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Abstract: The goal of this study is to determine the feasibility of a wearable multi-sensor positioning
prototype to be used as a training tool to evaluate rowing technique and to determine the positioning
accuracy using multiple mathematical models and estimation methods. The wearable device consists
of an inertial measurement unit (IMU), an ultra-wideband (UWB) transceiver, and a global navigation
satellite system (GNSS) receiver. An experiment on a rowing shell was conducted to evaluate the per-
formance of the system on a rower’s wrist, against a centimeter-level GNSS reference trajectory. This
experiment analyzed the rowing motion in multiple navigation frames and with various positioning
methods. The results show that the wearable device prototype is a viable option for rowing technique
analysis; the system was able to provide the position, velocity, and attitude of a rower’s wrist, with a
positioning accuracy ranging between ±0.185 m and ±1.656 m depending on the estimation method.

Keywords: rowing; ultra-wideband (UWB); GNSS; inertial sensors (IMU); inertial navigation system
(INS); wearable technology

1. Introduction

The objective of most competitive rowing is to complete a 2000 m course in the fastest
time. Each stroke must be efficient, and each phase must be executed to perfection. The
stroke is a movement that goes through four main phases, the catch, the drive, the finish,
and the recovery. Rowing technique has been widely researched and evaluated based on
the rowing stroke [1–5]. Baudouin and Hawkins concluded that the propulsive force, that
directly affects boat velocity, occurs at the oar blade, which is affected by the force and
movement of the rower at the handle [5]. Therefore, looking at the oar handle neglects the
athlete’s anthropometrics and analyzes only the quality of the stroke. Past research has
demonstrated that oar handle kinematics correlate with the rower’s technique and skill
level [1,4]. Handle kinematics have been measured in terms of stroke length, stroke rate,
handle velocity, and handle acceleration [4–11]. However, handle positioning is an area
that has not been widely explored for estimating these metrics. Additionally, in crew boats,
handle position is of great relevance because it can be used to determine the synchrony of
the athletes [6,12–14].

Inertial sensors are the most common type of devices used to measure the kinematics
of handles in rowing [2,7]. A triad of inertial sensors coupled with an estimator is called an
inertial navigation system (INS) [15]. In the context of sport, an INS is often used to estimate
kinematic parameters that represent the orientation of a body segment or sport equipment
in an inertial frame [16]. Therefore, using an INS to track the motion of the oar handle
during the rowing motion is an appropriate approach. However, an INS solution degrades
with time due to sensor biases and process errors because it integrates accelerations and
angular rates to determine velocity, position, and attitude [15]. Specifically for rowing, one
study used inertial and surface electro-myography sensor networks placed on the body
of an athlete to identify the muscle activity and acceleration at each stroke phase [6]. This
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method yielded an understanding of muscle recruitment sequencing and their correlation
with the stroke cycle [6]. Moreover, it allowed for athlete synchronization analysis in crew
boats [6]. However, this depends on sensor placement and rower’s anthropometrics and
does not evaluate the motion of the handle. Oar kinematics provide important information
about rowers’ technique. Reference [4] developed a sensor network consisting of three
IMUs; two of these sensors were placed on the oars near to the oarlock, and the last
one was placed at the middle of the boat in front of the rower. Reference [4] assessed
the technique of 18 rowers based on stroke rate, stroke length, recovery/drive ratio, and
feathered/squared blade ratio. Most of the metrics for the results are based on the oar
angles measured by the inertial sensors. The results demonstrated that IMUs can be used
to obtain important information about oar kinematics. The same research group published
two other studies relevant to rowing technique analysis based on inertial sensors [10,11].
In [10], a mobile phone was strapped onto an oar to evaluate stroke length based on the oar
angle measured on the phone’s IMU and comparing the oar angle to a reference trajectory
obtained from a potentiometer [10]. Furthermore, in [11], an IMU was placed inside an oar
(instead of a mobile phone) and measured the oar orientation throughout a stroke using an
integration algorithm; the model was validated with a reference trajectory obtained from a
potentiometer located on the oarlock. This series of studies revealed that inertial sensors
can be used in many ways to evaluate rowing technique, especially when placed on the
oar. However, none of these papers evaluated the position of the handle, showing a gap in
the literature that this article will address. For applications in pedestrian navigation (i.e.,
running and jogging), pedestrian dead reckoning (PDR) is a method that has been used
to improve the navigation performance of low-cost INS based on the periodic motion of
the human gait [15]. In addition to PDR, INS errors are typically controlled with external
aiding sources of position and velocity, such as GNSS and UWB [17]. Moreover, PDR has
been adapted to sports with periodic motions such as cycling [18]; thus, a similar approach
is explored for rowing in this study called rowing dead reckoning (RDR).

