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Abstract: With the rapid advancement of the Internet of Things, network security has garnered
increasing attention from researchers. Applying deep learning (DL) has significantly enhanced the
performance of Network Intrusion Detection Systems (NIDSs). However, due to its complexity
and “black box” problem, deploying DL-based NIDS models in practical scenarios poses several
challenges, including model interpretability and being lightweight. Feature selection (FS) in DL
models plays a crucial role in minimizing model parameters and decreasing computational overheads
while enhancing NIDS performance. Hence, selecting effective features remains a pivotal concern for
NIDSs. In light of this, this paper proposes an interpretable feature selection method for encrypted
traffic intrusion detection based on SHAP and causality principles. This approach utilizes the results
of model interpretation for feature selection to reduce feature count while ensuring model reliability.
We evaluate and validate our proposed method on two public network traffic datasets, CICIDS2017
and NSL-KDD, employing both a CNN and a random forest (RF). Experimental results demonstrate
superior performance achieved by our proposed method.

Keywords: model interpretability; feature selection; deep learning; random forest; convolutional
neural network; information gain; RFE; SHAP

1. Introduction

As Internet of Things (IoT) technology progresses, an increasing array of IoT devices
offering various innovative services and applications is being developed. This array in-
cludes sensors, actuators, multiple appliances, and consumer-focused devices such as
smartphones, intelligent home devices, and domestic IoT sensors. These devices are often
powered by lightweight operating systems, which may result in constrained processing
power and, as a consequence, diminished security measures. Moreover, their suscepti-
bility to network attacks is heightened by limited communication functions and volatile
connections. The spectrum of cyberthreats they face encompasses but is not confined to
botnets, forceful entry attempts, Denial-of-Service (DoS), and Distributed Denial-of-Service
(DDoS) assaults, along with web-based attacks. Such incursions could compromise IoT
devices’ functionality, expose sensitive data, or even allow malevolent entities to seize
control remotely. Consequently, deploying Network Intrusion Detection Systems (NIDSs)
specifically designed for IoT environments is crucial for their protection.

In recent decades, a variety of machine learning (ML) techniques have been employed
in the realm of NIDSs, including but not limited to decision trees (DTs) [1], Support Vector
Machines (SVMs) [2], and random forests (RFs) [3]. Deep learning (DL), a subset of ML,
has been increasingly integrated into network security [4]. With its superior capability
to discern complex, high-dimensional attributes and to accommodate extensive network
datasets, DL has been instrumental in mitigating the traditionally lower precision associated
with ML. Numerous studies have documented enhanced outcomes by applying both ML
and DL methodologies.
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The mainstream DL neural network structures are often complex, with many layers
and a large number of nodes. For example, Alexie [5], a convolutional neural network
designed for classification tasks, made a breakthrough in the ILSVRC competition in the
early stage. It was composed of five convolution layers and three full connection layers,
with more than 60 million parameters and a model size of more than 240 MB. In addition,
the widely used model VGG16 [6] in the industry has 144 million parameters, and the
model size exceeds 500 MB. Resnet-152 [7] has 57 million parameters, and the model size
reaches 230 MB. Using the above model to classify network packets containing video and
audio requires more than 10 billion floating-point calculations. In addition, because Resnet-
series models have complex branch structures, although their numbers of parameters are
smaller than those of VGG models with flat structures, they take longer in practical training
and inferring. It can be seen that the storage and computing costs of mainstream DL models
are too high for real-time applications with strict delay constraints.

With the popularity of IoT devices and the development of edge computing, in an
actual scenario, many NIDS models are deployed in edge devices, such as edge gateways
and switches. In traffic detection tasks involving gigabit bandwidths, edge devices con-
strained by resource limitations will likely experience significant packet loss and delays.
Such devices fail to satisfy the real-time demands of intrusion detection systems. Con-
sequently, model compression and the minimization of detection latency are critical to
address these challenges.

Feature selection (FS) is a technique for reducing data dimensions, primarily focus-
ing on isolating the most advantageous attributes from the initial dataset. This process
diminishes the data’s dimensionality and the complexity of learning tasks, thereby enhanc-
ing the model’s efficiency. Despite the efficacy of conventional statistical-based feature
selection methods, their application process remains intricate. The computational load es-
calates exponentially in terms of the volume of data and the breadth of feature dimensions,
presenting practical usage challenges.

