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Abstract: There is a significant difference between the simulation effect and the actual effect in the
design process of maize straw-breaking equipment due to the lack of accurate simulation model
parameters in the breaking and processing of maize straw. This article used a combination of physical
experiments, virtual simulation, and machine learning to calibrate the simulation parameters of
maize straw. A bimodal-distribution discrete element model of maize straw was established based
on the intrinsic and contact parameters measured via physical experiments. The significance analysis
of the simulation parameters was conducted via the Plackett–Burman experiment. The Poisson ratio,
shear modulus, and normal stiffness of the maize straw significantly impacted the peak compression
force of the maize straw and steel plate. The steepest-climb test was carried out for the significance
parameter, and the relative error between the peak compression force in the simulation test and the
peak compression force in the physical test was used as the evaluation index. It was found that the
optimal range intervals for the Poisson ratio, shear modulus, and normal stiffness of the maize straw
were 0.32–0.36, 1.24 × 108–1.72 × 108 Pa, and 5.9 × 106–6.7 × 106 N/m3, respectively. Using the
experimental data of the central composite design as the dataset, a GA–BP neural network prediction
model for the peak compression force of maize straw was established, analyzed, and evaluated.
The GA–BP prediction model’s accuracy was verified via experiments. It was found that the ideal
combination of parameters was a Poisson ratio of 0.357, a shear modulus of 1.511 × 108 Pa, and a
normal stiffness of 6.285 × 106 N/m3 for the maize straw. The results provide a basis for analyzing
the damage mechanism of maize straw during the grinding process.

Keywords: DEM; neural network; GA–BP; maize straw; peak compression force

1. Introduction

Maize straw is an important renewable resource and feed source for animal husbandry.
With the development of the agricultural circular economy, the recycling of agricultural
solid waste has become an important research direction. The efficient utilization of crop
straw is the key issue in this regard [1–3]. The deep processing and utilization of maize
straw can alleviate the supply pressure of feed and reduce the residue of agricultural solid
waste. It is also significant for promoting the development of biomass energy [4–6]. Using
the discrete element method to establish a maize straw simulation model and carrying
out parameter optimization design of the mechanism can improve straw productivity and
utilization rates and promote the rapid development of straw-processing machinery.

Some researchers have carried out multiple studies on the calibration of the simulation
parameters of agricultural materials. It is necessary to calibrate the relevant input parame-
ters to establish an accurate discrete element parameter model and obtain a better direct
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interaction relationship between the material and the contact material [7–9]. Ma et al. [10]
established a calibration model of mixed parameters for red clover seed and coated powder
using the JCR model and verified the accuracy of the model parameters via experiments.
Zhang et al. [11] constructed a calibration model for the mixed parameters of a maize root
system and soil, providing a reference for the discrete element simulation of maize no-
tillage operations. Jung et al. [12] established a simulation model for the flow parameters of
soybeans with different pore sizes and water content and predicted the flow performance
of soybeans with different water content via experiments. Zhang et al. [13] analyzed the
relationship between different structures and bonding parameters of banana straw and
established a high-precision discrete element model of banana straw. Zhao et al. [14] estab-
lished a discrete element model of cotton straw compression and experimentally verified
that the established model could accurately simulate the compression process of cotton
straw. Tang et al. [15] studied the mechanical properties of rice straws of different lengths
under vibration and non-vibration compression conditions, providing basic data for the
development of straw compression machinery. Shi et al. [16] established a discrete element
model of a wheat straw monomer and conducted physical and simulation experiments on
the properties of wheat straw, such as tensile strength, compression, three-point bending,
and shear stress. Zheng et al. [17] carried out discrete element parameter calibration for
the cutting process of corn stalks. Traditional machine learning models require numerous
datasets to be analyzed to obtain satisfactory results. The backpropagation (BP) neural
network model can use less data to build the model [18,19]. Many scholars have studied the
genetic algorithm (GA)–BP algorithm. Li et al. [20] compared the photovoltaic power gener-
ation prediction model constructed using three neural network algorithms, BP, GA–BP, and
PSO (particle swarm optimization)–BP (backpropagation), and improved the prediction
accuracy of photovoltaic power generation. Wei et al. [21] effectively predicted tool wear
based on a GA–BP neural network model. Liu D et al. [22] compared the accuracy of the BP
and GA–BP neural network models for soil water prediction. The test results showed that
the GA–BP model could be used to predict soil water for ecological protection. However,
the simulation parameters for maize straw calibration using a combination of the discrete
element method, physical experiments, and machine learning have not been consulted.