Moreover, in rowing, radio-frequency-based sensors, such as GNSS and UWB, have
not been implemented in technique analysis nor used to control INS errors [2]. GNSS has
been used only to track the position and velocity of boats during competitions and train-
ing [19–21]. Differential GNSS (DGNSS) has been used as a reference trajectory to validate
positioning systems and models [22,23]. Carrier-phase DGNSS can achieve centimeter-level
accuracy in open-sky conditions [15], thus making it an appropriate method for validat-
ing positioning results. Ultra-wideband (UWB) ranging is a method used for indoor and
outdoor localization. Double sided two-way ranging (DS-TWR) is a process that requires
the exchange of four messages between a tag and an anchor to estimate the time of arrival
(TOA) between messages. Using this process avoids the need for clock and frequency
synchronization between tag and anchor [24]. In this paper, a DS-TWR-TOA method is
used to obtain distance measurements between two anchors and a single tag. Our previous
work studied the validity of UWB to track handle motion indoors on a rowing machine [24].
The system achieved an accuracy of ±0.21m using a periodic extended Kalman filter (PEKF)
in a two-dimensional frame [24]. This paper further explores the system and the model in
an outdoor setting and expands the solution to a three-dimensional frame. This study de-
termines whether a wearable positioning system prototype (WPP) that uses UWB ranging,
inertial sensors, and a GNSS receiver is a viable tool for rowing technique analysis based on
the positioning of the oar handle during the rowing motion. This paper proposes and com-
pares five solutions: UWB, standalone INS, RDR INS, GNSS-aided INS, and UWB-aided
INS using a carrier-phase DGNSS as a reference.

The goal of this study is to show that the WPP can fill the gap in the literature by
providing information of the position of the oar handle, while demonstrating that radio-
frequency technologies such as UWB and GNSS can be used as an accurate source of
technique evaluation in rowing. The remainder of this paper is organized as follows:
Section 2 describes the WPP and its specifications and covers the mathematical models and
algorithms implemented to obtain the handle position in three dimensions. Section 3 shows
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the evaluation and results using each of the methods, and Section 4 provides conclusions
and recommendations.

2. Materials and Methods
2.1. System Description

The WPP consists of two sensor modules, one to access the output of the GNSS data
and the other for the UWB and inertial measurement unit (IMU) measurements. The
data are transferred in parallel to a logging personal computer (PC). The entire system
is powered by a 5V USB power bank. Figure 1 shows the WPP’s components ((a) all
components, (b) components ready to wear, (c) components on rower) and Table 1 shows
the sensor specifications.
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Table 1. Sensor specifications of positioning system.

Sensor Manufacturer Model Description Data Rate Accuracy

UWB Receiver Decawave DW1000 Single-chip wireless
transceiver 50 Hz ±10 cm

MEMS IMU InvenSense MPU6050 3-axis gyroscope + 3-axis
accelerometer 50 Hz Accel.: 4 g

Gyro.: 500 deg/s

GNSS Receiver U-Blox ZED-F9P Multi-band high
precision GNSS module 25 Hz RTK mode: ±0.01 m

+ 1 ppm CEP

GNSS Antenna U-Blox ANN-MB1 Multiband L1/L5 25 Hz N/A

The microcontrollers used for the sensor modules are a C099-F9P and a NUCLEO-
F446RE [25,26]. They were selected because the C099-F9P was specifically designed by
U-Blox to easily access GNSS data from the ZED-F9P chip [27] while the NUCLEO-F446RE
has available connections which allow for high data rate transmission between UWB radios
and reception of IMU measurements simultaneously.

A Raspberry Pi (RPi) with a Pimoroni Explorer Hat (PEH) was selected as the logging
computer due to its compactness and low power requirements. The RPi is controlled
using VNC Viewer, which is a remote desktop application. The purpose of using a remote
desktop is to eliminate additional hardware (i.e., a screen, mouse, and keyboard) and easy
monitoring of the logging process while the user is wearing the WPP. The addition of the
PEH is to allow the user to start and stop the logging functions with touch buttons [28].