Drawing on the concept of causality within ML, this study introduces an explainable
artificial intelligence and feature selection method for NIDSs on the IoT. The paper’s
contributions are outlined as follows:

1. The paper introduces a feature selection approach for an intrusion detection model
that handles encrypted traffic, emphasizing the model’s interpretability. Initially, an
explanation of the model, which incorporates the original features, is provided to
determine each feature’s degree of contribution. Subsequently, a subset of features
with a high degree of contribution is chosen as the most favorable subset, in alignment
with specific requirements. Ultimately, this optimal set of features is employed to
refine and retrain the enhanced intrusion detection model.

2. The study conducts an experimental assessment of the suggested FS technique us-
ing two standard classifiers, a convolutional neural network (CNN) and a random
forest (RF), on two widely recognized datasets: NSL-KDD and CICIDS2017. When
juxtaposed with two state-of-the-art (SOTA) feature selection strategies, namely in-
formation gain (IG) [8] and Recursive Feature Elimination (RFE) [9], the findings
indicate the superior efficacy of the proposed FS method.

The subsequent sections of this paper are structured in the following manner: Section 2
delineates the work related to this study. Section 3 details the feature selection approach
proposed for encrypted traffic intrusion detection, emphasizing the interpretability of the
model. Section 4 outlines the experimental framework and the outcomes of the feature
extraction process. Section 5 analyzes the findings from the comparative experiments.
Finally, Section 6 summarizes the paper and offers insights into future directions.
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2. Related Work
2.1. NIDSs Based on DL and ML

Conventional encrypted traffic intrusion detection techniques have developed through
three distinct phases: ports, payloads, and traffic statistics. Yet, the advent of port masking,
random ports, and tunneling technologies have rapidly rendered port-centric detection
methods obsolete. Furthermore, DPI (Deep Packet Inspection) approaches, reliant on
payload characteristics, fall short in addressing encrypted traffic detection due to their
dependency on content matching within packets. Therefore, ML methods for model
training using flow statistical features or timing features emerged, including Naive Bayes
(NB) [10], SVMs [11], DTs [12], RFs [13], KNN, K-means.

Addressing the limitations of conventional ML techniques in the automatic extraction
and selection of traffic features, the research community has pivoted to deep learning
approaches such as multi-layer perceptrons (MLP) [14], CNNs [15], and Recurrent Neural
Networks (RNNs) [16]. These networks undergo supervised training to autonomously
discern the temporal and spatial attributes of traffic, thereby enhancing the precision of
encrypted traffic detection. Zhou [17] introduced an NIDS strategy utilizing a Generative
Adversarial Network for the IIoT, which demonstrated commendable accuracy. Within
intelligent city frameworks, Elsaeidy [18] employed restricted Boltzmann machines, which
were adept at extracting intricate features from network traffic and leveraging these features
to detect a range of DDoS attacks. DL methods excel in autonomously extracting features
and recognizing complex, high-level patterns, thus improving detection capabilities.

However, whether ML or DL, most researchers still use the original features provided
by the dataset for training when designing intrusion detection models. Even though
some features are selected, they are still based on manual or statistical methods. When
facing extensive traffic data, the selected features may change, and the detection time
significantly increases.

2.2. Feature Selection and Model Interpretability

At present, feature selection algorithms can be categorized into three main types:
global optimal, random, and sequence search. The process of global optimal search entails
identifying the most advantageous subset of features from the initial collection, typically
employing methods such as exhaustive search or branch-and-bound techniques [19]. These
approaches work well for low-dimensional feature sets but become computationally expen-
sive as the feature dimensions increase. The random search algorithm randomly selects
feature subsets and applies different processing methods. One approach injects randomness
into the sequence search, as seen in the simulated annealing algorithm [20]. The other
method is entirely random, often called the “completely random” approach. While random
search introduces uncertainty and yields diverse feature subsets, it helps prevent local
optimization and approximates the optimal solution. Frequently employed optimization
methods encompass particle swarm optimization [21], ant colony optimization [22], and
genetic algorithms [23]. In contrast to global search, sequence search does not ensure the
discovery of the best subset of features. It evolved from greedy algorithms and includes
sequential forward selection, sequential backward selection, and bidirectional search strate-
gies. Although sequence search is efficient, the resulting feature subset may be locally
optimal. Some feature selection methods integrate model recognition results during se-
lection, iterating through features to obtain an optimal subset and model. However, this
approach tends to be less efficient.