This article used a combination of physical experiments, virtual simulation, and ma-
chine learning to calibrate the simulation parameters of maize straw. A bimodal-distribution
discrete element model of maize straw was established based on the intrinsic and contact
parameters via physical experiments. Taking the relative error of the peak compression
force from physical tests and simulations as the test index, the Plackett–Burman test,
steepest-climb test, and central composite design test were successively carried out. The
results of the central composite design experiment were used as the dataset. GA–BP was
used for cycle iteration, and the model’s number of cycle iterations was set. After the
iteration was completed, the selection was stopped, and the individual with the closest
fitness was obtained. The accuracy of the GA–BP prediction model was verified via phys-
ical experimentation. The results provide a theoretical basis for analyzing the damage
mechanism of maize straw during the grinding process.

2. Materials and Methods
2.1. Physical Test of Radial Compression of Maize Straw

Natural air-dried maize straw harvested in Xujiazhuang Village, Zhoucun District,
Zibo City, was used to make the experimental materials. As depicted in Figure 1, the variety
was NK 815. During the experiment, 10 stalks were randomly selected, and the leaf sheaths,
bracts, and roots of the corn stalks were removed. The third section of maize straw from
the ground was selected. As shown in Table 1, the length and diameter of the maize straw
were 90 ± 4.92 mm and 23.78 ± 3.21 mm, respectively. The average moisture content of the
maize straw was 8.34%. All the maize straw was transferred into a measuring cylinder, and
the volume of discharged water indicated the volume of the maize straw. The quality of
the maize straw was measured with a balance. The density was 136.4 kg/m3.
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Figure 1. The maize straw.

Table 1. Size parameters of the maize straw.

Maize Straw 1 2 3 4 5 6 7 8 9 10 Average
Value (mm)

Length of maize
straw (mm) 84 87 86 91 86 87 98 99 93 89 90

Length of maize
straw (mm) 23.64 20.82 19.48 20.04 22.22 26.47 28.16 29.29 25.02 22.66 23.78

A radial compression test of the maize straw was conducted using a universal testing
machine, as shown in Figure 2. A corn straw with a length of 90 mm was selected and
placed horizontally in the center of the support base. The experimental loading speed was
20 mm/min. The experiment was stopped after the maize straw was visibly crushed. After
repeating the process 10 times, the peak compression force of the maize straw was 1798 N.
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2.2. Measurement of Contact Mechanics Parameters
2.2.1. Static Friction Coefficient Measurement

The static friction coefficients of the maize straw–maize straw and the maize straw–
steel plate were measured with an inclined-plane instrument [23]. Before the experiment,
the maize straws were neatly and tightly bonded together to form a straw bottom plate.
Each plate was placed on the inclined-plane instrument on a horizontal test bench and stuck
to the testing plane of the inclined-plane tester. The angle of the test plane was adjusted
until the maize straw was observed to slide. The angle on the digital display inclinometer
was recorded, as shown in Figure 3. The static friction coefficient between the maize stalks
was calculated using Equation (1). Each group of tests was repeated 10 times, taking the
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average value as the final value. The static friction coefficients of the maize straw–maize
straw and the maize straw–steel plate were 0.28 ± 0.05 and 0.45 ± 0.08, respectively.