The output is two log files, one for each module. The UWB/IMU file is a text file with
the information of the source (i.e., transmitter ID), the distance observations from the UWB
ranging, and the IMU measurements. The GNSS module outputs a customized binary
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format that can be transformed into a receiver independent exchange (RINEX) format and
then processed using the open-source software RTKLIB version 2.4.2 [29].

2.2. Methods

Oar handle kinematics can be described in terms of position, velocity, and attitude
angles, expressed in a three-dimensional space. The combination of these terms is often
referred to as a navigation solution [30]; it is possible to represent this solution in different
coordinate frames. This section introduces the navigation frames used in this study, an
overview of attitude angles and coordinate transformations, the mathematical models
for processing ultra-wideband ranging measurements, three algorithms used for inertial
navigation, and the experimental setup. Figure 2a,b show the boat setup schematic showing
the placement of the components with respect to the boat coordinate system.
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2.2.1. Body Frame

The sensor or body frame aligns with the axes of the moving object [31]. This study
assumes that the origin of the sensor frame (GNSS antenna, UWB antenna, and IMU origin)
coincides with the center of gravity of the sensor device which in this case is mounted to
the wrist of the rower. This is represented with the superscript and the subscript denoted
as [■]bb.

East-North-Up (ENU)

The ENU frame is a local-level or navigation frame [31]. The general representation of
a navigation frame is described with the superscript and the subscript denoted as [■]nn. In
this paper, ENU uses the World Geodetic System (WGS84) as the reference model for the
Earth and has its origin determined by the location of a GNSS base station a few hundred
meters away. The coordinate system has the x-axis pointing in the direction of the east, the
y-axis towards the true north, and the z-axis in the up direction.

Boat Frame (XYZ)

The boat frame has an origin determined in front of the rower on the rowing shell.
The boat frame has the x-axis pointing in the direction along the boat towards the bow
(back of the rower), the y-axis towards the starboard (left of the rower), and the z-axis in
the vertical direction.

For inertial navigation, it is important to consider the properties of the coordinate
systems. The ENU frame is a quasi-inertial frame that allows for inertial navigation.
However, the XYZ frame is not inertial; this is because the boat is neither stationary
nor moving at a constant speed and instead accelerates and decelerates during different
phases of each stroke. Therefore, in order to obtain an inertial navigation solution, this
paper determined a boat frame that is instantaneously coincidental with the ENU frame
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at a moment where it is assumed the rower and oar are momentarily not moving (i.e.,
translating or rotating), thus creating a static frame for inertial navigation per stroke.

Attitude Angles and Coordinate Transformations

It is possible to transform one system to another one by carrying out a rotation about
each of the three rotational axes [31].

Roll (ϕ) is the angle between the body’s y-axis (yb) and the horizontal plane.
Pitch (θ) is the angle between the body’s x-axis (xb) with the horizontal plane.
Azimuth, yaw, or heading (ψ) is the difference between the forward axis with respect

to the north in ENU or the along track for the boat frame. Azimuth also represents the
rotation angle about the body’s z-axis (zb). The three terms are used interchangeably in
this paper.

The relationship between the navigation frame and the body frame can be described
with a transformation matrix Rb

n. The rotation sequence in this paper is pitch-roll-azimuth [32].
To do the opposite transformation, the transpose of the rotation matrix is used [30,31].

Rb
n =

cos ψ cos θ − sin ψ sin θ sin ϕ
− sin ψ cos ϕ

cos ψ sin θ + sin ψ sin ϕ cos θ

sin ψ cos θ + cos ψ sin θ sin ϕ
cos ψ cos ϕ

sin ψ sin θ − cos ψ sin ϕ cos θ

− sin θ cos ϕ
sin ϕ

cos θ cos ϕ

 (1)

2.2.2. UWB Positioning Models

The models presented in this study are based on parametric least squares (LS) and the
extended Kalman filter (EKF). These models include trilateration, periodic least squares
(PLS), constant velocity EKF, and periodic EKF (PEKF). These models were validated for
indoor rowing handle tracking in our previous work [24].

Importantly, trilateration gives a single position estimate per epoch that is used as the
input of PLS, constant velocity EKF, and PEKF. Moreover, both the constant velocity EKF
and PEKF are filtered versions of the trilateration model; however, PEKF uses the solution
from PLS as an initialization method.

