chu et al. [22] presented the EKF
method with a combined monocular camera, IMU, and GNSS to solve problems such as
signal attenuation, reflections, or blockages from GNSS and accumulated errors over time
from IMU using motion estimation information with SIFT and RANSAC.

After all of the driving functions of the autonomous driving system are composed,
the autonomous driving system has to be applied to the vehicle in the actual environment
without any problems. In contrast to the individual functions of the autonomous driving
system, the methods for using the system in the actual vehicle also have many functions.
Chen et al. [53] comprehensively analyzed end-to-end autonomous driving systems, focusing
on the latest methodologies and challenges in achieving robust, safe driving. Additionally,
Nawaz et al. [54] discussed enhancing the robustness of autonomous vehicles by integrat-
ing advanced sensor technologies with AI for improved navigation and obstacle avoidance
in complex environments. For generalization in the actual environment, Wang et al. [55]
proposed multi-modal foundation models to enhance feature representation, significantly
improving generalization and robustness in diverse driving conditions. Also, Gao et al. [56]
introduced a semantic masked world model to improve sample efficiency and robustness
in urban driving, leveraging semantic filters to extract relevant driving features from sensor
data. To perform autonomous driving more safely in the actual environment with artificial
intelligence (AI), additionally, Mishra et al. [57] surveyed irregular situations in various AI
domains, proposed potential solutions, and discussed safety and privacy issues in autonomous
vehicles to improve the robustness and adaptability of AI systems in real-world scenarios.
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Moreover, they suggested a situation-aware traffic control hand-gesture recognition system
for autonomous driving when irregular situations occur, and the human directly manages
those situations by hand-gesture [58]. In addition, communication between the base station
and autonomous vehicles is crucial for managing autonomous vehicles from outside the
vehicle. Qiong et al. [59] proposed an intelligent vehicular node with an optimal minimum
contention window (MCW) using deep-Q-learning (DQN) for vehicle-to-infrastructure
(V2I) communications with the base station to improve age of information (AoI) fairness.

3. Semantic HD Map

Autonomous vehicles studied recently inherently possess high-definition (HD) maps
for the regions they intend to navigate. HD maps store fundamental road information, such
as lanes, traffic signals, and road signs. These details convey the necessary information
for the vehicle’s autonomous operation. Additionally, HD maps can accommodate more
extensive information based on specific requirements. However, given the diverse applica-
tions of HD maps, actively utilizing all the information they contain is uncommon. This
paper employs selective information from HD maps, focusing on specific details relevant
to the research objectives. This chapter briefly describes the information in conventional
HD maps, emphasizing the subset of data utilized in this study and introducing additional
information incorporated explicitly for this research.

3.1. Nodes and Links

In HD maps, information about lanes and the trajectories of the ideal paths when
a vehicle optimally navigates the road are stored. These trajectories are primarily depicted
around the center between lanes, and encompass all feasible road vehicle travel paths. In
HD maps, these paths are distinguished by specific points, denoted as nodes. The criteria
for node differentiation are typically associated with the vehicle’s path before and after
curves, the creation of intersections, and when the distance exceeds a specific threshold.
However, this differentiation is not absolute, and can vary based on the objectives. Once
nodes distinguish all paths, these paths can be represented as detailed paths connecting
nodes, referred to as links, as shown in Figure 1. Each link can be expressed as a set of
multiple points, termed link points.

Figure 1. Nodes and links. Circles are nodes, and lines are links.
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As we already know, vehicles generally travel in only one direction along the given
path, unless it is a particular road like an alley. In other words, each path has a specified
direction of travel, and accordingly, each node and link also reflects the direction of travel.
As shown in Table 1, each node and link contains substantial information. Although the
data stored in nodes and links in the HD map is more extensive than in Table 1, this paper
utilizes only the necessary information. As observed in Table 1, this paper uses the unique
ID and point information stored in each node and the RoadType, FromNodeID, ToNodeID,
and points information stored in each link. The node’s ID and point represent the node’s
unique ID and the node’s latitude–longitude coordinates, respectively. The link’s ID also
denotes the link’s unique ID, and the RoadType, as shown in Table 1, includes type values
for General roads, Tunnel, Bridge, Underground roads, and elevated highways. R_LinkID
and L_LinkID represent the IDs of each link when there are changeable lanes on both sides
of the current link. As mentioned earlier, since each link has a specified direction, they
also have the FromNodeID, indicating the node where the link starts and the ToNodeID
indicating the node where it ends. Finally, the points are a set of link points, and each link
point has latitude–longitude values. Notably, the order in which link points are stored
corresponds to the direction of travel of the link.

Table 1. Included information of nodes and links.

Node
ID

Point

Link

ID

RoadType

1: General road
2: Tunnel
3: Bridge
4: Underground road
5: Elevated highway

R_LinkID

L_LinkID

FronNodeID

ToNodeID

Points

3.2. Registered Objects

Essentially, the HD map contains information necessary for vehicle navigation, includ-
ing data that can be utilized as objects. Among these objects, this paper selects those that
can be perceptually identified through sensors, as shown in Figure 2. In reality, safety signs,
surface marks, traffic lights, and speed bumps, as chosen in this paper, encompass a much
broader and more detailed range of information than presented in Table 2. However,
this paper aims to simplify and efficiently utilize this information rather than delve into
the specifics. For instance, despite having more than four diverse types, safety signs are
categorized as a single type, and surface marks, with over ten variations, are simplified by
distinguishing only arrow or crosswalk shapes. Similarly, traffic lights and speed bumps
are each identified as a single type, disregarding the numerous shapes and types they may
come in. This simplification aids in reducing complexity and streamlining the perception
of objects when utilizing sensor data in real-world environments.
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Figure 2. Selected objects from registered objects in HD map (kilo post: signs indicating speed limits,
Safety sign: signs of alarming hazardous, Speed bump: bumps installed on the road to force a vehicle
to slow down, surface mark: marks drew on the road, especially arrows, traffic light: devices that
provide traffic signals to vehicles or people).

Table 2. Selected objects and their information (simplified).

Safety Sign
ID

Point

Traffic Light
ID

Point

Kilopost
ID

Point

Speed Bump
ID

Point

Surface Mark

ID

Type
1: Arrow
2: Crosswalk

Points

3.3. Additional Objects

This paper aims to develop a pose estimation method for autonomous driving at Level
4 and above for General Autonomous Driving. As previously explained in Section 3.2, for
Level 4 and above autonomous driving, the vehicle must be able to estimate its position,
even when it cannot acquire valid signals from RTK sensors. Segments, where RTK sensor
signals are unavailable, are typically found in areas such as beneath elevated highways,
tunnels, and urban centers, where receiving GPS signals is challenging. Thus, the objects
we need to register newly will be objects perceivable within such segments and meet the
conditions mentioned above. Since the verification is focused on a specific region in this
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paper, additional object registration prioritizes areas where GPS signals are challenging
to obtain.

In this paper, as shown in Figure 3, we have registered a total of 10 types of objects:
Directional Signs, Road Signs, Lane Control Signs, Emergency Lights, Jet Fans, Fire Extin-
guisher Lights, Support Columns, Reflection Lights, Street Tree, and Ground Transformer.
Each object is selected based on satisfying at least one previously mentioned condition.
For instance, the Directional Sign is a sign that informs of an imminent sharp curve in the
forward direction, allowing for the estimation of a specific location. Road signs provide in-
formation about destinations that can be reached when proceeding in the driving direction,
intermittently present in particular segments. The Lane Control Sign indicates whether the
current lane is drivable, mainly found within tunnels in the target area. Emergency Light
signals the location of commonly known emergency exits, visible only within tunnels while
driving. Jet Fan similarly exists exclusively to circulate isolated air within tunnels. Fire
Extinguisher Light indicates the location of fire extinguishers, typically visible only within
tunnels during driving. Support Column refers to pillars supporting bridges, signifying
the presence of the structure and repeating at specific intervals. A Reflection Light is
a reflective light on the center median in dark highways, repeating at specific intervals
above the highway. Street trees repeat at specific intervals within urban areas, and ground
transformers represent distribution boards on the ground in urban areas. As explained, all
the objects are aligned with the intended purpose.