µ1 = tan φ1 (1)

Here, µ1 is the static friction coefficient, and φ1 is the critical angle of the static friction
coefficient, ◦.
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2.2.2. Rolling Friction Coefficient Measurement

The instruments and testing methods used in the measurement experiment of the
rolling friction coefficient were similar to those used for the static friction coefficient [24,25].
The angle of the test plane was adjusted until maize straw rolling was observed. The
angle on the digital display inclinometer was recorded. Each group of tests was repeated
10 times, taking the average value as the final value. The rolling friction coefficients
of the maize straw–maize straw and the maize straw–steel plate were 0.16 ± 0.15 and
0.24 ± 0.24, respectively.

2.3. Establishment of Discrete Element Simulation Model
2.3.1. Hertz–Mindlin with Bonding Contact Model

The Hertz–Mindlin with bonding contact model [26] was used to bond the particles
with a finite size in the maize straw model. A bond could resist tangential and normal
displacement until the maximum normal and tangential shear stress was reached, and
the bond broke. The Hertz–Mindlin contact model was used to calculate the interaction
between particles before bond formation. After the bond was generated at a certain time,
the bond force and torque were set to zero, and the superimposed increment in the bond
force and torque was found in each time step. The normal and tangential strains were
calculated using Equation (2): 

Fn = −
∫

vnSn Aδt
Ft = −

∫
vtSt Aδt

Mn = −
∫

ωnSt Jδt

Mt = −
∫

ωtSn
J
2

δt

(2)

where A = πRB
2 is the contact area between particles (mm2); Fn is the normal force acting

on the particles (N); Ft is the tangential force acting on the particles (N); Mn is the normal
moment of the particle (N·m); Mt is the tangential moment of the particles (N·m); Sn is
the normal bonding stiffness (N/m3); St is the tangential bonding stiffness (N/m3); vn is
the normal velocity of particle motion (m/s); vt is the tangential velocity of the particles
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(m/s); ωn is the normal relative velocity of the particles (rad/s); ωt is the tangential relative
velocity of the particles (rad/s); δt is the time step size (s); J = 0.5πRB

4 is the moment of
inertia of the particles (kg·m2); and RB is the contact radius of the particles (mm).

The bonding force of the maize straw particles mainly depends on five parameters:
the normal stiffness coefficient, the tangential stiffness coefficient, the critical normal stress,
the critical tangential stress, and the bonding radius. To simplify the simulation calculation,
the normal stiffness coefficient of the maize straw particles was equal to the tangential
stiffness coefficient, and the critical normal stress was equal to the critical tangential stress.
When the normal and tangential stresses on the bond were greater than the set values of
the normal or tangential ultimate stress, the bond broke. The calculation formulas for the
normal ultimate stress and tangential ultimate stress are shown in Equation (3). The initial
range was obtained via the simulation of several maize straw particles’ radial compression,
which was the basis for the subsequent simulation test.{

σmax < −Fn
Ab

+ 2Mt
J RB

τmax < −Ft
A + Mn

J RB
(3)

2.3.2. Establishment of Simulation Model for Radial Compression of Maize Straw

In the modeling process, the maize straw was equivalent to an isotropic structure [27,28].
A geometric model of the maize straw particles was created using the Solidworks 2022.
The maize straw model was converted into .* stp format and then imported into EDEM
2018. The bimodal-distribution stacking method was used to build the maize straw model,
as shown in Figure 4. Spherical particles were selected as the base particles of the maize
straw model. The particle radius was set to 1.5 mm. The total number of particles was 3534,
among which the large particles occupied the main spatial position, the small particles
were closely arranged around the large particles, and the particles had a high coordination
number. The adhesive force was stronger, which made the mechanical properties of the
particle groups more similar to the actual situation and reduced the computer simulation
load [29].
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Figure 4. Establishment of the simulation model for maize straw.

