Calibration and Validation of Simulation Parameters for Maize Straw Based on Discrete Element Method and Genetic Algorithm–Backpropagation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Test of Radial Compression of Maize Straw
2.2. Measurement of Contact Mechanics Parameters
2.2.1. Static Friction Coefficient Measurement
2.2.2. Rolling Friction Coefficient Measurement
2.3. Establishment of Discrete Element Simulation Model
2.3.1. Hertz–Mindlin with Bonding Contact Model
2.3.2. Establishment of Simulation Model for Radial Compression of Maize Straw
2.4. Calibration of Simulation Parameters for Maize Straw
2.4.1. The Plackett–Burman Test
2.4.2. Steepest-Climb Test
2.5. Regression Fitting Modeling Based on Machine Learning Algorithms
2.5.1. Principle of BP Neural Network
2.5.2. Sample Construction
2.5.3. BP Neural Network Construction and Training
2.5.4. Optimization of the BP Neural Network Model with Genetic Algorithm (GA–BP)
2.5.5. Data Analysis and Processing
3. Results and Analysis
3.1. Analysis of Plackett–Burman Test Results
3.2. Regression Model Based on Machine Learning
3.2.1. GA–BP Model Training Results
3.2.2. Model Evaluation
3.2.3. GA–BP Optimization Test
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Yakovleva, N.; Camacho-Ferre, F. Analysis of the circular economic production models and their approach in agriculture and agricultural waste biomass management. Int. J. Environ. Res. Public Health 2020, 17, 9549. [Google Scholar] [CrossRef] [PubMed]
- Esposito, B.; Sessa, M.R.; Sica, D.; Malandrino, O. Towards circular economy in the agri-food sector. A systematic literature review. Sustainability 2020, 12, 7401. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- Korai, P.K.; Sial, T.A.; Pan, G.; Abdelrahman, H.; Sikdar, A.; Kumbhar, F.; Channa, S.A.; Ali, E.F.; Zhang, J.; Rinklebe, J.; et al. Wheat and maize-derived water-washed and unwashed biochar improved the nutrients phytoavailability and the grain and straw yield of rice and wheat: A field trial for sustainable management of paddy soils. J. Environ. Manag. 2021, 297, 113250. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, Y.; Liu, G.; Xie, R.; Ming, B.; Yang, Y.; Guo, X.; Wang, K.; Xue, J.; Wang, Y. Estimation of maize straw production and appropriate straw return rate in China. Agric. Ecosyst. Environ. 2022, 328, 107865. [Google Scholar] [CrossRef]
- Lu, H.; Chen, Y.; Zhang, P.; Huan, H.; Xie, H.; Hu, H. Impacts of farmland size and benefit expectations on the utilization of straw resources: Evidence from crop straw incorporation in China. Soil Use Manag. 2022, 38, 929–939. [Google Scholar] [CrossRef]
- Bu, P.; Li, Y.; Zhang, X.; Wen, L.; Qiu, W. A calibration method of discrete element contact model parameters for bulk materials based on experimental design method. Powder Technol. 2023, 425, 118596. [Google Scholar] [CrossRef]
- Coetzee, C.J. Calibration of the discrete element method. Powder Technol. 2017, 310, 104–142. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; An, F.; Wong, H.; Xu, Y. Flow Field Distribution and Morphology Variation of Particles in Planetary Ball Milling. Acta Armamentarii 2022, 43, 876. [Google Scholar]
- Ma, X.; Liu, M.; Hou, Z.; Li, J.; Gao, X.; Bai, Y.; Guo, M. Calibration and Experimental Studies on the Mixing Parameters of Red Clover Seeds and Coated Powders. Processes 2022, 10, 2280. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, F.; Dong, J.; Chen, X.; Liu, Y.; Mi, G.; Wang, T.; Jia, X.; Huang, Y.; Wang, X. Calibration of discrete element parameters of maize root and its mixture with soil. Processes 2022, 10, 2433. [Google Scholar] [CrossRef]