Trilateration

The WPP receives two UWB ranging measurements at every epoch, one from each
transmitter placed in front of the rower. From the boat setup and geometry shown in
Figure 2a, having two observations and two unknowns gives a unique two-dimensional
solution (x- and z-axis). However, the motion is a three-dimensional movement. Therefore,
a range constraint (constant distance measurement) from the oarlock to the WPP is added
to provide a third observation and obtain a three-dimensional solution.

Each range measurement can be expressed as a function of the known and unknown
positions:

f (x) =
√(

xtx
i − xrx

)2
+
(
ytx

i − yrx
)2

+
(
ztx

i − zrx
)2 (2)

where xtx
i , ytx

i , and ztx
i are the X-, Y-, and Z-coordinates of the transmitter (or oarlock) i,

respectively, and xrx
i , yrx

i , and zrx
i are the unknown coordinates of the WPP.

The geometry of the WPP and the transmitters contributes to the accuracy and preci-
sion of the trilateration solution, and each set of estimated coordinates is unique. Our pre-
vious work showed that the system achieved an accuracy of ±0.21 m in a two-dimensional
frame [24].

Periodic Least Squares (PLS)

PLS is a nonlinear model with a function f (x, t) that describes a periodic wave that
models the handle motion during the rowing stroke. This model is based on the work
of [33–35] and receives the position estimates of trilateration as input. The number of
measurements that represent a stroke cycle varies depending on the stroke rate. A fixed
number is manually selected for the first stroke cycle of each test.
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The function returns a specific waveform for each axis, and it can be represented in
polar coordinates as

f (x, t) = A0 + A1 cos(ωt + ϕ1) + A2 cos(2ωt + ϕ2) (3)

where A0 is the direct current (DC) offset, A1 is the first harmonic amplitude, ω is the
angular frequency, t is the time, ϕ1 is the first harmonic phase angle, A2 is the second
harmonic amplitude, and ϕ2 is the second harmonic phase angle. Thus, the parameter
vector (x̂) becomes

x̂ = [A0 A1 A2ϕ1 ϕ2 ω]T (4)

The Jacobian matrix of (5) forms the design matrix Hk+1 and can be written at time
k+1 as

Hk+1,1 = 1
Hk+1,2 = cos(ωtk + ϕ1)
Hk+1,3 = cos(2ωtk + ϕ2)

Hk+1,4 = −A1 sin(ωtk + ϕ2)
Hk+1,5 = A2 sin(2ωtk + ϕ2)

Hk+1,6 = −A1tk sin(ωtk + ϕ1)− 2A2tk sin(2ωtk + ϕ2)

(5)

This method estimates the position of the handle throughout a full cycle (stroke) indepen-
dently for each axis (i.e., each axis has independent parameter vectors including frequency).

Extended Kalman Filter (EKF) Overview

EKF is an iterative estimation method for nonlinear functions that has been widely
used in navigation. EKF extends the LS estimation with the prediction of the state vector,
commonly known as the dynamic model [34–37]. The Kalman filter loop is shown in
Figure 3.
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Constant Velocity EKF

The EKF with constant velocity assumes that the object being tracked is moving at a
constant speed. The state vector is formed by two parameters, position (x, y, z) and velocity
(vx, vy, and vz):

x̂k =
[
x y z vx vy vz

]T (6)

In the dynamic model, the state transition matrix Φk+1 shows the relationship between
time and distance to predict the velocity and position of the handle at time k:

Φk+1 =



1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (7)

The time between epochs is determined as ∆t = tk − tk+1. When the measurement
vector zk+1 is also formed by position and velocity, the design matrix Hk+1 is a 6 × 6
identity matrix.

Periodic EKF (PEKF)

PEKF is an extended version of PLS that includes a prediction in the algorithm.
The filter is initialized with PLS for fast convergence. After the filter is initialized, the
measurements from trilateration are the input.

The state vector x̂ and the design matrix Hk+1 in PEKF are the same as in
Equations (4) and (6), and the transition matrix Φk+1 is a 6 × 6 identity matrix. This
dynamic model is selected because of the assumption that the best prediction is that the
next stroke is similar to the previous stroke. This assumption is vulnerable to changes in
frequency, but the addition of process noise allows the filter to place more weight on the
new set of observations than on the prediction from the previous stroke.