As shown in Figure 5, the Hertz–Mindlin model (no slip) was selected as the contact
model between the maize straw and the compression and support base. The simulated
loading speed was 20 mm/min for the maize straw compression. The experiment was
stopped after the maize straw was visibly crushed. The Rayleigh time step was set to
15%, the data saving interval was 0.01 s, and the grid size was three times the minimum
particle radius.
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2.4. Calibration of Simulation Parameters for Maize Straw

The Plackett–Burman test was used to analyze the significance of the simulation
parameters. The optimal range of the significance parameters was determined using the
steepest-climb test. The central composite design was carried out, taking the relative error
between the peak compression force of the simulation test and that of the physical test
as the experimental indicator. A GA–BP neural network prediction model for the peak
compression force of maize straw was established using the experimental data of the central
composite design as the dataset. The GA–BP prediction model was analyzed and evaluated.
The accuracy of the GA–BP prediction model was verified via physical experiments. Finally,
the optimal combination of simulation parameters for the maize straw was obtained.

2.4.1. The Plackett–Burman Test

The parameter range of the Plackett–Burman test was based on the physical experiment
results. The other simulation parameters were found in the relevant literature [30–34]. The
relative error between the peak compression force of the simulation test and that of the
physical test was taken as the test index. The parameters that significantly influenced the
response value were selected via the Plackett–Burman test. The minimum and maximum
values of the test parameters in Table 2 are coded as −1 and +1, representing the low and
high parameter levels, respectively.

Table 2. Plackett–Burman test parameter table.

No. Test Parameter
Code

−1 0 +1

X1 Poisson’s ratio of maize straw 0.3 0.35 0.4
X2 Shear modulus of maize straw (Pa) 1 × 108 1.6 × 108 2.2 × 108

X3 Collision recovery coefficient between maize straw 0.34 0.47 0.60
X4 Collision recovery coefficient between maize straw and steel plate 0.38 0.52 0.66
X5 Normal stiffness coefficient (N/m3) 5.5 × 106 6.5 × 106 7.5 × 106

X6 Tangential stiffness coefficient (N/m3) 5.5 × 106 6.5 × 106 7.5 × 106

X7 Normal critical stress (MPa) 4.5 5.0 5.5
X8 Tangential critical stress (MPa) 5.2 6.0 6.8
X9 Bonding radius (mm) 1.8 2.0 2.2

2.4.2. Steepest-Climb Test

The Plackett–Burman test was used to analyze the significance of the simulation
parameters. Then, the optimal range of the significance parameters was determined by the
steepest-climb test. All other non-significant parameters were averaged. The relative error
between the peak compression force of the simulation test and that of the physical test is
shown in Equation (4):

P =

∣∣∣∣ F − Ff

F

∣∣∣∣× 100% (4)

where P is the relative error between the peak compression force of the simulation test and
that of the physical test (%); F is the peak compression force of the simulation test (N); and
Ff is the peak compression force of the physical test (N).
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2.5. Regression Fitting Modeling Based on Machine Learning Algorithms
2.5.1. Principle of BP Neural Network

The BP (backpropagation) neural network is a multi-layer feedforward neural network
trained using the error backpropagation algorithm, mainly composed of three layers: the
input layer, hidden layer, and output layer [35,36]. Neurons connect each layer to another,
transmitting information between them. The gradient descent method adjusts the weight
and threshold of the neural network via error backpropagation to minimize the network
error. As shown in Figure 6, the input (xn) of each neuron is multiplied by their respective
weights (ωn) and then subtracted from the bias vector (b). The sum of the inputs is passed
through an activation function to obtain a specific neuron output (y).

Sensors 2024, 24, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 6. Neuron model. 

2.5.2. Sample Construction 
The optimal range of the significant influencing factors was obtained via the Plack-

ett–Burman test and the steepest-climb test. The central composite design was carried out 
by taking the relative error between the peak compression force of the simulation test and 
that of the physical test as the experimental indicator. The horizontal coding of the sim-
ulation parameters for maize straw is shown in Table 3. 

Table 3. The horizontal coding table of the simulation parameters. 