In this paper, the registration of these objects is performed manually. Given our
proposed method, the more accurate the position of the registered objects, the more precise
the pose estimation becomes. The criteria for registering information in the HD map vary
by country and institution. However, in this paper, we followed criteria such as Table 3
when manually registering objects. As seen in Table 3, when manually registering, the
absolute accuracy of the object points in this paper should fall within a 0.1 m error in both
horizontal and vertical positions within a 95% confidence interval, and we ensured that the
object points did not exceed a maximum of 0.2 m.

Figure 3. Additional objects.

Table 3. Accuracy criteria for additional objects.

Absolute Accuracy (95% Confidence Interval) Maximum Error

Horizontal Position Vertical Position Horizontal Position Vertical Position

≤0.1 (m) ≤0.1 (m) ≤0.2 (m) ≤0.2 (m)
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As shown in Tables 4 and 5, the selected objects have been registered in the semantic
HD map. These registration models are referenced by the Triplet Ontological Semantic
Model (TOSM) [60], but modified to fit our purpose in this paper. TOSM claims three data
types for each object: Symbolic, Explicit, and Implicit, as shown in Table 4. Furthermore,
between objects, they have relationships as shown in Table 5. All information inside there
is re-formulated for this paper. Similar to previously registered objects in the original HD
map, each object has a unique ID and a Type value corresponding to its object type, as
shown in Table 6. Notably, the objects we added are registered based on the object’s center
point as its coordinate, as depicted in Figure 3. This choice is justified for two reasons:
Firstly, the selected objects are relatively small, so registering them based on the center
point is not overly restrictive. Secondly, the criteria for extracting object information for
comparison after object recognition in this paper are also based on the object’s center point.

Table 4. TOSM data types for each object.

Datatype Property Domain Range

Symbolic

ID Object String

Type Object Int

Group Object Int

Count Object Int

Explicit
Coordinate Object (x, y)

CoordinateFrame Object String

Implicit

isKeyObject Object Boolean

isMovable Object Boolean

isRepeated Object Boolean

Table 5. Relation types between objects.

Object Relation Type Domain Range

Spatial Relation
fromObjectID Object Object

toObjectID Object Object

Table 6. Types of additional objects.

Additional Objects

Type

11: Directional Sign
12: Road Sign
21: Lane Control Sign
22: Emergency Light
23: Jet Fan
24: Fire Extinguisher Light
31: Support Column
32: Reflection Light
33: Street Tree
34: Ground Transformer

The information on registered objects in the HD map is our most important ingredient
for object-centric estimation. We recognize objects in a particular place, and then estimate
our actual place on the HD map using our proposed features from the recognition results.
It means that our proposed method can estimate two places that have the same features as
the same place. For example, as shown in Figure 4, the same objects, like streetlights, are
repeated a long way, like on a particular highway road. In this case, we may incorrectly
estimate if the object recognition results and generated features are more similar to a specific
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place than the actual place where the vehicle is placed because they are almost identical, as
shown in Figure 4. To solve this problem, we added the above three properties to prevent
confusion: Group, Count, and isRepeated. isRepeated shows that the object is a repeated
object on a continuous driving path, and Group presents a number of the repeated group
when isRepeated is true. Furthermore, Count shows the n-th number within the group.
Following this information, fromObjectID and toObjectID in Table 5 are defined, as shown
in Figure 4, by the driving path directions. Then, other properties are defined similarly to
the original TOSM.

Figure 4. The problem of repeated objects. The same objects (orange objects) are repeated a long
way on the links (green circles). In this case, the estimation from the previous to the current vehicle
position (upper) can be wrong. If we know the relationship between objects, the estimation can be
modified because we know that we estimated the wrong place (below).

4. Object-Centric Hierarchical Pose Estimation

Various functionalities need to be integrated to construct an autonomous driving sys-
tem. Within the autonomous driving system, there are inherent and complex functionalities,
as illustrated in Figure 5 from [61], including perceiving the environment, estimating the ve-
hicle’s pose, determining the vehicle’s state, composing the vehicle’s driving path, creating
detailed paths, and sending commands to drive the vehicle. Estimating the vehicle’s pose
is considered the most prioritized among all these functionalities. This paper focuses on
performing the vehicle’s pose estimation corresponding to the block indicated in Figure 5.

The objective of this paper is to estimate the pose of a vehicle based on objects. The
pose estimated in this paper aims to be in two dimensions, primarily due to the nature
of the HD map used, which is latitude and longitude-based and lacks height information.
The overall structure of the proposed object-based pose estimation method in this paper is
depicted in Figure 6. As explained in Section 3, the composed semantic HD map is used for
pose estimation, and the process involves comparing object information recognized through
sensor data to estimate the pose. In the offline phase shown in Figure 6, object-centric
features are precomputed using information stored in the HD map. Since the information in
the HD map does not change once registered, it is more efficient to precompute all features
offline and use them when needed, rather than generating features online for comparison.
The vehicle’s pose is estimated in two main steps in the online phase. The first step is for
the vehicle to recognize its current location. The second step is to estimate its pose based
on this location. In the first step, as mentioned earlier, objects are identified through sensor
data, and object-centric features are generated based on this information. These features are
then compared to all candidate object-centric features where the vehicle could be positioned
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on the HD map, determining the vehicle’s current location. In the second step, based on the
recognized location, a more accurate pose of the vehicle is estimated. With knowledge of the
current location, estimating the pose based on this location allows for a more precise pose
estimation. This section details how object-centric features are constructed, object-centric
recognition is performed, and how this information is used to perform object-centric pose
estimation, ultimately leading to the estimation of the vehicle’s pose.

Figure 5. Autonomous driving system.

Figure 6. The total structure of our proposed method.

4.1. Object-Centric Feature

There are various methods for estimating the pose of a vehicle, but one of the most
widely used approaches is the feature-based comparison method. However, there are
differences in research methodologies; a common practice involves constructing features
from sensor data and performing comparisons based on these features. With numerous
studies conducted, various feature extraction methods have been developed, achieving
significant performance [3,19,20,39,40,46]. Naturally, the accuracy of feature comparison
increases with higher-quality features and a larger quantity of features. The quality of
features depends on how well the features exhibit invariance properties concerning the
target. Due to variations in sensor types and characteristics, different sensor data may be



Sensors 2024, 24, 5191 12 of 41

obtained, even from the exact location. If we can extract consistent features despite such
variations, the accuracy of comparisons will be higher. These features typically constitute
a vector with multiple values. As expected, higher-dimensional features provide a broader
range for representing feature space, allowing for more detailed feature representations.
However, as feature dimensionality and quantity increase, the computational cost for
feature comparison also rises.

This paper aims to extract semantic features, a higher-level concept, rather than di-
rectly generating features from sensor data. As mentioned earlier, extracting features
directly from sensor data inevitably influences sensor types and characteristics, regardless
of the quality of the feature extraction method used. In this paper, the goal is to minimize
the impact of sensor characteristics while constructing conceptual features. With the rapid
advancement of deep learning, object recognition through sensor data has achieved remark-
able success [5,11–16,24,48,49]. Furthermore, object recognition through deep learning is
robust against noise and exhibits high viewpoint invariance, surpassing traditional meth-
ods. As it possesses the invariance properties mentioned earlier, this paper uses object
recognition information to construct features. This section provides a detailed explanation
of how the object-centric features we constructed are formulated.

4.1.1. Link Point Interpolation

As mentioned earlier, the first task performed in the proposed method of this paper is
place recognition. For place recognition, it is necessary to define places on the semantic HD
map that can be considered locations. Definitions of places may vary between studies, but
in this paper, the places are defined as individual link points. As previously mentioned, all
drivable paths for a vehicle are represented as nodes and links, where each link consists
of a set of consecutive points called link points, representing the path along the driving
route in the HD map. Based on these link points, the visible surrounding environment also
changes as they change with the link points’ variation. Even if the change in link points is
minimal along the direction of the link, the surrounding environment does change. Thus,
each link point can be considered a different place.

The estimation of the vehicle’s pose in this paper is structured stepwise, first finding
the place and then estimating the precise location based on that place. Therefore, the more
accurate the place recognition, the more accurate the location estimation. Accurate place
recognition leads to more precise location estimation. However, factors other than accurate
place recognition can also increase accuracy in location estimation. One such factor is
constructing places with as much detail as possible. In this paper, recognizing a place
means determining the link point to which the vehicle is closest. Naturally, the closer the
vehicle is to a specific link point, the easier it is to estimate the location. However, since
the link points within existing HD maps are often manually generated, they may need to
be evenly spaced. Sometimes, despite the length, even in long straight links, there may
be only one or two link points. Of course, minimizing the number of points for each link
contributes to the HD map’s lightweight and faster processing speed. However, for place
recognition in this paper, if the recognition is performed based on the existing link points,
the closest link point to the vehicle may be considered the optimal place, even if it is several
meters away.

