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Abstract: To address the challenges in recognizing various types of falls, which often exhibit high
similarity and are difficult to distinguish, this paper proposes a human fall classification system
based on the SE-Residual Concatenate Network (SE-RCNet) with adaptive weighted fusion. First,
we designed the innovative SE-RCNet network, incorporating SE modules after dense and residual
connections to automatically recalibrate feature channel weights and suppress irrelevant features.
Subsequently, this network was used to train and classify three types of radar images: time–distance
images, time–distance images, and distance–distance images. By adaptively fusing the classification
results of these three types of radar images, we achieved higher action recognition accuracy. Experi-
mental results indicate that SE-RCNet achieved F1-scores of 94.0%, 94.3%, and 95.4% for the three
radar image types on our self-built dataset. After applying the adaptive weighted fusion method, the
F1-score further improved to 98.1%.
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1. Introduction

According to a 2018 survey by the World Health Organization (WHO), there are
approximately 60,000 fatal fall incidents worldwide each year, the majority of which involve
elderly individuals aged 65 and older [1]. Severe falls can lead to serious consequences
such as fractures, dislocations, head injuries, and sprains [2]. In the member states of the
European Union, injury issues affect approximately 105,000 people. Additionally, nearly
40,000 elderly individuals are declared dead due to falls. In the United States, the fall-
related mortality rate among people aged 60 and older is 36.8 per 100,000, whereas in
Canada, it is 9.4 per 10,000 for the same age group. In Australia, Canada, and the United
Kingdom of Great Britain and Northern Ireland, the hospitalization rate for injuries due to
falls among those aged 60 and older ranges from 1.6 to 3.0 per 10,000 citizens. In Western
Australia and the United Kingdom, this rate is as high as 5.5 to 8.9 per 10,000 people [3].
Accurate identification of fall types can assist medical professionals in quicker diagnosis
and formulation of effective treatment plans. Furthermore, integrating this technology
with smart homes and health monitoring systems can significantly enhance the quality
of life for the elderly and other vulnerable groups. The application of such recognition
technology can facilitate more targeted treatment measures, reduce the risk of secondary
injuries caused by falls, and promote the development of public health strategies and
personalized medicine [4,5].

Currently, Human Motion Recognition (HMR) primarily relies on cameras. However,
this method tends to invade personal privacy and requires unobstructed and well-lit
conditions [6]. Although wearable devices overcome visual limitations by using inertial
sensors or plantar pressure sensors, these devices may impose physical burdens, especially
for the elderly and visually impaired individuals [7]. In contrast, environmental recognition
methods using WiFi, infrared sensors, or radar can detect activities without adding burdens
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to the subjects or invading their privacy, making them the most ideal recognition methods
currently available [8–11].

In previous studies, Zhao et al. addressed the issue of optimizing video images
through network backpropagation by replacing time-frequency diagrams with convolu-
tional layers and max-pooling layers. They also utilized fusion layers and an attention
mechanism-based encoder-decoder structure to fully exploit the temporal information in
the raw data, achieving effective recognition of continuous behaviors [12]. Li et al. proposed
an enhanced contrastive learning dual transformer method (SCL-SwinT). This method in-
corporates overlapping patch embeddings and cosine similarity attention in the dual trans-
former encoder, combined with supervised contrastive learning (SupCon). By integrating
two patch-embedding methods (ResNet and MLP) and three patch-partitioning strategies
(sequential, grid, and strip), the model can extract contextual information from different
angles and depths, achieving over 90% recognition accuracy on the IURHA2023 dataset [13].
Chen proposed a human activity classification method based on multiconvolutional neural
network (CNN) information fusion. Six different data preprocessing methods were selected,
and the results were input into corresponding CNN models for parameter training. The
weighted voting method was used for information fusion to obtain the final classification
results [14].

Fall behavior recognition is a specialized branch of human behavior recognition.
Compared to general human behavior recognition, fall behavior recognition poses greater
challenges in terms of recognition difficulty and data collection. Hemi et al. designed a
radar map deep learning fusion network based on MobileNet-V3, significantly improving
fall recognition performance. However, their consideration of spectral weight distribution
was relatively limited, and they did not further classify fall types [15]. He et al. used parallel
2DCNNs to extract features, optimized by CBAM, to achieve feature-level fusion, but their
study was limited to distinguishing single fall actions from various non-fall actions, with
a limited range of action types in the experimental dataset [16]. Yao et al. proposed a fall
detection system based on millimeter-wave radar, achieving high accuracy and robustness
through neural network and information fusion technologies. This system collected target
distance, speed, and angle information using FMCW radar, generating range-speed maps,
range-horizontal angle maps, and range-vertical angle maps through three independent
neural networks. To improve detection accuracy, this study used an ensemble learning
stacking method to fuse the features extracted by the three neural networks. Although
this study trained and recognized using a large dataset containing various action types,
it mainly focused on accurately detecting fall events and distinguishing non-fall actions,
rather than further classifying different types of falls [17].