Deep learning fundamentally differs from machine learning due to its inherent self-
explanatory ability. However, most deep learning models exhibit high complexity, numer-
ous parameters, and limited transparency—they are often called “black boxes”. Under-
standing the decision-making mechanism of these “end-to-end” models poses challenges,
hindering their practical deployment. Researchers have proposed various methods [24,25]
to enhance the interpretability of deep learning models. These approaches fall into three
categories: model visualization, model transformation interpretation, and feature signifi-
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cance analysis. Model visualization directly visualizes weight parameters, neural network
neurons, or feature detectors [26-28]. While weight visualization provides insights into the
model’s final prediction contribution, it lacks universality. Neurons and feature detectors
can also be visualized to reveal input feature changes, but achieving general interpretability
remains challenging. Model interpretability involves examining parameters or feature
statistics within the black-box model [29,30]. For instance, using interpretable decision
models or sparse linear approximations helps establish relationships between inputs and
outputs, achieving interpretable migration. However, this approach does not consider the
black-box model’s internal parameters and relies on direct “end-to-end” approximations.
The feature significance analysis method summarizes and counts each feature according
to the decision results and returns a quantitative index, such as the importance of the
feature [31-33]. In addition, the statistical information of feature significance can be visu-
alized, such as the feature significance map that intuitively shows the essential features.
The feature statistical analysis method mainly interprets the DL model from the feature
level, and the feature is used as a bridge between the interpretability and the model. In
these papers, the feature significance analysis method is applied to the interpretability of
the encrypted traffic identification model.

3. Methodology
3.1. The Framework of Our Explainable Artificial Intelligence and Feature Selection Method

The structure of the method proposed in this study is depicted in Figure 1 and primar-
ily consists of two stages: (1) analysis of the model interpretability and (2) the selection
of features.

Interpretable Model Analysis Feature Selection

— > Model — Prediction Contribution ranking

e T |

Calculate the SHAP ’

value —— Result visualization Feature selection ‘

Figure 1. The structure of our explainable artificial intelligence and feature selection method.

1.  Interpretable model analysis: Initially, the NIDS model undergoes training using the
datasets to enhance its predictive accuracy. Following this, the Shapley value [34]
for each feature within the model is computed, leading to the generation of a visual
representations of the results.

2. Feature selection: according to domain expert experience, the best feature subset of
compliance with causality is selected from the pre-ranking features, and the feature
selection task is completed.

3.2. Model Interpretability
3.2.1. SHAP Value

We introduce a framework for a DL-based NIDS that leverages SHAP values. These
values are instrumental in measuring each feature’s impact on model predictions. The core
concept involves computing the incremental SHAP value as features are incorporated into
the model, thereby facilitating an understanding of feature significance through SHAP
values. Originating from game theory, the SHAP value assesses individual contributions to
collective success in cooperative scenarios. This method is suitable for clarifying predictions
within machine learning frameworks, as the Shapley value quantifies the average impact
of features on the predictions over all conceivable combinations:
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o ¥ ={x],...,x)} is the eigenvalue vector of the instance to be interpreted; x/ is the ith
eigenvalue in vector x’.

e 7'isasubset of the features used in the model.

* M is the number of eigenvalues.

e f(Z') is the predicted value of z’. When f(2’) is calculated, the ith feature is masked,
and then the random instance or the random value of the ith feature is drawn from
the dataset to simulate the ith feature.

*  ¢i(f,x') calculates the weighted average of the marginal contributions of variable x’
across all possible subsets z’. This method ensures that each variable’s contribution is
fairly evaluated, independent of its order of appearance with respect to other variables.

The SHAP value computation is equitable for every feature, allowing for a global
assessment by comparing a feature’s SHAP value across various samples. SHAP, an
additive explanatory model, draws from the Shapley value concept. It assigns a SHAP
value to each feature within a sample, corresponding to the model’s prediction for that
sample. If we represent the ith sample by X;, the jth feature of this sample by y;;, the
predicted value by the model for this sample as Y;, and the baseline value of the model
(usually the mean of the target variables across all samples) as Yj,qe , the SHAP value
adheres to the ensuing equation:

Yi = Yoase + f(Xi1) + f(xi2) + f(Xi3) + f(Xia) + -+ f(Xix) ()

The SHAP value, denoted as f(xj), represents the contribution of the kth feature in
the ith sample, xjx, to the model’s final prediction, Y;. A positive SHAP value, f(x;x) > 0,
signifies that the feature has a beneficial impact on the predicted outcome, enhancing
it. Conversely, a negative SHAP value indicates a detrimental effect, diminishing the
predicted outcome. The primary advantage of SHAP values is their ability to capture feature
impact within each sample, revealing positive and negative correlations. By statistically
summarizing the contribution of each characteristic and ranking them, we obtain a visual
representation. Ultimately, leveraging expert insights, we select the optimal feature subset
that adheres to causality from the pre-ranked features, thereby facilitating the feature
selection task.