The left side of Figure 7 shows link points in a specific region of the existing HD map,
where each color represents a different link. As shown in Figure 7, the points are not evenly
spaced, and there are noticeable gaps in severe cases. If place recognition is performed
while driving through such long gaps between link points, even with accurate recognition,
one of the disconnected link points may be represented as the result of place recognition. If
the vehicle’s pose estimation is then performed in this state, the possibility of not finding
the accurate position of the vehicle increases significantly. This situation is different from
the desired result for place recognition. To overcome this, we performed interpolation
between link points, as shown on the right side of Figure 7. As seen in Figure 7, the link
points obtained through interpolation on the HD map are more finely represented than
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the original HD map link points. This interpolation process suggests that the intervals of
the places to be estimated have also been more finely divided. As is, it claims that we can
perform more accurate place recognition with more precise divisions.

Figure 7. Link interpolation example. (Left) Basic link points registered in the HD map. (Right) Link
points densely filled after link interpolation.

4.1.2. Vehicle Heading Based On Link Points

Ultimately, this paper aims to estimate the vehicle’s pose. As mentioned earlier, since
the HD map we use provides information based on latitude and longitude, our objective
is to estimate the position and orientation of the vehicle in a two-dimensional plane. As
explained in the preceding section, we designated each link point as a distinct location.
However, the link point only provides information about the position of the current location
and does not contain information about the direction in which the vehicle is currently
traveling. Regardless of autonomous vehicles’ sensor placement or performance, it is
crucial to establish the reference direction for the current location. Comparing objects based
solely on their information without a reference direction might lead to recognizing entirely
different places with similar object structures.

While it is possible to set the reference direction based on latitude and longitude, this is
not convenient for comparison, since it is not charged according to the vehicle’s perspective.
Each link point already possesses a reference direction, as mentioned earlier, considering
each link is already designed based on the ideal direction of vehicle travel. Therefore, the
reference direction for each link point is as follows:

L = {l1, l2, . . . , lnl} (1)

li = {lID
i , lRT

i , lRID
i , lLID

i , lFNID
i , lTNID

i , lP
i } (2)

lP
i = {lp1

i , lp2
i , . . . , l

pnli
i } (3)

hP
i = {hp1

i , hp2
i , . . . , h

pnli
i } (4)

hpi
i =

lpi+1
i − lpi

i∥∥∥lpi+1
i − lpi

i

∥∥∥ (5)

From Equations (1) to (3), L is the total link, li is each link, and lP
i is the set of points in

li. Also, each link has its information RT, RID, LID, FNID, TNID: RoadType (road type),
R_LinkID (link ID of the right side), L_LinkID (link ID of the left side), FromNodeID (node
ID the like is started), ToNodeID (node ID the like is ended), respectively. Here, hP

i in
Equation (4) is all heading vectors according to link points, and Equation (5) presents to
calculate each normalized heading vector. In this way, each link point has an associated
reference direction known as a heading, as shown in Figure 8.
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Figure 8. Vehicle heading examples. The heading (red arrow) of each link is decided by its following
directional link (green circle).

4.1.3. Vehicle Perception Coverage

Autonomous vehicles come in various forms, depending on each vehicle’s purpose.
Consequently, sensors’ types, configurations, and placements vary significantly among
vehicles. The ideal autonomous vehicle would cover the maximum environmental range
in all directions around the vehicle. However, this is constrained by cost and efficiency
considerations, so not all autonomous vehicles adopt such a configuration. Hence, the types
and placements of sensors on autonomous vehicles differ and, consequently, the sensor
coverage is determined accordingly. Naturally, autonomous vehicles can only recognize
objects within their sensor coverage. This paper assumes we know the sensor coverage for
the autonomous vehicles targeted in advance.

The reason for pre-knowing sensor coverage in this paper is explained in the context
of minimizing unnecessary operations for feature extraction, as mentioned in the overall
structure explanation of Figure 6. To precompute object-centric features using the HD
map stored information in the offline process, we need to know the sensor coverage of the
autonomous vehicles we are targeting in advance. While the sensor coverage of a vehicle is
typically represented in 3D, for consistency with the 2D projection of the HD map used in
this paper, we simplify the sensor coverage by projecting it in 2D.

Figure 9 illustrates an example of a vehicle’s sensor coverage and the associated object
information. The depicted sensor coverage assumes a vehicle with a 120-degree sensor
coverage in front of the vehicle. Since we have previously calculated the vehicle’s heading
for each link point, it is possible to set the vehicle’s ideal travel direction, as shown in
Figure 9, adjusting the sensor coverage accordingly. The points in Figure 9 represent objects
registered in the HD map. The sensor coverage based on the heading from each link
point can be expressed as a polygon, and the objects within this polygon are defined as
objects within the perception range. Using the objects within this perception range, we can
construct object-centric features.

gpi
i = {r ∗ rot(−w

2
) ∗ hpi

i , . . . , hpi
i , . . . , r ∗ rot(

w
2
) ∗ hpi

i , lpi
i } (6)

OHD = {oHD
1 , oHD

2 , . . . , oHD
no }, oHD

i = {oHD
i,x , oHD

i,y , oHD
i,c } (7)

opi
i = {oHD

j |oHD
j ∈ gpi

i } (8)
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Figure 9. Perception coverage example based on the heading. All the lines indicate roads, and all
the circles are registered objects. The blue circles presented are the registered objects included in the
perception coverage.

Equation (6) presents polygon coordinates for the perception coverage of each link
point, as shown in Figure 10. Here, r and w are the perception radius and the perception
angle, respectively. The perception radius means the maximum coverage length, and the
perception angle means the maximum coverage angle based on the perception coverage.
Equation (7) shows the registered objects include additional objects described in Section 3.3.
As shown here, each object has its x, y, and c: position x, position y, and class, respectively.
Equation (8) means that the objects opi

i included in the polygon gpi
i . These objects can

be easily extracted by their coordinates, whether the objects in the HD map are in the
perception coverage polygon.

Figure 10. Making perception coverage based on the heading and the perception radius. The blue
circles are composed to make the perception coverage points based on the perception angle w and
the perception radius r from the left side to the right side. The perception coverage points have a
specific interval based on the division number of w.
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4.1.4. Compose Features Based On Link Points

We have completed the preparations for constructing object-centric features through
the preceding processes. To achieve more accurate estimation, we performed link interpola-
tion, calculated the heading for each link point, and virtually formed perception coverage
based on each link point, considering the sensor coverage of the target vehicle. This cover-
age allowed us to distinguish registered objects within this virtual perception range. The
considerations when generating features in this paper include the following:

• Constructing unique features for each link point.
• Creating features that reflect object information as much as possible.
• Ensuring simplicity in the feature structure.

For smooth place recognition, features need to have unique characteristics, and when
constructing features based on objects, the structure of the features should be as simple as
possible to minimize computational complexity when comparing features.

To achieve this, we utilized a polar coordinate system to construct object information
as features, as shown in the example of Figure 11. The reason for transforming the object
information from the conventional Cartesian coordinate system to the polar coordinate sys-
tem is that it allows the expression of object information while considering both the position
of each link point and its associated heading vector. In other words, we constructed a polar
coordinate system for each link point with the heading vector as the reference axis and
represented the object’s information based on this system. As we already know, coordinates
in polar representation are expressed as (r, θ), where θ increases counterclockwise with
the heading vector set as the reference at 0 degrees. As shown in Figure 11, the object’s
position can be expressed in polar coordinates for each link point as (r, θ), which can be
straightforwardly formulated using the equation below.

opi ′
i,(x,y) = opi

i,(x,y) − lpi
i,(x,y) (9)

f pi
i,r =

∥∥∥opi ′
i,(x,y)

∥∥∥ (10)

f pi
i,θ = arccos

hpi
i · opi ′

i,(x,y)

|hpi
i ||opi ′

i,(x,y)|
(11)

f pi
i,c = opi

i,c (12)

f pi
i = { f pi

i,r , f pi
i,θ , f pi

i,c} (13)

As shown in Equation (9), we can easily obtain the relative position vectors of the
objects. We can also obtain its radius f pi

i,r on the polar coordinate using Euclidean distance,

as shown in Equation (10). Because we already obtained the relative position vectors opi ′
i,(x,y),

the theta can also easily be calculated by Equation (11), between the angle from the heading
hpi

i . The class information is not being changed, even in the polar coordinate system, so use
this information, as shown in Equation (12). Then, we finally composed our object-centric
feature f pi

i , as shown in Equation (13).
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Figure 11. Object information is in the perception coverage. The vehicle’s heading is set to 0◦ for the
polar coordinates of objects. Each object has distance, theta, and class information.