2.2.3. Strapdown Inertial Navigation System (INS)

An INS has three main components: an IMU, a pre-processing unit, and a mecha-
nization module [31]. In strapdown systems, the sensors are rigidly mounted onto the
body of the moving object. This study uses a low-cost micro-electromechanical system
(MEMS) IMU formed by two tri-axial sensors: an accelerometer and a gyroscope. The
mechanization module consists of a series of differential navigation equations that can be
written in the local-level frame as follows [30,31]:

.
rl

.
V

l

.
Rl

b

 =

 V l

Rl
b f b + gl

Rl
bΩb

ib

 (8)

where
.
[r

l
,

.
V

l
,

.
R

l
b]

T are the time derivatives of the navigation states: position, velocity,
and attitude [31]. f b and Ωb

ib are the specific force and skew-symmetric matrix of the
angular rate measurements (ωb), respectively. V l is the velocity vector and gl is the normal
gravity vector.

The mechanization module is initialized with a set of measurements ( f b and ωb) and
an initial alignment using attitude angles. The initial roll and pitch can be calculated using
the accelerometer measurements when the device is at rest, with the following equations:

ϕ = tan−1

 f b
y√

f b2
x + f b2

z

 (9)
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θ = tan−1

(
− f b

x
f b
z

)
(10)

In this study, the azimuth is defined by the user because the MEMS-grade IMU does not
have the ability to provide an orientation. A step-by-step description of the mechanization
process can be found in [31].

2.2.4. INS Loosely Coupled Integration

Loosely coupled integration is a cascade architecture where an aiding source is used to
estimate sensor biases and errors from the mechanization process by introducing a Kalman
filter [15,17,37,38].

The output of the loosely coupled integration is the corrected inertial navigation
solution (i.e., position, velocity, and attitude) and the estimates of the sensor biases. This
paper uses a closed-loop error-state Kalman filter algorithm. Figure 4 illustrates the loosely
coupled integration process. The Kalman filter state vector can be described as

δx =


δrn

eb
δVn

eb
δΨn

nb
b f
bω

 (11)

where b f and bω are the accelerometer and gyroscope biases, respectively. It is assumed
that the bias states are modeled as first-order Gauss-Markov processes [31].
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The state transition matrix can be written as

Φk+1 =


I3×3 I3×3∆t 03×3 03×3 03×3

03×3 I3×3 −Ω
(

f̂ n
ib

)
∆t R̂n

b ∆t 03×3

03×3 03×3 I3×3 03×3 R̂n
b ∆t

03×3 03×3 03×3 I3×3 − βb f
∆t 03×3

03×3 03×3 03×3 03×3 I3×3 − βbω
∆t

 (12)

where βb f
and βbω

are the diagonal matrices of the inverse of the correlation time (τ) for
the sensor biases.

βb f
=


1

τb fx

0
0

0
1

τb fy

0

0
0
1

τb fz

 and βbω
=


1

τbωx
0
0

0
1

τbωy

0

0
0
1

τbωz

 (13)

The measurement vector is the difference between the INS and the aiding source
positions:

zk+1 = rINS − rAiding = δr (14)
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And the design matrix Hk+1 can be defined as follows:

Hk+1 = [I3×3 03×3 03×3 03×3 03×3] (15)

2.2.5. Rowing Dead Reckoning (RDR)

We propose an analogous model to PDR to estimate the kinematics of oar handles that
we call rowing dead reckoning (RDR). The first step of RDR is to identify a finish position
(new stroke).

At the finish position, the magnitude of the acceleration in the accelerometer’s x-axis
is the largest (because the propulsion has ended and the boat is not decelerating). Similarly,
the angular velocity on the gyroscope’s z-axis shows a well-defined peak (since the finish
corresponds to a change in direction of the oar). In Figure 5, the two peaks are highlighted
to show their correlation. This information is used to determine a new stroke and reset the
initial conditions of the mechanization equations to minimize the accumulation of errors.
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At the finish, it is assumed that the rower and oar are momentarily not moving (i.e.,
translating or rotating) in an instantaneous XYZ frame defined for the next stroke that
coincides and aligns with the ENU frame at that instant.