3.2.2. The Architecture of Model Interpretability

As shown in Figure 2, the architecture for model interpretation includes two principal
elements. The traditional configuration of the traffic classification model is presented on
the left side. On the right side, the depicted procedure enhances model interpretability
and optimization through modifications to the model’s architecture and settings. This
approach integrates interpretations on both the local and global scales. In Figure 2, the
two block diagrams in the right half part illustrate the interpretable model analysis in
the visualized way called force plot, in which the right top corner presents the result of
global interpretation, accordingly, the right bottom one is local interpretation. In the two
force plots, the red indicates the feature importance as POSITIVE; otherwise, the blue
one is NEGATIVE. The significance of these features can be distinctly shown in such a
visualized manner.
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Figure 2. The proposed method structure.

Local interpretation involves computing and visually representing the contribution of
each feature to the predicted outcome for individual data instances. The formula for this
calculation is expressed as:

Yi = Yoase + f(xi1) + f(xi2) + f(xi3) + f(xia) + - + f(xix) 3)

In this expression, y; signifies the value predicted by the model for sample x;, while
Ypase Tepresents the average of the evaluated values for all samples.

For the global interpretation, the initial step involves computing a matrix where SHAP
values for features are arrayed, assigning each instance to a row and each feature to a
column. In conventional global interpretation practices, the contribution of feature j is
ascertained by aggregating the average Shapley value of feature j across all instances, as
delineated in Equation (4). Subsequently, the SHAP values are arranged in descending
sequence to determine the significance of the features within the model.

M
f(xj) = ;f(xij) (4)

3.3. Validation Method

To detect the effect of feature selection, a validation method was designed. The
methodology outlined in Figure 3 is comprised of a tripartite process: model pretraining,
feature selection, and lightweight model construction.
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Figure 3. The validation method.

3.3.1. Model Pretraining

This study utilized a CNN and an RF for both experimental and comparative analyses.
The random forest algorithm, an ensemble of multiple decision trees, processes each
tree as a classifier to produce N possible classifications for a given input. The random
forest then aggregates these outcomes, with the most frequently occurring classification
being selected as the final decision. A multi-layered, supervised learning neural network
characterizes CNN's architecture. Within its hidden layers, convolutional and pooling
layers act as fundamental components that facilitate the extraction of features. To reduce
the loss function, the network model applies gradient descent, fine-tuning the weights
within the layers to improve prediction accuracy. CNN'’s lower hidden layers are composed
of convolutional and max-pooling layers. In contrast, the upper layers include the fully
connected layer and the logistic regression classifier, akin to those found in a standard
multi-layer perceptron. The CNN model structure employed in this research is illustrated
in Figure 4.
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Figure 4. The CNN model structure.

3.3.2. Feature Selection

To validate the feasibility of the model-based interpretable feature selection method,
we chose the Univariate FS (UFS), Recursive Feature Elimination (RFE), Random Forest
Importance (RFI), Forward Sequential FS (FSFES), and information gain (IG) for comparison.

1. Univariate FS

Univariate filters evaluate and rank a single feature according to a certain criterion,
while multivariate filters evaluate the entire feature space. Univariate FS builds one
decision tree per feature to predict the target, then makes predictions and ranks the features
according to the machine learning metric (roc-auc or mse).

2. Recursive Feature Elimination

In a similar vein, RFE utilizes a recursive approach to progressively diminish the
feature set’s dimensions, thereby isolating the essential features.
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(1) RFE assigns a weight to each feature, followed by the employment of a predictive
model for training purposes utilizing these initial features.

(2) After the acquisition of the feature’s weight, the absolute values of these weights
are computed, and the one with the smallest absolute value is discarded.

(3) This recursive process is perpetuated until the number of features that remain
corresponds to the predetermined requisite.