Level 
Parameter 

X1 X2 X5 
−1.682 0.293 1.413 × 108 6.233 × 106 
−1 0.32 1.44 × 108 6.26 × 106 
0 0.34 1.48 × 108 6.30 × 106 

+1 0.36 1.52 × 108 6.34 × 106 
+1.682 0.387 1.547 × 108 6.367 × 106 

2.5.3. BP Neural Network Construction and Training 
In the construction process of the BP neural network, the number of input layer 

nodes was determined by the number of input parameters. The number of the output 
layer nodes was determined by the number of output parameters. Multiple hidden lay-
ers are often added between the input and output layers. When the number of hidden 
layers increases, the accuracy increases, but the network structure is complex, and the 
learning efficiency decreases. When the input node of the BP artificial neural network is 
n, the number of hidden layer nodes in the network is selected as 2n + 1 [37]. This article 
adopted a single hidden layer structure, with 7 hidden layer nodes selected. The BP 
neural network model adopted a three-layer network, with a neural network structure 
of 3-7-1. The network topology is shown in Figure 7. 

Figure 6. Neuron model.

2.5.2. Sample Construction

The optimal range of the significant influencing factors was obtained via the Plackett–
Burman test and the steepest-climb test. The central composite design was carried out by
taking the relative error between the peak compression force of the simulation test and that
of the physical test as the experimental indicator. The horizontal coding of the simulation
parameters for maize straw is shown in Table 3.

Table 3. The horizontal coding table of the simulation parameters.

Level
Parameter

X1 X2 X5

−1.682 0.293 1.413 × 108 6.233 × 106

−1 0.32 1.44 × 108 6.26 × 106

0 0.34 1.48 × 108 6.30 × 106

+1 0.36 1.52 × 108 6.34 × 106

+1.682 0.387 1.547 × 108 6.367 × 106

2.5.3. BP Neural Network Construction and Training

In the construction process of the BP neural network, the number of input layer nodes
was determined by the number of input parameters. The number of the output layer nodes
was determined by the number of output parameters. Multiple hidden layers are often
added between the input and output layers. When the number of hidden layers increases,
the accuracy increases, but the network structure is complex, and the learning efficiency
decreases. When the input node of the BP artificial neural network is n, the number of
hidden layer nodes in the network is selected as 2n + 1 [37]. This article adopted a single
hidden layer structure, with 7 hidden layer nodes selected. The BP neural network model
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adopted a three-layer network, with a neural network structure of 3-7-1. The network
topology is shown in Figure 7.
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The results of the central composite design experiment were used as the dataset. The
experimental design and results are shown in Table 4. The total data (21 groups) were
randomly divided into 17 groups (80%) for training, and 6 groups (20%) for testing and
verification to avoid over-training and over-parameterization. In the training process, the
transfer function from the input layer to the hidden layer was selected as the sigmoid
function. The nonlinear damped least-square (LM) optimization algorithm was used in
the training algorithm. The mapminmax function was selected to normalize the input and
output data to eliminate dimensional effects.

Table 4. Experimental design and results.

No. X1 X2 X5 Relative Error P (%)

1 0 0 0 1.82
2 1 1 −1 1.04
3 0 0 −1.682 4.85
4 1.682 0 0 4.4
5 0 0 0 2.47
6 −1 −1 −1 8.76
7 0 0 0 2.52
8 0 0 0 1.96
9 −1 −1 1 8.93
10 0 0 1.682 7.15
11 −1 1 1 6.41
12 −1.682 0 0 8.24
13 1 1 1 7.68
14 1 −1 −1 2.39
15 0 0 0 2.88
16 −1 1 −1 5.48
17 0 0 0 3.43
18 0 0 0 2.15
19 0 0 0 2.67
20 0 −1.682 0 7.02
21 0 0 0 3.11
22 1 −1 1 7.26
23 0 1.682 0 3.54