4.2. Object-Centric Place Recognition

As mentioned earlier, the proposed method in this paper involves a step-by-step pro-
cess of place recognition followed by pose estimation. Additionally, this method includes
a continuous estimation process that leverages the previously estimated results for subse-
quent estimations, as shown in Figure 12; three inputs are required for place recognition.
The first is the estimated pose of the vehicle from the previous frame. When a vehicle
continuously moves, its location sequentially transitions from the previous place to the
next. Therefore, having information about the previous place enables predictions for the
next place. The second input is the object recognition results, which refer to the outcomes
obtained from object recognition on sensor data. In this paper, the object recognition results
assume the relative position of recognized objects to the vehicle, the type of objects, and
the object recognition rate. The last input is backward information. The pose of the vehicle
we want to estimate is primarily based on the forward motion of the vehicle concerning
the forward direction, unless the vehicle is reversing on the road. However, suppose the
estimated pose of the vehicle is mistakenly ahead of the actual location of the vehicle. In
that case, we need to consider the rear location of the vehicle to correct this estimation.
Backward information is the input for this purpose, and it contains two values: a value
indicating whether to consider the rear link point, and a value indicating how many link
points to consider as candidates in the forward or backward direction.
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Figure 12. Object-centric place recognition process.

The place recognition module’s first task is to find the link point closest to the previous
pose estimation result. Then, based on this link point, it extracts features for candidate
link points that can be the next place. These features are compared with those constructed
from the object recognition results to identify the link point with the most similar features.
Subsequent sections will explain how candidate link points and features are obtained and
compared with object recognition features.

4.2.1. Extract Candidate Features

We need to limit the number of features to compare because we cannot compare all the
features from link points. Here, Figure 13 presents the process to get these limited features.

Figure 13. Extract candidate features process.

et−1 = {et−1
x , et−1

y , et−1
θ } (14)

(i, j)t−1 = arg min
i,j

∥∥∥l
pj
i − et−1

x,y

∥∥∥ (15)

As previously explained, we must first identify a set of candidates for the current place
to determine the vehicle’s current pose based on the previously estimated pose. These
candidates are selected based on the link point closest to the previously estimated position.
Equations (14) and (15) illustrate the process of obtaining the link index it−1 and link
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point index jt−1 closest to the previously estimated position. Here, et−1 is the previously
estimated pose and et−1

x,y is its position.

C =

{
{jt−1, . . . , jt−1 + q}, b == 0
{jt−1 − b, . . . , jt−1 − b + q}, else

(16)

Here, Figure 14 presented a sample of the candidate feature extraction. Generally
assuming that the vehicle travels along the direction defined by the link, the order of link
point indices is sequential in the direction of travel, allowing the selection of candidate link
points as shown in the first condition of Equation (16). Here, C is the index of the candidate
link points, and b is a backward value, where 0 selects candidate link points in the forward
direction and else selects those in the opposite direction. Additionally, q, which will be
explained later in this context, determines the range of candidate points.

f C = { f c1 , f c2 , . . . , f cnc } (17)

Figure 14. Sample of candidate feature extraction. Based on the previous position of the vehicle, find
the closest link point and take candidate features based on the driving direction.

Moreover, the link information, including R_LinkID, L_LinkID, FromNodeID, and
ToNodeID, is employed here. It is impossible to obtain q candidate points in any direction
from the link point index jt−1 based on the link index it−1. In that case, the information
from FromNodeID or ToNodeID is used to fetch the deficient link points from the previous
or next link. Furthermore, if link it−1 has R_LinkID or L_LinkID information, considering
momentary lane changes during vehicle operation, the closest link point index jt−1 based
on each R_LinkID or L_LinkID is determined. As the same method to obtain candidates for
the original closest link point, q candidate points are fetched. Combining all the obtained
candidate points, the feature corresponding to each link point is retrieved, and a candidate
feature f C is constructed, as shown in Equation (17).

4.2.2. Feature Comparison

After gathering all candidate features to compare with the object recognition results,
the remaining task is identifying which candidate feature is most similar to the features
derived from object recognition results, as shown in Figure 15. To perform the comparison,
we must compose the recognition feature from the object recognition results. By comparing
this recognition feature with all the candidate features, a specific feature with the slightest
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difference or the most similarity is selected, and its link point following the particular
feature is the desired place for the recognition result.

f R = { f R
1 , f R

2 , . . . , f R
nr} (18)

f R
i = { f R

i,r, f R
i,θ , f R

i,c, f R
i,p} (19)

Figure 15. Feature comparison example: The input feature from the perception information is
compared with candidate features to find the link with the most similar feature.

As mentioned in Section 3.2, the recognition features are generated as shown in
Figure 16. The recognition feature f R is constructed using object recognition results contain-
ing one more piece of information for each object f R

i , as shown in Equations (18) and (19).
Unlike features constructed using existing HD map information, one more information is
the confidence from object recognition f R

i,p.

∥∥∥ f R
k − f ci

j

∥∥∥ =



√√√√√√√
( f R

k,r)
2 + ( f ci

j,r)
2

− 2 ∗ f R
k,r ∗ f ci

j,r

∗ cos f R
k,θ − f ci

j,θ

,
if f R

k,c = f ci
j,c and

f R
k,p > τp

r, else

(20)

Figure 16. Generate recognition features. The object recognition results are projected as a bird-eye
view. Then, the recognition feature is composed through the object-centric feature module.

Equation (20) illustrates how the elements of the recognition feature f R and the
candidate feature f C are compared. In this equation, f R

k is the k-th element of fR, and f ci
j

is the j-th element of i-th candidate feature. This paper employs the Euclidean distance
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within the polar coordinates to measure the similarity between two objects. A smaller value
indicates a higher similarity between the two elements. This comparison incorporates the
objects’ (r, θ) values and factors in the object class and recognition confidence. As depicted
in Equation (20), the Euclidean distance is only computed when the classes of the two
elements are the same or when the confidence exceeds a specific threshold, denoted as
τp. Otherwise, the comparison value between the two elements is fixed at the vehicle’s
maximum detection range, denoted as r.

i∗ = arg min
i

nr

∑
k

min
∀j∈nci

∥∥∥ f R
k − f ci

j

∥∥∥ (21)

l
pt∗j
t∗i

= f ci∗ (22)

Using Equation (20), a formula for determining the index of the most similar feature
among all candidate features can be constructed, as shown in Equation (21). Here, nr is the
number of feature elements of fR, nci is the number of feature elements of the candidate
C, and i∗, t∗i , t∗j is the optimal matched candidate index, link index at time t, link point
index at time t, respectively. As evident from the equation, it compares the elements of the
recognition feature with those of each candidate feature, and the candidate feature with
the smallest sum represents the feature corresponding to the desired place. Equation (22)
indicates the link point corresponding to the feature index obtained from this formula.

4.3. Object-Centric Pose Estimation

Through the above place recognition process, we can confirm that the vehicle is
traversing a specific location. However, what we desire is not place recognition, but rather
the estimation of the vehicle’s pose. Recognizing that the vehicle is near a specific place, i.e.,
a particular link point, can be determined through the abovementioned process. However,
this does not imply precision in the vehicle’s pose. The confirmation provided by place
recognition indicates that the vehicle is driving closest to this place. However, utilizing the
results of this place recognition enables the estimation of the vehicle’s precise pose.

As illustrated in Figure 17, object-centric pose estimation involves three types of inputs.
The first input is the information about the recognized place from the preceding stage, and
the second is the recognition feature already constructed in the previous stage. The final
input is the vehicle’s control input, which is crucial in pose estimation.

Figure 17. Object-centric pose estimation process.
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This module incorporates an extended Kalman filter (EKF) for pose estimation. The
EKF takes the vehicle’s control input as input and performs prediction. Since the control
input provided by the vehicle is considerably faster in frequency than object recognition,
the EKF generally performs predictions based on control input alone. However, when infor-
mation for pose estimation is obtained through object and place recognition, it incorporates
this information for an update. Because the recognition process is not always performed,
additional information from the RTK sensor, camera odometry, and lidar odometry is
used for updates when this information is available, as represented in Figure 17. In the
following sections, we will demonstrate how object and place recognition information are
used to achieve more precise vehicle pose estimation. Additionally, we will explain the
modified EKF used in this paper and elucidate how the backward information used in
place recognition is generated.