Building on the work of Hemi et al., this paper refines the classification of fall behavior
recognition and improves decision-level fusion methods. By embedding SE modules into
Dense Residual Blocks composed of dense and residual connections, we achieved adaptive
adjustment of feature importance, enhancing the recognition of fall behaviors and their
types. Through in-depth comparisons with other advanced neural network models, the
superiority of this network has been demonstrated. Additionally, this paper proposes an
adaptive weighted fusion method to weight training results, improving the accuracy of
behavior recognition.

The innovations of this paper are summarized as follows:

• Novel Deep Learning Feature Extraction Network SE-RCNet: This network combines
spatial attention mechanisms and residual connections, significantly enhancing the
ability to extract key features from radar images, improving target detection and
behavior classification performance under complex environmental conditions.

• By employing a differentiated weight distribution mechanism, different weights are
assigned to each radar map feature based on their contribution and impact in the
decision-making process. By comprehensively evaluating the influence of each radar
map feature, this method can more accurately determine behavior types.
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The remainder of this paper is organized as follows: Section 2 describes the design
process of the self-built dataset and introduces the public datasets used. Section 3 provides a
brief overview of the adaptive weighted fusion network method and its structural diagram.
Section 4 presents the experiments and results analysis. Section 5 briefly summarizes the
content of this paper and discusses prospects for future research.

2. Dataset
2.1. Self-Built Dataset

In our experiment, we used the PulsOn 440 radar module from Time Domain. This
UWB radar has a center frequency of 4.3 GHz and a frequency range of 3.1 to 4.8 GHz. The
sampling frequency is 16.387 GHz. The antenna’s RF radiation intensity complies with
FCC Part 15 regulations in the United States and adheres to ETSI EN 302065 standards in
Europe [18]. We set the pulse repetition frequency (PRF) to 240 Hz to achieve higher velocity
resolution, enabling the radar to detect finer movements. This is crucial for accurately
identifying human positions and movements. The main radar parameter settings are shown
in Table 1.

Table 1. Radar Parameter Settings for Self-Built Dataset.

Radar Model PulsOn 440

pulse repetition frequency center frequency
frequency band range
sampling frequency

240 Hz
4.3 GHz

3.1~4.8 GHz
16.387 GHz

sampling time 5 s

2.1.1. Dataset Description

In this study, we collected a dataset containing human fall behaviors using the PulsOn
440 UWB radar module (As shown in Figure 1) in an indoor environment. During the
experiments, the radar was installed at a height of 1 m, and all experiments were conducted
within the effective range of the radar to ensure data consistency and validity. This dataset
includes fall behavior echo data from 9 subjects (2 females and 7 males). The basic informa-
tion of the participants is shown in Table 2. Due to the inclusion of participants of different
genders (male and female) and varying body profiles (height and weight), although they
perform the same actions, the range of their movements is not entirely identical. This
diversity allows us to simulate a wide range of human movements, ensuring that the
collected data cover a broad spectrum of real-world scenarios.
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Table 2. Cont.

Subject ID Gender Height Weight Subject ID Gender Height Weight

3 M 168 62 8 M 169 67

4 M 172 65 9 M 170 66

5 M 178 81

Each subject performed data collection for 10 different types of behaviors. These
behaviors include five types of daily activities: sitting down, bending to pick up an object,
standing up, walking towards the radar, and walking away from the radar; as well as five
types of fall behaviors: falling while sitting down or standing up, falling sideways to the
radar, falling backwards to the radar, falling at a 45-degree angle to the right of the radar,
and falling at a 45-degree angle to the left of the radar. Each subject provided 30 samples
for each behavior type, and a total of 2700 samples were collected for classification and
recognition research. Detailed action types and descriptions are shown in Table 3:

Table 3. Description of Actions in the Self-Built Dataset.

Number Behavior Type Description

0 Sitting down The subject sits down from a standing position
1 Falling while sitting/standing The subject falls while at9tempting to sit or stand
2 Bending to pick something up The subject bends over to pick up an object from the ground
3 Falling sideways to the radar The subject falls sideways relative to the radar
4 Standing up The subject stands up from a seated position
5 Falling backwards to the radar The subject falls backwards relative to the radar
6 Walking towards the radar The subject walks towards the radar
7 Walking away from the radar The subject walks away from the radar

8 Falling towards the radar at a 45-degree angle
to the right The subject falls towards the radar at a 45-degree angle to the right

9 Falling towards the radar at a 45-degree angle
to the left The subject falls towards the radar at a 45-degree angle to the left

2.1.2. Data Preprocessing

As shown in Figure 2, to filter out stationary or slowly moving interference targets, the
raw data collected by the radar are first processed using Moving Target Indication (MTI).
We use a three-pulse canceller to eliminate the echoes of stationary targets by comparing the
phase differences of consecutive pulses. The differential processing formula is as follows:

y(n) = x(n + 1)− 2x(n) + x(n − 1) (1)