2.5.4. Optimization of the BP Neural Network Model with Genetic Algorithm (GA–BP)

The genetic algorithm was used to optimize the initial weight and threshold of the BP
neural network model, improve its computational efficiency and prediction accuracy, and
build the collaborative mechanism of the genetic algorithm and BP neural network model.
The GA–BP neural network is a hybrid algorithm combining the genetic algorithm and
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error backpropagation algorithm to train a feedforward artificial neural network, which can
accelerate the convergence speed and avoid local minimization. This network converges
quickly and easily reaches the optimal solution. The process of the GA–BP optimization
algorithm involved using the genetic algorithm to optimize the initial weights and thresh-
olds of the BP network before executing the BP algorithm. After genetic completion, the
optimized initial weights and thresholds were assigned to the BP neural network for up-
dating learning so that the optimized BP neural network could better predict the output of
the function, as shown in Figure 8.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 16 
 

 

and build the collaborative mechanism of the genetic algorithm and BP neural network 
model. The GA–BP neural network is a hybrid algorithm combining the genetic algo-
rithm and error backpropagation algorithm to train a feedforward artificial neural net-
work, which can accelerate the convergence speed and avoid local minimization. This 
network converges quickly and easily reaches the optimal solution. The process of the 
GA–BP optimization algorithm involved using the genetic algorithm to optimize the ini-
tial weights and thresholds of the BP network before executing the BP algorithm. After 
genetic completion, the optimized initial weights and thresholds were assigned to the BP 
neural network for updating learning so that the optimized BP neural network could 
better predict the output of the function, as shown in Figure 8. 

 
Figure 8. The training process of GA–BP optimization algorithm. 

2.5.5. Data Analysis and Processing 
Matlab R2022b software was used as the algorithm-running platform. The predic-

tive performance of the machine learning model was evaluated by the R2, RMSE, and 
MAE. The larger the R2, the higher the model fit. The lower the RMSE and MAE, the 
better the model’s accuracy and stability. GA–BP was used for cycle iteration, and the 
number of cycle iterations of the model was set. After the iteration was completed, the 
selection was stopped and the individual with the closest fitness was obtained. The ac-
curacy of the model was verified via physical experiments. 

3. Results and Analysis 
3.1. Analysis of Plackett–Burman Test Results 

Since many factors affected the compression test between the maize straw and steel 
plate, the Plackett–Burman test was needed to determine the significance of each factor’s 
influence on the radial compression test. The contact parameters between the maize 
straw and steel plate were screened with the peak compressive force as the response 
value. A total of 12 groups of tests were carried out. Each group of tests was repeated 
three times, and the average value was taken. The experimental design and results are 
shown in Table 5. The significance analysis of the Plackett–Burman test results is shown 
in Table 6. The significance analysis revealed that X1, X2, and X5 had a significant impact 
on the peak compression force of the maize straw and steel plate. Therefore, further 
analysis of the influence law of the X1, X2, and X5 factors on the peak compressive force 
was needed. 

  

Figure 8. The training process of GA–BP optimization algorithm.

2.5.5. Data Analysis and Processing

Matlab R2022b software was used as the algorithm-running platform. The predictive
performance of the machine learning model was evaluated by the R2, RMSE, and MAE.
The larger the R2, the higher the model fit. The lower the RMSE and MAE, the better the
model’s accuracy and stability. GA–BP was used for cycle iteration, and the number of
cycle iterations of the model was set. After the iteration was completed, the selection was
stopped and the individual with the closest fitness was obtained. The accuracy of the model
was verified via physical experiments.

3. Results and Analysis
3.1. Analysis of Plackett–Burman Test Results

Since many factors affected the compression test between the maize straw and steel
plate, the Plackett–Burman test was needed to determine the significance of each factor’s
influence on the radial compression test. The contact parameters between the maize straw
and steel plate were screened with the peak compressive force as the response value. A
total of 12 groups of tests were carried out. Each group of tests was repeated three times,
and the average value was taken. The experimental design and results are shown in Table 5.
The significance analysis of the Plackett–Burman test results is shown in Table 6. The
significance analysis revealed that X1, X2, and X5 had a significant impact on the peak
compression force of the maize straw and steel plate. Therefore, further analysis of the
influence law of the X1, X2, and X5 factors on the peak compressive force was needed.
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Table 5. The Plackett–Burman experimental design and results.