3. Random Forest Importance

Selecting features by using tree derived feature importance is a very straightforward,
fast, and generally accurate way of selecting good features for machine learning. For
classification, the measure of impurity is either the Gini impurity or the information
gain/entropy. For regression, the measure of impurity is variance. Therefore, when
training a tree, it is possible to compute how much each feature decreases the impurity. The
more a feature decreases the impurity, the more important the feature is. In random forests,
the impurity decrease from each feature can be averaged across trees to determine the final
importance of the variable.

4. Forward Sequential FS

Wrappers use a search strategy to search through the space of possible feature subsets
and evaluate each subset by the quality of the performance on an ML algorithm. Step-
forward feature selection starts by evaluating all features individually and selects the one
that generates the best performing algorithm, according to a pre-set evaluation criterion. In
the second step, it evaluates all possible combinations of the selected feature and a second
feature and selects the pair that produce the best performing algorithm based on the same
pre-set criterion.

5. Information gain

Entropy quantifies the unpredictability of random variables and forms the foundation
of IG. The entropy for random variables is computed in the following manner: Consider
X to be a discrete random variable that assumes a limited set of possible values, with the
probability distribution given by:

P(X=x)=p;,i=123,...n (5)

Then, the entropy of the random variable X is defined as:

H(X)=—)_pi*logp; (6)
1

The calculation of the conditional entropy is as follows. Suppose there is a joint
probability distribution:

P(X:xi,Y:yi):pij,i:1,2,...n;j:1,2,...m (7)

Conditional entropy represents the uncertainty of the random variable Y given a
known random variable X. Define the expectation of the entropy of the conditional proba-
bility distribution of Y for X when X is known: Conditional entropy quantifies the level of
uncertainty associated with a random variable Y when the random variable X is specified.
It is defined as the expected value of the entropy for Y’s conditional probability distribution,
given the known values of X:

H(Y [ X) =} pi=H(Y | x;) ©
Pi:P(X:xi),i:L.,,n
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Information gain, denoted as g(D, A), for a feature A within a training set D, is
characterized by the discrepancy between the empirical entropy of D and the empirical
conditional entropy when A is present.

8(D,A) = H(D) —H(D | A) ©)

Here, H(D) is the empirical entropy of the dataset D, where k represents the number
of categories of Y:

|Ck|

k
C

where |Cy| is the number of instances in class k. And H(D | A) is the empirical conditional
entropy of D given A:
N
H(D|A) =

(11)

where
K | j ‘ | j ‘
ik ik
_ 21 -lo 12
|Di| 82 |Di| ( )

Here, |D;| is the number of instances in which feature A takes on the value corre-
sponding to the ith subset, and |Dj| is the number of instances in subset i that belong to
class k.

3.3.3. Lightweight Model Construction

After dimensionality reduction, a new dataset is formed according to the optimal
feature subset obtained in the previous step. According to the latest dataset, the model
structure is adjusted and retrained to get the lightweight model. The validation set is used
to evaluate the lightweight model. Since the model has gone through an explicable analysis,
its robustness has been dramatically improved and is more in line with the needs of the
actual scenario.

4. Experimental Setup

The experiment aimed to extract pertinent features from the initial dataset to create a
more streamlined one. Python served as the coding language, and training was conducted
using the RF and CNN algorithms provided by the Sklearn and Keras frameworks.

4.1. Datasets Description

The CICIDS2017 dataset, accessible to the public, serves as a repository for intrusion
detection and prevention [35]. Captured within a specific subnet, it mirrors actual network
traffic by undergoing exposure to prevalent, contemporary network attack techniques. It
encompasses both benign and typical attack scenarios that echo those found in authentic
PCAPs (packet capture files). Initially comprising more than 80 features, the dataset was
refined by removing non-numeric attributes, preserving 78 features as the foundational
dataset. Included in the attacks are malicious FTP, SSH, DOS, HeartBleed, web attack
penetrations, botnet activities, and DDoS attacks. For balanced traffic classification data,
eight varieties of malicious attacks were chosen in conjunction with standard traffic. The
dataset specifically boasts 552,373 instances of attack data and 556,556 instances of nor-
mal traffic. Detailed information regarding particular attack types is available in Table 1.
Moreover, the NSL KDD dataset [36] is made up of four distinct files: KDDTrain+.csv,
KDDTrain+20Percent.csv, KDDTest+.csv, and KDDTest-21.csv. The NSL-KDD training
set is designed to exclude repetitive records, thereby averting any bias in classifiers to-
wards frequent instances, and the test set is structured to facilitate precise detection by
removing duplicates.
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The datasets kddtrain+.csv and kddtest+.csv were consolidated, with subsequent
reprocessing and labeling of data into attack and normal types. The count of attack data
stood at 71,445, while normal data comprised 77,054 entries. Initially, the dataset contained
45 features; however, after discarding a number of non-numeric features, 38 features were
retained to serve as the foundational dataset for the training process.