RDR Stroke Detection Algorithm:

1. procedure StrokeDetection (time (t), accelerometer ( f b
ib), gyroscope (ωb

ib))
2. Define threshold for acceleration magnitude, Tf

3. Define threshold for angular velocity, Tw
4. Choose sliding window size, N

5. Calculate mean values at time (t), f b
ib(t) , ωb

ib(t)

6. If { f b
ib(t) > Tf and ωb

ib(t) > Tω and f b
ib(t) > f b

ib(t − 1)} then
7. If { t − (t − 1) < 1s} then
8. continue
9. End if
10. Declare new stroke at time (t)
11. End if
12. End procedure
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The RDR stroke detection algorithm requires one to compute the mean values of
sensor readings to reduce noise and prevent false stroke detections. Additionally, a time
constraint of one-second separations between strokes is applied to prevent false detections.
Then, mechanization equations from strapdown INS are applied. The orientation of the
IMU at the instant that the recovery is detected, set to assumed values.

The next section describes the experimental setup for testing the WPP.

2.2.6. Experiment

A test of the WPP was conducted at the Victoria City Rowing Club (VCRC) using a
Hudson single scull, three Topcon HiPer SR multi-band GNSS receivers, and the proposed
WPP. In Figure 2a,b, the U-blox GNSS receiver in the WPP serves both as an example of a
low-cost wearable GNSS device (using single-frequency pseudo-ranges only) and a source
for the reference trajectory (using dual-frequency carrier-phase observations).

Two of the Topcon receivers are located on the stern and on the bow, and the third
is used as a base station for post-processing with a sampling rate of 10 Hz. The stroke
rate maintained for this experiment was between 18 and 36 strokes per minute, meaning
a maximum frequency of 0.6 Hz, well below the frequency of the sampling frequency of
the reference trajectory. In terms of the UWB radios and the U-blox receiver, the sampling
frequency was 50 Hz and 25 Hz, respectively.

The output of these receivers established the absolute position and orientation of
the rowing shell and the transformation between the navigation and body frame of
the shell. RTKLIB was used to post-process the data in carrier-phase DGNSS to obtain
centimeter-level accuracy.

The carrier-phase DGNSS solution obtained in post-processing was used as the refer-
ence trajectory to evaluate the results obtained from the models presented in this paper.
The expected accuracy from the Topcon receivers for DGNSS was 10 mm +0.8 ppm and
15 mm + 1.0 ppm for the horizontal and vertical axes (1σ), respectively [39]. For the WPP,
the U-blox receiver specified an accuracy of 12 mm +1.2 ppm (1σ) for both the horizontal
and vertical axes, also in carrier-phase DGNSS mode [40].

The UWB transmitters were placed on a customized stand facing the user, and the
WPP was attached to the user’s left wrist and waist.

Testing included rowing in various directions, speeds, stroke rates, and stroke lengths
for approximately 90 min. Figure 6 shows the trajectory of the boat for the 90 min; from
this figure, it is possible to observe that the trajectory was not in straight lines nor in the
same location (i.e., back and forth). The two “small” loops on the eastern side of the lake
were rowed in a clockwise direction, while the “large” loop on the western side of the lake
was rowed in a counterclockwise direction. The speed of the boat and stroke length varied
based on the side of the lake (i.e., water conditions), wind speed, and stroke rate. Figure 7
shows a subset of the test that was used to validate the models presented in this paper.
This window was selected because the trajectory includes a section of rowing at a constant
stroke rate, one section with an increase in rate (higher frequency), and one section with
a decrease in rate (lower frequency). Additionally, the trajectory included a slight turn to
the southwest. Recall that the purpose of this paper is to determine the feasibility of the
WPP to be used as a technique analysis tool by providing information on the position of the
handle based on UWB, GNSS, and INS with various mathematical models. The intention
of this test was to evaluate common rowing patterns in a regular training session.

The next section presents the results obtained from the experimentation using the
models shown in this section.
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3. Results and Discussion

This section presents the results with each positioning model using a 120 s segment of
the data that includes changes in direction, speed, stroke rate, and stroke length.

3.1. UWB Results

The accuracy of the models, ranges (TX00 ± 0.121 m, TX01 ± 0.106 m), and range
constraint (±0.018 m) is evaluated using the GNSS reference trajectory. Figure 8 shows the
position estimates for the X-, Y-, and Z-coordinates, respectively. Figure 8a–c contains the
coordinate at the top and the error with respect to the reference at the bottom. The reference
trajectory is represented with a green line, the trilateration is represented with red dots, the
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EKF with constant velocity is represented with yellow dots, the PEKF is represented with
purple dots, and the time of update is represented with black triangles.
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On the X-coordinate, PEKF reduced the variability of the trilateration solution and
represented the handle position very accurately. The error is observed to be below ±0.20 m.
The results from trilateration also represented the X-axis accurately but with some variance
between estimates. Lastly, EKF with constant velocity overestimated the catch and the
finish and returned the solution with the largest errors.