No.
Parameter Relative

Error P (%)X1 X2 X3 X4 X5 X6 X7 X8 X9

1 1 −1 −1 −1 1 −1 1 1 −1 9.14
2 1 −1 1 1 1 −1 −1 −1 1 22.24
3 −1 1 1 1 −1 −1 −1 1 −1 4.49
4 −1 −1 −1 −1 −1 −1 −1 −1 −1 10.29
5 1 1 −1 −1 −1 1 −1 1 1 28.41
6 1 1 1 −1 −1 −1 1 −1 1 8.64
7 1 −1 1 1 −1 1 1 1 −1 25.42
8 −1 1 1 −1 1 1 1 −1 −1 15.5
9 −1 1 −1 1 1 −1 1 1 1 1.33

10 −1 −1 −1 1 −1 1 1 −1 1 3.52
11 −1 −1 1 −1 1 1 −1 1 1 6.66
12 1 1 −1 1 1 1 −1 −1 −1 25.29

Table 6. Significance analysis of the Plackett–Burman test.

Parameter Effect Mean Square Sum Impact Rate Significance Order

X1 201.083 121,304 12.28 2
X2 453.217 616,216 62.37 1
X3 42.9167 5525.52 0.56 9
X4 99.6167 29,770.4 3.01 6
X5 −190.383 108,737 11.01 3
X6 63.75 12,192.2 1.23 7
X7 121.35 44,177.5 4.47 4
X8 45.2833 6151.74 0.62 8
X9 101.517 30,916.9 3.13 5

The design scheme and results of the steepest-climb test are shown in Table 7. The
peak compression force increased with the increase in the Poisson ratio, shear modu-
lus, and normal stiffness coefficient of the maize straw. The relative error first increased
and then decreased. The relative error of the third group was the smallest, and the cen-
tral point of the central composite design test was selected. The optimal range inter-
vals for X1, X2, and X5 were determined to be 0.32–0.36, 1.24 × 108–1.72 × 108 Pa, and
5.9 × 106–6.7 × 106 N/m3, respectively.

Table 7. Analysis of steepest-climb test results.

No.
Parameter Peak Compression

Force F (N)
Relative

Error P (%)X1 X2 X5

1 0.3 1.0 × 108 5.5 × 106 1437.71 25.06%
2 0.32 1.24 × 108 5.9 × 106 1653.79 8.72%
3 0.34 1.48 × 108 6.3 × 106 1752.78 2.58%
4 0.36 1.72 × 108 6.7 × 106 1744.61 3.06%
5 0.38 1.96 × 108 7.1 × 106 2076.45 13.41%
6 0.4 2.2 × 108 7.5 × 106 2588.91 30.55%

3.2. Regression Model Based on Machine Learning
3.2.1. GA–BP Model Training Results

The change law of the measured and predicted values of the GA–BP is shown in
Figure 9. The evaluation index R2 was 0.9069, the RMSE was 0.5524, and the MAE was
0.7763, which showed a good performance in model accuracy, stability, and fitting. This
shows that the GA–BP algorithm achieved a better fitting effect in this study and con-
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structed the model with higher precision and less error. This model could be used for
further analysis.
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3.2.2. Model Evaluation

The MSE performance evaluation of the GA–BP algorithm model was carried out, as
shown in Figure 10. The MSE of the model showed a decreasing trend during the training
process. The fitting effect of the model to the training data gradually improved as the
training progressed. The best performance was obtained at the third step of training, which
indicates that the GA–BP model’s training convergence is fast and stable.
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The training, validation, testing, and comprehensive performance changes of the GA–
BP are shown in Figure 11. The correlation coefficients for the training, validation, testing,
and comprehensive data were 0.9930, 0.9994, 0.9989, and 0.9386. This indicates that the
model had a strong fitting effect and good generalization ability. The correlation coefficients
of the data were very close, indicating no obvious overfitting or underfitting. The GA–BP
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algorithm was used to obtain a model with high precision and strong generalization ability,
which could be used for subsequent experimental research.
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3.2.3. GA–BP Optimization Test