4.3.1. Object-Centric Pose Estimation

We know the vehicle is near a specific location, since we have already performed
place recognition in the preceding stage. While each link point within that place has its
position and direction, in reality, the vehicle does not precisely align with the location and
direction of most link points. Although each link point represents the path the vehicle
would ideally take along the lane, it is almost impossible for a human or autonomous
vehicle to travel exactly along this ideal path. Therefore, to accurately estimate the vehicle’s
position, we must determine how far away and rotated it is from the link point location
obtained through place recognition.

Suppose the results of object recognition obtained from the vehicle are perfect, without
any errors, and the vehicle also travels in an ideal manner, perfectly aligning with the
positions and directions of the link points. In this scenario, if we use the recognition feature
extracted from the vehicle’s object recognition results to represent objects based on the
position and direction of the link point, it would precisely overlap with the information
of objects registered in the semantic HD map. Leveraging this characteristic, we aim to
calculate how far and rotated the current vehicle is from the link point.

Considering that object recognition by the vehicle has some errors, but is reliable
enough to perform place recognition with a sufficient number of objects and recognition
rate, we can obtain the optimal link point through place recognition. Then, following the
process based on the assumption made earlier, we use the recognition feature to represent
objects based on the position and direction of the link point obtained from the place
recognition results. Naturally, those represented recognized objects will be located at
positions different from those registered in the existing semantic HD map. However, unless
the errors in the object recognition results are substantial, the represented objects should
be at a similar distance and direction compared to the existing semantic HD map objects,
as shown in Figure 18. Suppose we adjust the represented objects obtained through the
recognition feature to match the existing semantic HD map objects as closely as possible.
In that case, the movement of distance and direction is generated, and we can estimate the
vehicle’s pose using this movement to adjust with the link point from the place recognition
result. This re-projection feature process is shown in Figure 17.

Assume that the re-projected objects using the recognition feature based on the best
link point as:

OR = {or1 , or2 , . . . , ornr } (23)

ori = {ori ,x, ori ,y, ori ,c, ori ,p} (24)

As shown in Equations (23) and (24), the recognition features are re-projected in the

Cartesian coordinate system, based on the link point l
pt∗j
t∗i

.
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Figure 18. Difference between link point features and recognition features. The gray area is the
perception coverage based on the link, and the blue area is the perception coverage based on the
actual vehicle position. Ideally, the relationships between objects are the same in both areas.

Because we need to find the best transform T∗ between HD objects and re-projected
objects, here, we used a class-based iterative closest points (ICP), which modified ICP

for this paper, as shown in Figure 19. The objects included in the link point l
pt∗j
t∗i

can be
expressed as:

simply, i∗ = t∗i , j∗ = t∗j , (25)

o
pj∗
i∗ = {o

pj∗
i∗ ,1, o

pj∗
i∗ ,2, . . . , o

pj∗
i∗ ,nli∗

} (26)

o
pj∗
i∗ ,k = {o

pj∗

i∗ ,(k,x), o
pj∗

i∗ ,(k,y), o
pj∗

i∗ ,(k,c)} (27)

Figure 19. Class-based ICP example. Even though the relationships between objects are the same,
there is a difference when the gray and blue areas are overlapped as on the left. This difference T is
how the actual vehicle is transformed from the link.

Then, we need to find matched pairs between OR and o
pj∗
i∗ , considering their position,

class, and abjectness. Similar with Equations (20) and (21), we composed class-based
matched pairs as:

M = {(or1 , om1), (or2 , om2), . . . , (ornr , omnr )} (28)
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omq = arg min
o

pj∗
i∗ ,k

∥∥∥omq ,(x,y) − o
pj∗

i∗ ,k,(x,y)

∥∥∥,
omq ,c == o

pj∗
i∗ ,k,c

and omq ,c > τp
(29)

Now, we can solve the ICP problem for the matched pair M as shown below:

T∗ = arg min
T

1
nr

nr

∑
i

∥∥∥T ori ,(x,y) − omi ,(x,y)

∥∥∥ (30)

T =

[
cos θt − sin θt xt
sin θt cos θt yt

]
(31)

From Equation (31), we can find optimal transformation T∗ and its parameter {x∗t , y∗t , θ∗t }.
Using this optimal solution, we can finally estimate vehicle pose at t frame as:

st =


l
pj∗
i∗ ,x − x∗t

l
pj∗
i∗ ,y − y∗t

l
pj∗
i∗ ,θ − θ∗t

 (32)

Note that this estimated pose st is used to update EKF, as shown in Figure 17. Also,
this information is used to check backwardness, as described below in more detail.

4.3.2. Modified Extended Kalman Filter (EKF)

While it could be sufficient to use the results obtained in Section 4.3.1 directly for
object-centric pose estimation, estimating the actual pose of the vehicle has to be performed
continuously at a high frequency, ideally. However, the sensors primarily used for object
recognition, which is the basis of the object-centric approach, include cameras, LiDAR,
and radar, among others. Among these sensors, cameras typically acquire data at around
30 fps, LiDAR at 15 fps, and radar at approximately 50 fps. Assuming each sensor’s data
are synchronized, the data cycle is roughly 15 to 30 fps based on the object recognition
result. However, the fps may vary depending on the choice of object recognition algorithm.

For a typical vehicle, even if it moves at a low speed, it is generally faster than a person
walking. Assuming highway driving at 100 km/h, the vehicle would move more than 27 m
per second. Therefore, estimating the actual pose of the vehicle needs to be performed
much faster than the fps at which sensor data are acquired for object recognition. In this
paper, to address this, we use an extended Kalman filter (EKF) to predict the vehicle’s
pose during periods. For prediction, the control input includes the vehicle’s speed and
steering information, directly obtainable from the vehicle’s CAN communication. Since the
vehicle’s CAN communication has a frequency of 200 Hz or higher, pose prediction can be
conducted at a faster rate.

If object recognition can find all referenced objects inside each frame for all frames, we
can trust these results. As mentioned above, object recognition is not guaranteed a specific
frame rate. Furthermore, object recognition is not always performed successfully to find
objects for all input camera frames. To solve this problem, we composed our EKF with
additional information: RTK, camera odometry, and lidar odometry, as shown in Figure 17.
This information supports the pose estimation process when the object recognition is
uncertain and ambiguous. Note that this modified EKF is designed to be capable of various
methods for additional information. Any RTK sensor, camera, and lidar odometry method
can adjusted for this.

x⃗k = (xk yk θk ẋk ẏk θ̇k)
t (33)

uk = (vk δk)
t (34)

ˆ⃗x¯
k = f ( ˆ⃗xk−1, uk) (35)

P¯
k = AkPk−1 AT

k + Qk (36)
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Kk = P¯
k HT

k (HkP¯
k HT

k + Rk)
−1 (37)

ˆ⃗xk = ˆ⃗x¯
k + Kk(zk − h( ˆ⃗x¯

k)) (38)

Pk = P¯
k − Kk HkP¯

k (39)

As mentioned above, we estimated the vehicle’s pose through the EKF. In this paper,
we define the state vector x⃗k and control vector uk using Equations (33) and (34), respectively.
Here, x⃗k represents the state of the vehicle to be estimated at time k, and uk represents
the speed and rotation of the vehicle at time k. As shown in Equations (35) and (36), we
predict x⃗k through vehicle kinematics in Figure 20, estimate x⃗k using the Kalman gain K
and measurement vector zk, and update the process covariance matrix P.

ˆ⃗x¯
k = f ( ˆ⃗xk−1, uk)

x̂¯
k

ŷ¯
k

θ̂¯
k

ˆ̇x¯
k

ˆ̇y¯
k

ˆ̇θ¯
k


=



x̂k−1
ŷk−1
θ̂k−1
ˆ̇xk−1
ˆ̇yk−1
ˆ̇θk−1


+



vk cos (θ̂k−1 + δk) · ∆t
vk sin (θ̂k−1 + δk) · ∆t

vk sin (δk)/L · ∆t
vk cos (θ̂k−1 + δk)
vk sin (θ̂k−1 + δk)

vk sin (δk)/L


(40)

Ak =
∂ f
∂x

∣∣∣
x= ˆ⃗xk−1

=



1 0 −vk sin (θ̂k−1 + δk) · ∆t 0 0 0
0 1 vk cos (θ̂k−1 + δk) · ∆t 0 0 0
0 0 1 0 0 0

0 0 −vk sin (θ̂k−1 + δk) 1 0 0
0 0 vk cos (θ̂k−1 + δk) 0 1 0
0 0 0 0 0 1


(41)

Figure 20. Vehicle kinematics.