On the Y-axis, the handle motion shows two waves with different amplitudes at each
stroke. The larger wave corresponds to the catch and the smaller one corresponds to the
finish. PEKF represents both curves accurately. The results from trilateration follow the
handle motion with a larger visible variance. EKF with constant velocity is not able to
fully represent the two curves in the stroke. This is due to the rapid changes in velocities
at the peaks and valleys from each curve. The largest observed errors for this model are
within ±0.20 m, which is an acceptable accuracy in terms of positioning but not enough to
represent the motion of handles for technique analysis.

On the Z-coordinate, the models can estimate a periodic curve; however, the ampli-
tude is overestimated. This was expected as the accuracy of the ranges is approximately
±0.12 m and the amplitude of the motion is approximately 0.2 m. However, PEKF can
be used to estimate the time of the catch, which is valuable for crew coordination and
technique analysis.

PEKF outperformed trilateration and EKF with constant velocity. The output from this
model clearly shows the motion of the handle and estimates the curves from each stroke on
every axis.

3.2. INS Results

The roll and pitch angles used at the finish position are −38.5 deg and −24.9 deg,
respectively. These angles were obtained through testing and manual adjustments.

The azimuth is assumed to be −45 deg; thus, computed angles about the Z-axis are
with respect to an arbitrary start position rather than with respect to the forward axis of
the boat.

The epoch-by-epoch DGNSS reference trajectory was numerically differentiated to
obtain velocity and acceleration. The accuracy of the reference, from the carrier-phase
DGNSS specifications, is an order or magnitude better the inertial solution and not affected
by bias or drift.

Figure 9a shows the resulting acceleration of the oar handle in the instantaneous
inertial XYZ frame. The acceleration is well aligned at the beginning of the test. However,
it begins to drift over time. Some drift was expected due to the sensor biases; however, the
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bias effect on the attitude (Figure 9d) also influences the acceleration, thus affecting the
velocity and position estimates.
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Figure 9b shows the estimated velocity. All three axes are affected by the biases,
especially on the Z-coordinate because some of the acceleration on the horizontal plane is
transformed into this axis.

Lastly, Figure 9c shows the estimated position of the handle. The estimates on the
horizontal plane show similar characteristics as the reference trajectory and begin to drift
after some seconds. On the other hand, the effect of the biases and errors greatly influence
the Z-coordinate and none of the expected characteristics are observable.

The results shown above demonstrated that standalone INS is not sufficient to estimate
the position of the handle and requires an aiding method to reduce the effects of the
sensor biases.

3.3. Rowing Dead Reckoning (RDR)

RDR is expected to reduce drift errors as each stroke is analyzed independently.
Figure 10a shows the acceleration and reference trajectory in the instantaneous inertial XYZ
frame. This figure shows that all axes align with the reference trajectory, demonstrating
that RDR can reduce the drift from the sensor biases. This is confirmed on Figure 10d; the
attitude angles are reset at every stroke, reducing the drift.
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Figure 10b shows the velocity, some drift remains affecting all three axes, especially
the X- and Z-coordinates. RDR constraints the solution and limits the effect of the biases
and errors. However, these biases and errors are not estimated or corrected.

Lastly, the position estimates on Figure 10c show that RDR improves the accuracy of
standalone INS without any additional hardware.

3.4. INS/GNSS Integration Results

This section shows the positioning results of the integrated solution from INS and
standalone GNSS. On Figure 11, the positions from the standalone GNSS are shown in red,
the reference trajectory is in green, and the INS/GNSS solution is in yellow.