- Jung, H.; Yoon, W.B. Determination and validation of discrete element model parameters of soybeans with various moisture content for the discharge simulation from a cylindrical model silo. Processes 2022, 10, 2622. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, J.; Wang, Y. A Study on the Physical Properties of Banana Straw Based on the Discrete Element Method. Fluid Dyn. Mater. Process. 2022, 19, 1159–1172. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, M.; Xie, J.; Cao, S.; Wu, A.; Wang, Z. Discrete element modeling and physical experiment research on the biomechanical properties of cotton stalk. Comput. Electron. Agric. 2023, 204, 107502. [Google Scholar] [CrossRef]
- Tang, H.; Xu, W.; Zhao, J.; Xu, C.; Wang, J. Comparison of rice straw compression characteristics in vibration mode based on discrete element method. Biosyst. Eng. 2023, 230, 191–204. [Google Scholar] [CrossRef]
- Shi, Y.; Jiang, Y.; Wang, X.; Thuy, N.T.D.; Yu, H. A mechanical model of single wheat straw with failure characteristics based on discrete element method. Biosyst. Eng. 2023, 230, 1–15. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, H.; Liu, P.; He, J. Maize straw cutting process modelling and parameter calibration based on discrete element method (DEM). INMATEH-Agric. Eng. 2021, 63, 461–468. [Google Scholar] [CrossRef]
- Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 2019, 209, 425–436. [Google Scholar] [CrossRef]
- Veza, I.; Spraggon, M.; Fattah, I.R.; Idris, M. Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition. Results Eng. 2023, 18, 101213. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Gao, P.; Yang, B.; Han, Y.; Lian, C. Short-term power generation forecasting of a photovoltaic plant based on PSO-BP and GA-BP neural networks. Front. Energy Res. 2022, 9, 824691. [Google Scholar] [CrossRef]
- Wei, W.; Cong, R.; Li, Y.; Abraham, A.D.; Yang, C.; Chen, Z. Prediction of tool wear based on GA-BP neural network. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022, 236, 1564–1573. [Google Scholar] [CrossRef]
- Liu, D.; Liu, C.; Tang, Y.; Gong, C. A GA-BP neural network regression model for predicting soil moisture in slope ecological protection. Sustainability 2022, 14, 1386. [Google Scholar] [CrossRef]
- Fang, M. Study on the Particle Motion Characteristics and Throwing Mechanism of the Disc Knife Chaff Cutter on Gas-Soild Coupling. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2022. [Google Scholar]
- Xiao, Z.Q. Design and Experimental Study on Dust Removal Device of Straw Feed Harvester. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2022. [Google Scholar]
- Wang, H.Y. Analysis of Heat and Stress Transfer of Compression with Assisted Vibration for Alfalfa Straw Based on Discrete Element Method. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2021. [Google Scholar]
- Yan, D.X. Particle Modelling of Soybean Seeds and the Simulation Analysis and Experimental Study of the Seed-Throwing and Pressing. Ph.D. Thesis, Jilin University, Changchun, China, 2021. [Google Scholar]
- Liu, W.; Su, Q.; Fang, M.; Zhang, J.; Zhang, W.; Yu, Z. Parameters calibration of discrete element model for corn straw cutting based on Hertz-Mindlin with bonding. Appl. Sci. 2023, 13, 1156. [Google Scholar] [CrossRef]