Table 1. Datasets” description (NSL-KDD and CICIDS2017).

Label Attack Type Count
1 Normal flow 556,556
0 DDoS 128,025
0 DoS GoldenEye 10,293
0 DoS Hulk 230,124
0 DoS Slowhttptest 5499

0 DoS slowloris 5796

0 FTP-Patator 7935

0 PortScan 158,804
0 SSH-Patator 5897
Number Attack Type Count
1 Normal 77,054
0 DoS 53,563
0 Probe 14,088
0 R2L 3542

0 U2R 252

4.2. Experimental Setting

Our experimental setting comprised an AMD2700X processor, 16 GB of RAM, an
NVIDIA RTX2070 graphics card, and software environments including CUDA 7.5 and
CUDNN 10.5. We used Python 3 as our programming language of choice. Detailed
parameters of our setup can be found in Table 2. To classify malicious traffic, we performed
comparative analyses using two different algorithms: CNN and RF. We allocated 50% to
training for our dataset and the remaining 50% to testing.

Table 2. Experimental environment parameters.

Category Parameters

GPU NVIDIA RTX2060S
Operating system Win 10

CPU AMD 2700X
CUDA version 7.5

CuDNN version 10.5

4.3. Interpretation of NIDS Models

To confirm the interpretability of both models, we used the SHAP method for explanatory
analysis. The contributions of the features identified by the models were ranked according
to their impact on the application’s performance, confirming the models’ reliability. The
interpretation results of CNN on CICIDS2017 is shown in Figure 5a, accordingly, CNN on
NSL-KDD, RF on CICIDS2017 and RF on NSL-KDD are shown in Figure 5b, Figure 6a,b,
respectively.
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Figure 5. Interpretation results of CNN model. (a) Interpretation results of CNN model on CI-
CIDS2017. (b) Interpretation results of CNN model on NSL-KDD.

()

Figure 6. Interpretation results of RF model. (a) Interpretation results of RF model on CICIDS2017.
(b) Interpretation results of RF model on NSL-KDD.

4.4. Feature Selection

Utilizing the identified key features, we proceeded with further training using CNN
and RF. Regarding the CICIDS2017 dataset, from the initial 78 features, we tested subsets
of 20, 15, and 10 features. Similarly, for the NSL-KDD dataset, we evaluated subsets of 20,
15, and 10 features from the original 38 features.

Figure 7 illustrates the performance accuracy of the CNN model when trained using
various feature selection techniques on the CICIDS2017 dataset, in which all colors of
curves indicate different feature selection methods. The figure reveals that with 20 selected
features, the performance accuracy of the CNN models, as trained by the three distinct
methods, was nearly identical, hovering around 98%. Reducing features to 15 led to a
noticeable decrease in performance for the CNN (RFE) method, and further diminishing
the feature count to 10 resulted in the CNN (RFE) method’s accuracy dropping to 92%,
while the other two methods maintained an accuracy close to 98%. By integrating the
outcomes from Ig and RFE, we prioritized the feature significance across both datasets,
selecting the top 20 for inclusion in Figure 8.

The top 20 features derived from the NSL-KDD dataset revealed a substantial overlap
with the critical features outlined in paper [37]. Moreover, among the top five features,
1-2 align with those identified by conventional feature selection techniques, validating the
practicality of our proposed feature selection approach. Based on the feature contribution
rankings, we reorganized the dataset and conducted recognition performance tests using
CNN and RF, with detailed outcomes presented in Section 5.
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Figure 8. Important features of the datasets.

5. Evaluation and Discussion
5.1. Detection Accuracy of NIDS Models

Leveraging the prominent features identified, we advanced the training with CNN and
RF algorithms. The CICIDS2017 dataset initially comprised 78 features; we curated subsets
of 20, 15, and 10 features for our experiments. Similarly, from the original 38 features of the
NSL-KDD dataset, we extracted subsets of 20, 15, and 10 features to evaluate their efficacy.