First, Figure 11a–c show the position of the handle in ENU. The accuracy in the
horizontal plane is below the meter level, which is excellent for navigation. However, the
vertical plane is at the meter level. The ENU frame does not provide information about
the technique of the rower. Therefore, a transformation into the XYZ frame is needed.
Figure 11d–f show the resulting positions. The X- and Y-coordinates provide an estimation
of the motion of the handle. However, the accuracy is not sufficient to assess technique.
Furthermore, due to the meter-level accuracy of the Z-coordinate, the motion of the handle
cannot be observed. It should be noted that the transformation from the ENU to the XYZ
frame depends on the two reference GNSS receivers attached to the boat, making this
method impractical for a casual user wearing only a GNSS/INS smartwatch, for example.
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3.5. INS/UWB Integration Results

Trilateration and PEKF demonstrated to be the best models to represent the motion of
the handle. Therefore, these are the two models used in the integration. This section shows
the results in the XYZ frame. Figure 12 shows the INS/trilateration integration at the top
(a–c) and the INS/PEKF integration at the bottom (d–f).

Both aiding sources greatly improved the INS solution and allowed for an accurate
representation of the motion of the handle in all axes. These figures demonstrate that UWB
can enhance the solution from INS to estimate biases, correct mechanization errors, and
allow for technique analysis. However, this method, similar to INS/GNSS, requires the
boat reference, provided by two additional GNSS receivers, to transform between frames.

Tables 1–4 summarize the errors calculated from each method and navigation frame.
The error is presented as the mean value and its standard deviation, which represents the
accuracy and precision of the solution.

Table 2. Error summary results in boat frame.

3D Outdoor Test Boat Frame Overall (120 s)

Method
X-axis Y-axis Z-axis

Mean Error-Std. (m) Mean Error-Std. (m) Mean Error-Std. (m)

Trilateration UWB 0.023 ± 0.105 −0.015 ± 0.104 0.048 ± 0.222

PEKF UWB 0.022 ± 0.121 −0.020 ± 0.062 0.045 ± 0.129

EKF Const. Vel. UWB −0.028 ± 0.152 0.002 ± 0.118 −0.025 ± 0.189

INS/GNSS −0.250 ± 0.458 −0.060 ± 0.503 1.269 ± 1.207

INS/Trilateration
UWB −0.061 ± 0.101 −0.094 ± 0.127 0.103 ± 0.148

INS/PEKF UWB −0.070 ± 0.117 −0.096 ± 0.106 0.136 ± 0.104
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Table 3. Error summary results in instantaneous boat frame.

3D Outdoor Test Instantaneous Inertial Boat Frame Overall (120 s)

Method
X-axis Y-axis Z-axis

Mean Error-Std. (m) Mean Error-Std. (m) Mean Error-Std. (m)

INS/RDR 0.172 ± 1.236 −0.583 ± 0.695 0.892 ± 0.856

Table 4. Error summary results in ENU frame.

3D Outdoor Test ENU Frame Overall (120 s)

Method
Easting Northing Up

Mean Error-Std. (m) Mean Error-Std. (m) Mean Error-Std. (m)

INS/GNSS −0.077 ± 0.496 0.131 ± 0.433 1.325 ± 1.207

INS/Trilateration
UWB 0.088 ± 0.129 0.077 ± 0.091 0.103 ± 0.148

INS/PEKF UWB 0.089 ± 0.105 0.086 ± 0.111 0.136 ± 0.104
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4. Conclusions

The WPP demonstrated to be a feasible option for rowing technique analyses because
it was able to provide position, velocity, and attitude when INS was integrated with UWB
or GNSS. Thus, providing a full understanding of the oar/wrist movement.

UWB trilateration, PEKF, and EKF with constant velocity had total accuracies in the
boat frame of ±0.267 m, ±0.187 m, and ±0.270 m, respectively, demonstrating that PEKF
was the most accurate UWB standalone positioning method. The integrated methods,
INS/GNSS, INS/trilateration UWB, and INS/PEKF UWB obtained accuracies of ±1.386 m,
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±0.219 m, and ±0.189 m, respectively, in the boat frame, highlighting that an integrated
method provides similar accuracy than standalone UWB with the additional information
of velocity and attitude from INS.

In the instantaneous inertial boat frame, integrating INS with RDR had a total ac-
curacy of ±1.656 m. This method was demonstrated to have reduced the effects of sen-
sor biases and reduced accumulated errors. However, it was the least accurate of the
integrated methods.

Lastly, in the ENU frame, the integrated methods INS/GNSS, INS/trilateration UWB,
and INS/PEKF UWB resulted in accuracies of ±1.375 m, ±0.216 m, and ±0.185 m, respec-
tively, showing that the accuracy of the positioning methods was maintained between
navigation frames and that it was possible to obtain the position of the moving boat.
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