- Wang, H.; Fan, Z.; Wulantuya; Wang, C.; Ma, Z. Parameter calibration of discrete element model for simulation of crushed corn stalk screw conveying. J. Agric. Sci. Technol. 2023, 25, 96–106. [Google Scholar]
- Zhang, F.W.; Song, X.F.; Zhang, X.K.; Zhang, F.Y.; Wei, W.C.; Dai, F. Simulation and experiment on mechanical characteristics of kneading and crushing process of corn straw. Trans. Chin. Soc. Agric. Eng. 2019, 35, 58–65. [Google Scholar]
- Hao, J.J.; Long, S.F.; Li, H.; Jia, Y.L.; Ma, Z.K.; Zhao, J.G. Development of discrete element model and calibration of simulation parameters for mechanically-harvested yam. Trans. Chin. Soc. Agric. Eng. 2019, 35, 34–42. [Google Scholar]
- Liu, Y.C.; Zhang, F.W.; Song, X.F.; Wang, F.; Zhang, F.Y.; Li, X.Z.; Cao, X.Q. Study on mechanical properties for corn straw of double-layer bonding model based on discrete element method. J. Northeast Agric. Univ. 2022, 53, 45–54. [Google Scholar]
- Pang, X.X. Analysis of positioning error of CNC machine tool table based on GA-BP network. China Met. Equip. Manuf. Technol. 2024, 59, 75–77. [Google Scholar]
- Wang, X.; Tian, H.; Xiao, Z.; Zhao, K.; Li, D.; Wang, D. Numerical Simulation and Experimental Study of Corn Straw Grinding Process Based on Computational Fluid Dynamics–Discrete Element Method. Agriculture 2024, 14, 325. [Google Scholar] [CrossRef]
- Zhu, H.B.; Qian, C.; Bai, L.Z.; Li, H.; Mou, D.L.; Li, J.J. Optimaztion of discrete element model of corn stalk based on Plackett-Burman design and response surface methodology. J. China Agric. Univ. 2021, 26, 221–231. [Google Scholar]
- Chen, G.; Tang, B.; Zeng, X.; Zhou, P.; Kang, P.; Long, H. Short-term wind speed forecasting based on long short-term memory and improved BP neural network. Int. J. Electr. Power Energy Syst. 2022, 134, 107365. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Huang, J.; Zhou, H. Fitting analysis and research of measured data of SAW micro-pressure sensor based on BP neural network. Measurement 2020, 155, 107533. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.P.; Tian, Y.D.; Lei, Y. Prediction Models of Coal Bed Gas Content Based on BP Neural Networks and Its Applications. J. China Univ. Min. Technol. 2008, 37, 456–461. [Google Scholar]
Maize Straw | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average Value (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|
Length of maize straw (mm) | 84 | 87 | 86 | 91 | 86 | 87 | 98 | 99 | 93 | 89 | 90 |
Length of maize straw (mm) | 23.64 | 20.82 | 19.48 | 20.04 | 22.22 | 26.47 | 28.16 | 29.29 | 25.02 | 22.66 | 23.78 |
No. | Test Parameter | Code | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
X1 | Poisson’s ratio of maize straw | 0.3 | 0.35 | 0.4 |
X2 | Shear modulus of maize straw (Pa) | 1 × 108 | 1.6 × 108 | 2.2 × 108 |
X3 | Collision recovery coefficient between maize straw | 0.34 | 0.47 | 0.60 |
X4 | Collision recovery coefficient between maize straw and steel plate | 0.38 | 0.52 | 0.66 |
X5 | Normal stiffness coefficient (N/m3) | 5.5 × 106 | 6.5 × 106 | 7.5 × 106 |
X6 | Tangential stiffness coefficient (N/m3) | 5.5 × 106 | 6.5 × 106 | 7.5 × 106 |
X7 | Normal critical stress (MPa) | 4.5 | 5.0 | 5.5 |
X8 | Tangential critical stress (MPa) | 5.2 | 6.0 | 6.8 |
X9 | Bonding radius (mm) | 1.8 | 2.0 | 2.2 |
Level | Parameter | ||
---|---|---|---|
X1 | X2 | X5 | |
−1.682 | 0.293 | 1.413 × 108 | 6.233 × 106 |
−1 | 0.32 | 1.44 × 108 | 6.26 × 106 |
0 | 0.34 | 1.48 × 108 | 6.30 × 106 |
+1 | 0.36 | 1.52 × 108 | 6.34 × 106 |
+1.682 | 0.387 | 1.547 × 108 | 6.367 × 106 |
No. | X1 | X2 | X5 | Relative Error P (%) |