Figure 7a depicts the precision of the CNN model when trained with varying feature
selection methodologies on the CICIDS2017 dataset. The observation results indicated that
the accuracy of CNN models trained using six feature selection methods improved when
the number of features was reduced to 20. Reducing the number of features to 15 led to a
decreasing trend in the accuracy of CNN methods, but it still remained higher than when
there were 78 features. As the number of features was further reduced to 10, UFS, RFI, and
IG showed a rapid decline in accuracy, while FSFS and RFE exhibited an upward trend in
accuracy. Meanwhile, although SHAP’s accuracy decreased slightly; it still remained the
highest among the six methods.

Figure 7b presents the accuracy of RF models trained with different feature selection
methods on the CICIDS2017 dataset. SHAP, RFI and IG methods demonstrated relatively
stable accuracy when reducing the number of features, while other methods such as UFS,
RFE, and FSFS showed more significant performance degradation as the number of features
decreased. When the number of features was reduced to 10, there was a slight decrease in
model accuracy, which may be due to the fact that most other feature selection methods
were based on random forest feature selection and had relatively good adaptability to
random forest models.

Figure 9a presents the CNN model’s accuracy on the NSL-KDD dataset. The diagram
indicates that even after applying the SHAP method to reduce features from 38 to 10, the
model’s accuracy remained high at over 0.97. When other methods were used for feature
selection, their accuracy was slightly lower than that of SHAP. Specifically, with feature
counts of 20, 15, and 10, there was a noticeable drop in accuracy for other models, falling
below 0.96, respectively. Overall, the SHAP method demonstrated superior performance.
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Figure 9. Detection accuracy on NSL-KDD.

The accuracy of the RF model on the NSL-KDD dataset is illustrated in Figure 9b. The
UFS-based model exhibited the lowest accuracy with 15 and 20 features, while the SHAP
method yielded nearly identical results. Meanwhile, at a feature count of 10, the RFI, IG,
and SHAP methods’ models showed a slight increase in accuracy. Thus, the outcomes of
the SHAP method were comparatively more favorable.

5.2. Resource Consumption of the NIDS Models

The subsequent figures draw upon two datasets, employing varying feature subsets
and parameters derived from the CNN model training.

Figure 10 demonstrates that reducing the parameter count to 10 can slash the model’s
parameters by half to two-thirds. Furthermore, we conducted a comparative analysis of the
datasets before and after selecting 10 features across multiple dimensions, such as training
duration, inference latency, CPU usage, and post-training model dimensions. Each dataset
underwent quintuple iterations to validate the experimental accuracy, yielding the ensuing
data results.

CICIDS2017 NSL-KDD
25,000
16,000
14,0001
20,000
12,000+
215,000 10,0004
£ 2
§ £ 5000
%10,000 i
6,000
666 4,000+
2,000
0 04
k] 50 0 1] 15 0 k] 0 0 15 10
Number of feature Mumber of feature
(a) Parameters of CICIDS2017 (b) Parameters of NSL-KDD

Figure 10. Number of model parameters.

Figure 11 demonstrates that the original dataset’s training times were approximately
15 and 27 min, with inference times around 6 and 3 s, respectively. Post-feature selection,
these training times were reduced to about 3 and 10 min, and inference times to roughly 2
and 3 s, indicating a substantial decrease in time consumption.

From Figure 11a, we observe a marked reduction in model size. With the CICIDS2017
dataset, reducing features from 78 to 10 resulted in a model size that was one-third of
the original. For the NSL-KDD dataset, cutting down features from 38 to 10 led to a
model size of about half the initial size. This confirmed the efficacy of feature selection in
diminishing model size. As depicted in Figure 11b, CPU usage for both datasets decreased
from roughly 72% to about 50%. This reduction in feature count significantly lowered
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storage requirements and cut down on training and inference times, thereby enhancing
model performance. Hence, selecting an optimal feature subset is crucial for the model’s
practical deployment.

Time consuming of model training(m) Time consuming of Inference(s)
30 7
= ¢ V
20 5
4
15 /¥ /
3
10 2
5 1
0 0
1 2 3 4 5 1 2 3 4 5
e CICIDS2017 e NSL-KDD s C|CIDS2017 e NSL-KDD
CICIDS2017 with feature selection NSL-KDD with feature selection CICIDS2017 with feature selection NSL-KDD with feature selection
(@) Training time (b) Inferring time

Figure 11. Training and inferring times.

In the third phase, we present two figures illustrating the outcomes from two datasets,
each employing distinct feature subsets and parameters derived from the CNN model training.