In Equation (40), we used vehicle kinematics as shown in Figure 20 to obtain the
predicted state vector ˆ⃗x¯

k. Because we used the EKF for non-linear estimation in this paper,
we calculated the state transition matrix Ak by expressing it as a Jacobian matrix of ˆ⃗xk−1 for
the function f , as in Equation (41).
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zk = h( ˆ⃗x¯
k)

xrtk
yrtk

∆xcamera
∆ycamera
∆θcamera
∆xlidar
∆ylidar
∆θlidar


=



x̂¯
k − L f cos θ̂¯

k
ŷ¯

k − L f sin θ̂¯
k

x̂¯
k − x̂k−1

ŷ¯
k − ŷk−1

θ̂¯
k − θ̂k−1

x̂¯
k − x̂k−1

ŷ¯
k − ŷk−1

θ̂¯
k − θ̂k−1


(42)

Hk =
∂h
∂x

∣∣∣
x= ˆ⃗x¯

k

=



1 0 L f sin θ̂¯
k 0 0 0

0 1 −L f cos θ̂¯
k 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


(43)

The measurement vector zk used in this paper is given by Equation (42). The zk is
defined for the additional information, as shown in Figure 21. As shown in Figure 21,
the RTK sensor data are directly used for the measurement with only concern about its
placement. The camera odometry and lidar odometry measurements are defined here as
differences in states from the previous time to the current time. Note that the states for
these odometry measurements are x, y, and θ. Similar to Ak, the measurement transition
matrix Hk of the EKF is determined by expressing the Jacobian matrix of x̂¯

k for the function
h, as shown in Equation (43).

(a) RTK placement. (b) Camera measurement. (c) Lidar measurement.

Figure 21. Measurements for the additional information. The RTK sensor is in place apart from the
center of the vehicle, and we need to correct the RTK information as the center of the vehicle (a). The
camera and Lidar measurements are composed of the difference between the previous and current
features (b,c) of each sensor.

In this way, we have constructed our modified EKF. However, in actual application,
the cycle of all sensor inputs and estimation results are different, and the cycle may also
change momentarily depending on the system’s stability. If we wait for all data to be input,
not only will the measurement update be slow, but the time of each data will be different
so that errors may occur during the update. Therefore, the measurement vector configured
above is used as is, but the update part is configured to operate each time each sensor and
estimation result data are acquired.
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4.3.3. Check Backwardness

The backward information, which serves as the input for Section 4.2.1 in the object-
centric place recognition, is determined right here. As mentioned earlier, this process is
information includes the variables b, which decides whether to consider the front or rear
links based on the current position, and q determines how many candidate links to retrieve.
Since vehicles typically move forward according to the predefined direction of the road, it is
usually sufficient to focus on the front links for estimation. However, the estimated position
may be ahead of the actual vehicle location in cases where the estimation is incorrect. If this
error accumulates, it can significantly reduce the accuracy of the pose estimation module.
To prevent these unexpected cases, we defined a specific range of rear links included in the
candidates for consideration in the estimation process.

b =

{
int((vt∗δr−∥st

x,y−(x̂¯
t ,ŷ

¯
t)∥)/τi), | arctan (st

x,y − (x̂¯
t, ŷ¯

t))− θ̂¯
t| > 2

π

0, else
(44)

In Equation (44), δr represents the periodicity of object recognition results, and τi
denotes the interpolation interval in Section 4.1.1. As seen here, the value of b is determined
by the difference between the estimation in Section 4.3.1 and the prediction in Section 4.3.2.
Here, the value is determined looking back by the amount of the positional difference
between the two results when the difference in their angles exceeds 2

π .

q = max(int((vt∗δr−∥st
x,y−(x̂¯

t ,ŷ
¯
t)∥)/τi) + τm, τm) (45)

The τm in Equation (45) is determined as a hyperparameter representing the minimum
number of links to be considered for place recognition. The equation shows that the number
of candidate links from the minimum link count increases by the positional difference
between the results from Sections 4.3.1 and 4.3.2. By incorporating this straightforward
value, the uncertainty of the estimation can be effectively compensated in this paper.

5. Experiments
5.1. Simulation

Conducting experiments is essential to validate the object-centric pose estimation
method outlined earlier. In practical application on actual vehicles, preparations such as
sensor procurement and installation, vehicle modification, and environmental setup require
significant time and cost. Therefore, before conducting experiments in a real-world scenario,
initially confirming the method’s effectiveness through simulation is more efficient.

Constructing a simulation environment involves creating an idealized experimen-
tal setting resembling or comparable to the natural environment. The ideal simulation
method involves

• Placing structures such as roads and buildings;
• Generating virtual vehicles;
• Creating synthetic sensor data;
• Applying object recognition algorithms to the virtual data;
• Confirming the validity of this paper’s method through the obtained results.

This simulation method is ideal and nearly directly applicable to a real-world environment.
However, this approach demands considerable time and effort, akin to the effort

required for setting up experiments in a natural environment, if not more. As the simulation
environment approaches the realism of the actual scenario, it requires more meticulous
work. Therefore, the simulation in this paper has been intentionally kept as simple as
possible, focusing solely on confirming the validity of the proposed method.

To verify the method presented in this paper, acquiring and processing actual sensor
data or obtaining results through object recognition is unnecessary. As mentioned earlier,
the method assumes that such results are already available for object-centric pose estimation.
Hence, as long as synthetic object recognition results can be generated from simulation,
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experimenting with this paper’s method poses no challenges. Additionally, even without
constructing an actual vehicle, simulation execution is possible by providing virtual control
input that the vehicle typically delivers. Therefore, this paper establishes a straightforward
simulation environment and demonstrates the method’s efficacy through experimentation.

5.1.1. Target Environment

As mentioned, we already have the actual environment targeted for our experiments.
Consequently, we possess an HD map for this environment. This real-world environment
includes challenging conditions such as bridges, the undersides of overpasses, tunnels,
and other locations where RTK sensor signals are vulnerable. Due to these conditions, our
environment is suitable for experimenting with the efficacy of the proposed method in
this paper. As discussed in Section 3, we constructed a semantic HD map by additionally
registering objects mentioned in Section 3.3 to facilitate the desired object-centric pose esti-
mation. The total number of initially constructed and additionally added objects amounted
to approximately 5000, and detailed numbers for each object are shown in Table 7.

Table 7. Number of all registered objects.

Safety Sign 900

Surface Mark
Arrow 129

Crosswalk 537

Traffic Light 262

Speed Bump 36

Additional Objects

Directional Sign 31

Road Sign 433

Lane Control Sign 502

Emergency Light 121

Jet Fan 273

Fire Extinguisher Light 42

Support Column 241

Reflection Light 253

Street Tree 965

Ground Transformer 254

Furthermore, the procedures outlined in Section 4.1 were executed to configure the
environment. Initially, link interpolation in Section 4.1.1 was performed with a τi value
of 1 m. Subsequently, as described in Sections 4.1.2 and 4.1.4, object-centric features for
all link points were precomputed and stored in the semantic HD map. Given that the
dimensionality of the features is not substantial, we opted to store the feature values
themselves without the need for additional compression processes, as it did not impose
significant storage requirements.

As emphasized, we aimed to keep the simulation environment concise. After complet-
ing all the steps mentioned above on the semantic HD map derived from the existing HD
map, we configured the environment for our desired simulation, as illustrated in Figure 22.
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(a) Experimental area in the map. (b) Experimental area in the HD map.

Figure 22. Experimental area.