---|---|---|---|---|
1 | 0 | 0 | 0 | 1.82 |
2 | 1 | 1 | −1 | 1.04 |
3 | 0 | 0 | −1.682 | 4.85 |
4 | 1.682 | 0 | 0 | 4.4 |
5 | 0 | 0 | 0 | 2.47 |
6 | −1 | −1 | −1 | 8.76 |
7 | 0 | 0 | 0 | 2.52 |
8 | 0 | 0 | 0 | 1.96 |
9 | −1 | −1 | 1 | 8.93 |
10 | 0 | 0 | 1.682 | 7.15 |
11 | −1 | 1 | 1 | 6.41 |
12 | −1.682 | 0 | 0 | 8.24 |
13 | 1 | 1 | 1 | 7.68 |
14 | 1 | −1 | −1 | 2.39 |
15 | 0 | 0 | 0 | 2.88 |
16 | −1 | 1 | −1 | 5.48 |
17 | 0 | 0 | 0 | 3.43 |
18 | 0 | 0 | 0 | 2.15 |
19 | 0 | 0 | 0 | 2.67 |
20 | 0 | −1.682 | 0 | 7.02 |
21 | 0 | 0 | 0 | 3.11 |
22 | 1 | −1 | 1 | 7.26 |
23 | 0 | 1.682 | 0 | 3.54 |
No. | Parameter | Relative Error P (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | ||
1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 9.14 |
2 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | 22.24 |
3 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 4.49 |
4 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 10.29 |
5 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 28.41 |
6 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 8.64 |
7 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 25.42 |
8 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 15.5 |
9 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 1.33 |
10 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 3.52 |
11 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 6.66 |
12 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 25.29 |
Parameter | Effect | Mean Square Sum | Impact Rate | Significance Order |
---|---|---|---|---|
X1 | 201.083 | 121,304 | 12.28 | 2 |
X2 | 453.217 | 616,216 | 62.37 | 1 |
X3 | 42.9167 | 5525.52 | 0.56 | 9 |
X4 | 99.6167 | 29,770.4 | 3.01 | 6 |
X5 | −190.383 | 108,737 | 11.01 | 3 |
X6 | 63.75 | 12,192.2 | 1.23 | 7 |
X7 | 121.35 | 44,177.5 | 4.47 | 4 |
X8 | 45.2833 | 6151.74 | 0.62 | 8 |
X9 | 101.517 | 30,916.9 | 3.13 | 5 |
No. | Parameter | Peak Compression Force F (N) | Relative Error P (%) | ||
---|---|---|---|---|---|
X1 | X2 | X5 | |||
1 | 0.3 | 1.0 × 108 | 5.5 × 106 | 1437.71 | 25.06% |
2 | 0.32 | 1.24 × 108 | 5.9 × 106 | 1653.79 | 8.72% |
3 | 0.34 | 1.48 × 108 | 6.3 × 106 | 1752.78 | 2.58% |
4 | 0.36 | 1.72 × 108 | 6.7 × 106 | 1744.61 | 3.06% |
5 | 0.38 | 1.96 × 108 | 7.1 × 106 | 2076.45 | 13.41% |
6 | 0.4 | 2.2 × 108 | 7.5 × 106 | 2588.91 | 30.55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, F.; Diao, H.; Liu, Y.; Ji, D.; Dou, M.; Cui, J.; Zhao, Z. Calibration and Validation of Simulation Parameters for Maize Straw Based on Discrete Element Method and Genetic Algorithm–Backpropagation. Sensors 2024, 24, 5217. https://doi.org/10.3390/s24165217
Zeng F, Diao H, Liu Y, Ji D, Dou M, Cui J, Zhao Z. Calibration and Validation of Simulation Parameters for Maize Straw Based on Discrete Element Method and Genetic Algorithm–Backpropagation. Sensors. 2024; 24(16):5217. https://doi.org/10.3390/s24165217
Chicago/Turabian StyleZeng, Fandi, Hongwei Diao, Yinzeng Liu, Dong Ji, Meiling Dou, Ji Cui, and Zhihuan Zhao. 2024. "Calibration and Validation of Simulation Parameters for Maize Straw Based on Discrete Element Method and Genetic Algorithm–Backpropagation" Sensors 24, no. 16: 5217. https://doi.org/10.3390/s24165217
APA StyleZeng, F., Diao, H., Liu, Y., Ji, D., Dou, M., Cui, J., & Zhao, Z. (2024). Calibration and Validation of Simulation Parameters for Maize Straw Based on Discrete Element Method and Genetic Algorithm–Backpropagation. Sensors, 24(16), 5217. https://doi.org/10.3390/s24165217