Figure 10 indicates that a reduction in parameters to 10 can decrease the model’s
parameters by 50% to 66%. Moreover, we comprehensively compared the datasets, pre-
and post-selection of 10 features, across several metrics such as training duration, inference
time, CPU usage, and post-training model dimensions. To confirm the precision of our
experiments, we conducted five trials for each dataset.

Figure 11 reveals that the training durations for the three datasets initially spanned
approximately 31, 15, and 27 min, with inference times of roughly 7, 6, and 3 s, respectively.
Following the application of feature selection, these training times were condensed to about
10, 3, and 10 min, and inference times to nearly 3, 2, and 3 s, respectively, indicating a
notable reduction in temporal expenditure.

Observations from Figure 12a highlight a substantial alteration in model dimensions.
With the CICIDS2017 dataset, the feature count was trimmed from 78 to 10, shrinking the
model to a third of its original size. For the NSL-KDD dataset, the feature reduction from
38 and 39 to 10, respectively, halved the model size. This underscores the effectiveness of
feature selection in minimizing model scale. As depicted in Figure 12b, CPU usage for all
datasets decreased significantly from around 72% to approximately 50%.

The size of the model (MB) The average utilization of cpu (%)

18 60

16
50

12 40
30
0.8
0.6 20
0.4

10
0.2

CICIDS2017 NSL-KDD CICIDS2017 NSL-KDD

m78/38 20 w15 10 m78/38 20 w15 10
(a) The size of the model (b) The average utilization rate of CPU

Figure 12. Resource consumption.
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Figure 13 illustrates the trends in accuracy, CPU usage, and model size for the SHAP
feature selection method proposed in this paper under varying numbers of features. There
are three sets of data represented: accuracy, CPU usage, and model size. To facilitate the
observation of the trends, the original values have been appropriately scaled to avoid issues
with magnitude. From left to right on the x-axis: As the number of features decreases,
information loss leads to a gradual decline in accuracy. The CPU usage and model size both
show a decreasing trend. This indicates that in smaller models, while accuracy is affected,
the computational resources required are also reduced, achieving a more lightweight model.

Trade-off between accuracy and effiency of SHAP FS

l CPU Used
\ l l ' Accuracy
Model Size
20 15 10

78/38

m Model Size Accuracy CPU Used
Figure 13. Trade-off between accuracy and efficiency of SHAP FS.

These findings underscore the importance of meticulous feature selection in enhancing
our CNN model’s efficiency by curtailing storage requirements, training and inference
times, and bolstering model performance. Thus, it underscores its critical role in the model’s
practical deployment.

6. Conclusions and Future Work

Network intrusion detection systems are vital elements within network manage-
ment and security, with deep learning standing out as a superior method for extracting
high-dimensional features and playing an essential role in NIDSs. Despite this, the rapid
evolution of network technologies has led to a surge in network traffic volumes. Deep learn-
ing models, known for their intricate structures and extensive parameters, face challenges
such as packet loss and delays during numerous traffic detection tasks, which impede their
ability to fulfill real-world demands. Feature selection is a potent strategy for reducing
data dimensions and simplifying tasks, thereby boosting model performance. This study
introduced an interpretable technique for feature selection in intrusion detection, explicitly
tailored for analyzing encrypted traffic, aligning with the principles of causality.

Initially, we interpreted the original model to ascertain each feature’s influence. Follow-
ing this, we sorted features by their level of impact and selected a subset that significantly
aided the process, meeting the set criteria for an optimal subset. Subsequently, we refined
an intrusion detection model with this chosen feature set for network traffic analysis. Our
experiments, which included both innovative and established feature selection methods, uti-
lized two models—a convolutional neural network (CNN) and a random forest (RF)—and
two datasets (KDD-NSL and CICIDS2017) for validation. The findings confirmed that our
method’s optimal feature subset sustained high accuracy in malicious traffic classification
while streamlining the model. Notably, our approach secured over 98% accuracy, even
with ten features in the screening. We reduced the dataset’s features from 78 to 10, halving
the training/inference duration, and cutting model parameters by over 30%, significantly
economizing storage. Feature selection thus markedly improved the classification efficacy
of malicious traffic models.

Nonetheless, our current experiments are confined to offline feature extraction. Future
endeavors will focus more on real-time network feature extraction and traffic categorization
to ensure our findings are effectively transferable to practical scenarios.
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