5.1.2. Imaginary Object Recognition

Now that the target environment has been fully configured, the crucial task is deter-
mining how to generate Imaginary Object Recognition results. In the preceding preparation
steps, we have already implemented object-centric features for each link, enabling us to
construct Imaginary Object Recognition results similarly.

lpi ′
i,x = lpi

i,x + ϵlx , ϵlx ∼ N (0, σ2
lx )

lpi ′
i,y = lpi

i,y + ϵly , ϵly ∼ N (0, σ2
ly)

hpi ′
i = hpi

i + ϵlh , ϵlh ∼ N (0, σ2
lh
)

(46)

oR = {oR
1 , oR

2 , . . . , oR
nli}

oR
k = {oR

k,x, oR
k,y, oR

k,c, oR
k,p}

oR
k,x = opi

i,(k,x) + ϵox , ϵox ∼ N (0, σ2
ox )

oR
k,y = opi

i,(k,y) + ϵoy , ϵoy ∼ N (0, σ2
oy)

oR
k,c = opi

i,(k,c)

oR
k,p = min(1, 1 + ϵop), ϵop ∼ N (0, σ2

op)

(47)

As evident in Equations (46) and (47), we begin by assuming the existence of a specific
link point and generating information for a new point by introducing a random offset
relative to this reference point. Additionally, the positions of objects corresponding to the
link point are created with similar offsets. Importantly, we need to include one more piece
of information: the recognition rate of the objects. The recognition rate is determined as
shown in Equation (47).

This approach can generate Imaginary Object Recognition features for each link point,
as depicted in Figure 23. Based on the link point that shifts with the vehicle’s movement
while driving, we generate virtual imaginary object recognition and its associated features
each time the car progresses.
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Figure 23. Imaginary object recognition example. Based on the link point (cyan circle), we generated
a fake point (magenta cross mark). Also, based on the link heading (green dashed line), we generated
a fake heading (yellow dashed line). Moreover, we generated fake objects (red Greek cross marks)
and were concerned about the fake coverage from the fake heading and link objects (blue stars).

5.1.3. Simulation

Having configured the target environment and generated Imaginary Object Recog-
nition and its associated features based on it, what remains is to simulate the vehicle’s
virtual driving within the simulation to confirm the effectiveness of the proposed method
in estimating the vehicle’s pose. In this simulation experiment, we fixed the driving path
to cover the entire section shown in Figure 22 continuously while varying the conditions
during the experiment. This path includes a bridge and a tunnel, particularly a long bridge,
enabling experimentation in areas where RTK sensor signals are not easily accessible.

Even when driving the same path within the simulation, we conducted experiments by
changing conditions to test whether the proposed method in this paper exhibits high accu-
racy under various condition variations. Although not explicitly mentioned in Section 4.3,
as the proposed method is fundamentally object-centric when the RTK sensor signals
are robust, this information is used as an update input for the EKF in estimating the
vehicle’s pose.

The hyperparameters varied during this simulation mainly include λlx , λly , λlh , λox ,
λoy , λopmin

, and λopmax . The parameters r = 100 m, w = 60◦, τp = 0.5, τi = 1 m, and τm = 10
were fixed throughout the simulation experiments. As testing all possible combinations of
the hyperparameters mentioned above is practically infeasible, we conducted experiments
for the following three cases.

• Ideal case:
σlx = 0.0, σly = 0.0, σlh = 0.0, σox = 0.0, σoy = 0.0, σop = 0.0.

• In the case of slight errors:
σlx = 0.15, σly = 0.15, σlh = 3.0, σox = 0.15, σoy = 0.15, σop = 0.3.

• In the case of relatively pronounced errors:
σlx = 0.3, σly = 0.3, σlh = 6.0, σox = 0.3, σoy = 0.3, σop = 0.45.

For the control input during the experiment, at each prediction cycle, δe of the EKF, the
velocity and direction required to move from the current link point to the following link
point are calculated. These values are then formulated into the control input and provided
as the control input for Section 4.3.

Table 8 presents the position estimation results while receiving data from the RTK
sensor. During this experiment, no information from the RTK sensor was received in the
tunnel and on the bridge. Therefore, RTK-based position correction was not performed
in these areas. When RTK position correction was applied, a random error within 0.05 m
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was added, following the RTK sensor error. As shown in Table 8, the position estima-
tion performs remarkably well under ideal conditions. When the perception results are
slightly or significantly less accurate, the correction from RTK ensures that the estimates
stay consistent.

Table 8. Object-centric pose estimation results in simulation (with RTK).

Trial

Cases

Ideal Slight Pronounced

Long.
(m)

Lat.
(m)

Long.
(m)

Lat.
(m)

Long.
(m)

Lat.
(m)

1 0.0970 0.1692 0.2100 0.3586 0.5711 0.7133
2 0.1157 0.1995 0.3781 0.2137 0.5323 0.5263
3 0.1441 0.1477 0.3389 0.4151 0.5544 0.3488
4 0.1657 0.1025 0.3269 0.2513 0.4450 0.8318
5 0.1347 0.1407 0.3114 0.3404 0.7170 0.3340
6 0.1095 0.2051 0.1711 0.2845 0.6837 0.3125
7 0.1660 0.1190 0.1968 0.2920 0.5176 0.6936
8 0.1565 0.1321 0.3733 0.2399 0.6686 0.4062
9 0.1577 0.1205 0.2380 0.3988 0.6623 0.3523
10 0.1471 0.1313 0.3799 0.2701 0.7180 0.3374

Mean 0.1394 0.1468 0.2924 0.3064 0.6070 0.4856

Total 0.1431 0.2994 0.5463

In cases where the RTK sensor data are available, Table 8 exhibited stable and accurate
corrections. To compare with Table 8, here, experiments were conducted without receiving
input from the RTK sensor, as shown in Table 9, relying solely on the proposed method for
position estimation. As evident in Table 9, under ideal conditions, our proposed method
demonstrated error levels comparable to those achieved with RTK sensor correction. Even
with slight perception errors, the position estimation was relatively stable. However, the
correction position was incorrect in situations where significant perception errors occurred,
leading to a sharp increase in errors.

Table 9. Object-centric pose estimation results in simulation (without RTK).

Trial

Cases

Ideal Slight Pronounced

Long.
(m)

Lat.
(m)

Long.
(m)

Lat.
(m)

Long.
(m)

Lat.
(m)

1 0.4538 0.2450 0.4700 0.6480 2.6065 1.9879
2 0.2540 0.4264 0.8383 0.3771 9.7814 10.0362
3 0.4345 0.3217 0.6929 0.3363 5.7851 6.0601
4 0.3164 0.4584 0.3988 0.6350 4.1790 0.8166
5 0.2786 0.4496 0.3389 0.7549 7.6729 5.0775
6 0.4850 0.2724 0.8350 0.3524 4.5744 6.4828
7 0.4437 0.3017 0.6913 0.3919 9.1897 10.1281
8 0.4423 0.3323 0.7755 0.2921 2.6119 6.9593
9 0.2904 0.4604 0.4171 0.7713 7.6462 8.0244
10 0.3137 0.3771 0.5049 0.5185 5.1110 5.5926

Mean 0.3712 0.3645 0.5963 0.5078 5.9158 6.1166

Total 0.3679 0.5520 6.0162
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Figures 24–26 illustrate the comparison of all estimated paths in ideal, slight, and pro-
nounced erroneous perception cases without RTK information. Upon reviewing the results
in Tables 8 and 9, it is evident that the proposed method exhibits reliable performance,
especially when the object recognition accuracy is high. Nevertheless, Table 9 and Figure 27
also present that the estimation performance can be ruined when the object recognition is
performed poorly.

Figure 24. Ideal case result (without RTK). Ideally, the object-centric estimation (semantic estimation,
upper right) and the EKF estimation (pose estimation, lower left) are nearly perfectly matched (lower
right) with ground truth (upper left).

Figure 25. Slight case result (without RTK). The object-centric estimation (semantic estimation, upper
right) is estimated unstably in a particular section (red dotted box). However, EKF estimation (pose
estimation) was corrected finely (bottom left) and matched with ground truth (bottom right).



Sensors 2024, 24, 5191 33 of 41

Figure 26. Pronounced case result (without RTK). As shown here, the object-centric estimation
(semantic estimation) is vibrated because the object recognition results are unstable (upper right).
Even the EKF estimation (pose estimation) tried to correct these vibrated estimations, but it couldn’t
be corrected perfectly (bottom left) and estimated far from the ground truth (bottom right).

Figure 27. Pronounced case result (without RTK, detailed). These are zoomed sections from Figure 26.
Here, the EKF estimation (pose estimation) is mostly performed to match the ground truth; even the
object-centric estimation (semantic estimation) estimates its positions poorly.