The GA–BP algorithm was used for cycle iteration, and the number of cycle iterations
of the model was set to 150 times. After the iteration was completed, the selection was
stopped, and the individual with the closest fitness was obtained. The results show
that the Poisson ratio, shear modulus, and normal stiffness of the maize straw were 0.357,
1.511 × 108 Pa, and 6.285 × 106 N/m3, respectively. The peak compression force simulation
experiment of the maize straw was conducted using the GA–BP algorithm optimized
parameter combination, and the relative error was 1.14%. The established model can be
used for the discrete element simulation of maize straw crushing.

3.3. Discussion

The intrinsic parameters and contact parameters of the maize straw were measured via
physical tests. The static friction coefficients of the maize straw–maize straw and the maize
straw–steel plate were 0.28 and 0.45, respectively. The rolling friction coefficients of the
maize straw–maize straw and the maize straw–steel plate were 0.16 and 0.24, respectively.
The other simulation parameters can be found in the relevant literature. The significance
analysis of the simulation parameters was conducted using the Plackett–Burman experi-
ment. It was found that the Poisson ratio, shear modulus, and normal stiffness of the maize
straw significantly impacted the peak compression force of the maize straw and steel plate.
The steepest-climb test was carried out for the significance parameter, and the relative
error between the peak compression force in the simulation test and that in the physical
test was used as the evaluation index. The optimal range intervals for the Poisson ratio,
shear modulus, and normal stiffness of the maize straw were determined to be 0.32–0.36,
1.24 × 108–1.72 × 108 Pa, and 5.9 × 106–6.7 × 106 N/m3, respectively. A GA–BP algorithm
neural network prediction model for the peak compression force of the maize straw was
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established using the experimental data of the central composite design as the dataset and
was analyzed and evaluated. The accuracy of the GA–BP algorithm prediction model was
verified via experiments. The ideal combination of parameters was found to be 0.357 for
the Poisson ratio, 1.511 × 108 Pa for the shear modulus, and 6.285 × 106 N/m3 for the
normal stiffness of the maize straw.

In this paper, the Rayleigh time step was set to 15%, which was slightly high for a
simulation including breakage. We will change the Rayleigh time step, particle size, and
particle ratio to carry out further research.

4. Conclusions

(1) The intrinsic parameters and contact parameters of the maize straw were mea-
sured via physical tests. The static friction coefficients of the maize straw–maize straw
and the maize straw–steel plate were 0.28 and 0.45, respectively. The rolling friction coeffi-
cients of the maize straw–maize straw and the maize straw–steel plate were 0.16 and 0.24,
respectively. Other simulation parameters can be found in the relevant literature.

(2) The significance analysis of the simulation parameters was conducted via the
Plackett–Burman experiment. It was found that the Poisson ratio, shear modulus, and
normal stiffness of the maize straw significantly impacted the peak compression force of
the maize straw and steel plate. The steepest-climb test was carried out for the significance
parameter, and the relative error between the peak compression force in the simulation
test and that in the physical test was used as the evaluation index. The optimal range
intervals for the Poisson ratio, shear modulus, and normal stiffness of the maize straw
were determined to be 0.32–0.36, 1.24 × 108–1.72 × 108 Pa, and 5.9 × 106–6.7 × 106 N/m3,
respectively.

(3) A GA–BP algorithm neural network prediction model for the peak compression
force of the maize straw was established using the experimental data of the central com-
posite design as the dataset and was analyzed and evaluated. The accuracy of the GA–BP
algorithm prediction model was verified via experiments. The ideal combination of pa-
rameters was 0.357 for the Poisson ratio, 1.511 × 108 Pa for the shear modulus, and
6.285 × 106 N/m3 for the normal stiffness of the maize straw.
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