5.2. Actual Experiments

For the actual experiments in this paper, we prepared our vehicle with various sensors,
as shown in Figure 28. We placed one RTK, four cameras, three lidars, and five radars
for this vehicle. We installed radar because we can estimate the distance of objects using
radar data, and this information can also be adjusted to object recognition results from
cameras. As shown in Figure 29, sensor placements are composed to recognize objects
around the vehicle. Moreover, we focused our sensor placements on the front side of the
vehicle because the front side is the main field of view during driving. Lidar sensors are
concentrated on the front side only because we intended to make dense point clouds to
extract more precise features.
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Figure 28. Sensor placement of the experimental vehicle.

Figure 29. Sensor coverage of the experimental vehicle. Each colored coverage presents each sensor’s
horizontal coverage. Depending on the sensors, they have different horizontal fields of view(FOV),
as shown here.

For the object recognition for camera input, we adjusted YOLO v8 [62] in this paper.
YOLO v8 has a swift processing time, and can detect objects surprisingly well, even
with few datasets. To train YOLO v8, we collected images using this vehicle and labeled
objects inside each image, as shown in Table 7. We composed the dataset, which includes
approximately 5000 images and object labels. Here, we used 3700 images for training and
1300 for validation.

Here, Figures 30 and 31 present results for the validation set after training YOLO
v8. As shown here, results are qualified with 0.962 mean average precision for all classes
when Intersection over Union (IoU) is set to 0.5. However, this result does not guarantee
that the object detection is well performed for the actual environments. Object detection
accuracy using YOLO v8 is undoubtedly degraded in the natural environment because of
its complex conditions.

As Figure 17 explained, we used RTK data, camera odometry, and lidar odometry.
As said in Equation (42), RTK data can be directly adjusted. In this paper, we adjust the
ORB method [63] for camera odometry and the Fast-LIO method [64] for lidar odometry.
These methods ensure fast enough to achieve real-time processing and exact odometry
estimation. These odometry are adjusted for the measurement update for the modified
EKF, as explained in Equation (42).
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Figure 30. Object detection results.

Figure 31. Object detection confusion metrics and P-R curve.

For the actual experiments, the process mentioned in Section 5.1.1 is performed
precisely the same way. In the actual experiments, we focused on two main areas: bridge
and tunnel. Because areas other than these two can acquire precise RTK sensor data,
pose estimation is also being updated precisely. However, the pose estimation will drift
inside these two areas because RTK sensor data are unstable or disabled. To compare our
proposed method in this paper, we generated five paths in the experiments: RTK, camera,
lidar, camera+lidar, and proposed. The RTK sensor data draw the RTK path, the camera
odometry draws the camera path, the lidar odometry draws the lidar path, the combination
odometry of both draws the camera+lidar path, and the proposed path is drawn by this
paper method.

As shown in Figure 32, we perform experiments on our proposed method in the bridge
and tunnel in this paper. As explained in Section 5.1.1, the bridge and tunnel cannot acquire
proper RTK sensor data because these environments are blocked with structures, as shown
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in Figure 32. Here, we perform manual driving while adhering to the prescribed speed
limit because our proposed method can perform manual and autonomous driving. The
prescribed speed limit on the bridge is set to 80 km/h and 60 km/h on the bridge and
tunnel, respectively.

Figure 32. Actual experiments on the bridge (top) and tunnel (bottom).

Figures 33 and 34 are the actual experiment result paths on the bridge and tunnel. As
mentioned earlier, we generated five paths for each experiment. Here, ’Merged’ presents
the camera+lidar odometry path. The right of each figure presents the most distinctive
section from each experiment. As shown in Figures 33 and 34, all paths are estimated finely,
but errors are accumulated if the driving path is more extended. As expected, the RTK
path is not matched on the ground-truth path, but it does not draw the wrong path because
our RTK sensor has filters. The camera and lidar odometry draw more accurate paths
than expected, and the camera+lidar odometry path is more precise than any other single
information. The path we proposed in this paper in these figures is even more accurate
than other estimated paths and better laid on the ground truth.
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Figure 33. Actual experiment results (bridge). (Left) Half section includes bridge area (red box).
(Right) Expanded bridge area from left.

Figure 34. Actual experiment results (tunnel). (Left) Half section includes tunnel area (red box).
(Right) Expanded tunnel area from left.

Table 10 presents the longitudinal and lateral errors for all paths, compared with
the ground truth path. We compare link points from the HD map with the ground truth
path because we cannot acquire exact coordinates from the vehicle’s RTK sensor while
driving on the bridge and tunnel. As shown in Table 10, the lidar path is entirely inaccurate
compared to other paths because the frame rate of the lidar is not enough to estimate
odometry in real-time for the fast velocity. The camera path is more accurate than the
lidar, but still inaccurate. As we know, the features extracted from an image are changed
according to the environment, and it causes unexpected estimations. Surprisingly, the RTK
path is more accurate than we expected. As mentioned above, our RTK sensor has filters
and estimates its pose even if the RTK signal is lost. The camera+lidar path is generated
more precisely than the camera or lidar-only path. We can imagine that the camera and
lidar odometry compensated with each other to derive a more accurate pose estimation.
Finally, our proposed method presents even more precise results than the camera+lidar
path. Although object recognition trained on very few datasets is performed on each image
frame, our proposed method presents more accurate pose estimations, even in the bridge
and tunnel. Our proposed method can adapt to any existing pose estimation method and
perform more robust pose estimation using the object information. Also, the processing
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time of the proposed method in this paper is less than 100 ms for each pose estimation in
the NVIDIA Orin kit, and it will reduced after optimization.

Table 10. Compare pose estimation results. The best results are expressed in bold. As shown here,
the proposed method outperforms other results.

Area

Methods

RTK Camera LiDAR Camera+LiDAR Proposed

Long.
(m)

Lat.
(m)

Long.
(m)

Lat.
(m)

Long.
(m)

Lat.
(m)

Long.
(m)

Lat.
(m)

Long.
(m)

Lat.
(m)

Bridge 1.7640 1.9497 3.9769 7.9231 5.4016 10.3363 0.7714 0.9373 0.6507 0.7422
Tunnel 1.9940 6.5235 1.9135 7.0682 1.9940 6.4776 1.0480 3.2426 0.9299 2.6461

Mean 1.8790 4.2366 2.9452 7.4957 3.6978 8.4070 0.9097 2.0901 0.7903 1.6942

Total 3.0578 5.2204 6.0524 1.4998 1.2422

6. Conclusions and Future Works

This paper presents an object-centric hierarchical pose estimation method using se-
mantic HD maps for general autonomous driving. Instead of constructing features based on
conventional sensor data, we propose a method for creating conceptually more straightfor-
ward yet robust object-based features. Furthermore, based on the generated object-centric
features, we introduce a hierarchical estimation method that utilizes HD map information to
perform place recognition followed by pose estimation. Experimental results confirm that
if the proposed method performs well in object recognition, it can achieve high accuracy.
However, the proposed method has several limitations:

• The accuracy of object recognition heavily influences the performance of the proposed
method. While this is expected, given that the technique itself is object-centric, the
lack of specific measures to compensate for low object recognition accuracy can be
considered a drawback.

• Achieving high performance is challenging when the number of objects registered
in the HD map is limited. The proposed method assumes a substantial number of
objects recorded in the HD map for prosperous place and pose recognition, which
may require additional effort, time, and cost.

• If the current position is completely lost, there is no method to rediscover the position
without RTK sensor inputs. This problem is usually called global re-localization, and
the proposed method relies on RTK sensor inputs for correction.

Despite these challenges, the method presented in this paper holds significance, es-
pecially considering the recent advancements in deep learning networks with high object
recognition accuracy. The methodology offers a relatively simple yet high-performance
pose estimation approach if utilized to construct a semantic HD map.

In future research, we aim to address the limitations of the method proposed in this
paper. Because HD map objects power our proposed method, adding more objects inside
the existing HD map is the simplest way to adjust our method efficiently. While this
paper manually conducted this task, recent research has explored methods for accurately
distinguishing objects. Therefore, we will automatically register our desired object in the
existing HD map from these advancements.

Furthermore, to tackle the global re-localization issue mentioned earlier, we intend
to develop a method that involves reading the initial position to find an area where the
vehicle might be present. If there is a specific graph in which each node consists of an
object, we can divide sections using graph clustering. Then, a particular place will be in
a section as a subgraph. Therefore, we can conduct sub-graph matching approaches to find
a place where the vehicle is located.
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