This formula effectively suppresses the echo signals of stationary targets by perform-
ing a weighted summation of the current pulse and the two adjacent pulses, thereby
highlighting the signals of moving targets. This allows subsequent processing and analysis
to focus more on moving targets. However, differential processing may lead to partial
loss of information on stationary or slowly moving targets, as it attenuates slowly varying
signal components, causing this information to be partially or completely lost. To address
this, we introduced the Hilbert transform in subsequent processing. By generating an
analytic signal, it provides instantaneous attributes (such as instantaneous phase and fre-
quency) to preserve the complete information of the target as much as possible. The Hilbert
transform helps to more comprehensively retain the characteristics of the signal, especially
in frequency analysis and dynamic signal processing. It reduces artifacts and improves the
accuracy of signal processing, thereby mitigating the distortion and information loss caused
by differential processing [19]. The generated range-time diagram is shown in Figure 3a.
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Subsequently, the Short-Time Fourier Transform (STFT) is applied to obtain the spectral
information for each time window. In STFT, the signal is divided into multiple time
windows. The signal within each window undergoes a Fourier transform, and through
integration (i.e., summation), the intensity of each frequency component is calculated.
This allows us to obtain the distribution of the signal across time and frequency. The
generated time–doppler diagram (as shown in Figure 3b) shows the Doppler shift of the
target at different time points, reflecting the speed changes in the target. The choice of time
window size and overlap parameters in STFT directly affects the spectral resolution and
time resolution. Inappropriate parameters may lead to spectral information distortion. To
avoid this, we experimentally determined that the optimal window size is 128 points and
the overlap parameter is 110 points. A window length of 128 points can capture important
frequency components in radar signal preprocessing while maintaining reasonable time
resolution. An overlap of 110 points improves the time resolution, making the spectrogram
smoother and more continuous, reducing information loss caused by edge effects. These
parameter choices are based on multiple experimental results, providing an optimal balance
between frequency and time resolution in radar signal preprocessing. This ensures that the
generated images have smooth time resolution and spectral continuity, thereby reducing
signal distortion.

Finally, a Fast Fourier Transform (FFT) is performed on the time-range map data to
generate a range–doppler diagram (as shown in Figure 3c). The range–doppler diagram
can display the distribution of targets at different distances and frequency. By analyzing
the color differences in these three types of radar images, we can clearly identify the
interrelationships among distance, time, and Doppler frequency features, thereby providing
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more comprehensive target information and a reliable data source for subsequent decision
fusion.

2.2. Public Dataset

To further demonstrate the generalization ability of the model, this study also utilized
the K-band ultra-wideband radar fall detection dataset published by the Journal of Radars.
This dataset includes fall and non-fall behavior data collected in various test environments,
covering participants of different ages, heights, and genders, thus exhibiting significant
diversity and representativeness. By incorporating this dataset, the model’s performance
under different conditions and among diverse populations can be comprehensively evalu-
ated.

This study primarily used ten different types of fall behaviors from this dataset to
evaluate the network model’s effectiveness in recognizing similar fall behaviors. By using
these ten types of falls, we can verify whether the model can maintain high recognition
accuracy when dealing with highly similar fall actions. These fall behaviors are meticulously
recorded in different environments and scenarios, providing rich samples for model training
and validation. The detailed action types are shown in Table 4, covering various typical fall
scenarios to comprehensively assess the model’s fall detection capabilities. The inclusion of
this public dataset not only enhances the credibility and generalizability of the research
results but also provides a solid data foundation and reference for subsequent research.

Table 4. Introduction to Public Human Fall Datasets.

Action Number Action Type

0 Tripped while going upstairs
1 Tripped while going downstairs
2 Slipped while sitting down backward
3 Fell while standing up from sitting
4 Fainted with back facing the radar
5 Slipped with back facing the radar
6 Fell at 45 degrees to the right facing the radar
7 Fell at 45 degrees to the left facing the radar
8 Fainted facing the radar
9 Fell facing the radar

3. The Adaptive Weighted Fusion Network Recognition Method
3.1. Model Construction

This paper proposes a human fall behavior recognition model based on SE-RCNet. The
model takes 80 × 80 pixel radar images as input and significantly improves the accuracy of
fall behavior classification through a series of key mechanisms.

First, the model captures the basic features of radar images through an initial extraction
module composed of convolutional layers and ReLU activation functions. Then, six densely
connected residual blocks (labeled as block1 to block6 in the diagram) further refine and
process these features. Each residual block consists of two convolutional layers, batch
normalization, and ReLU activation functions, which not only enhance the ability to
capture nonlinear features but also improve information flow and feature retention through
the residual learning mechanism.

Each residual block integrates a Squeeze-and-Excite (SE) module. This module first
compresses the spatial dimensions through global average pooling and then performs chan-
nel recalibration, adaptively adjusting the weights of the feature channels, thereby making
the model focus more on important features and improving classification performance [20].

The densely connected residual blocks achieve residual learning through element-wise
addition, where the output of the second convolutional layer is added to the output of the
first convolutional layer, promoting information flow and feature retention in the deep
network. The outputs of each residual block are merged to ensure the complete transmission
of information between the deep layers while enriching feature representation.
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After each densely connected residual block, a max-pooling layer further reduces
feature dimensions and computational load, providing higher-level abstract feature repre-
sentations for the model. Finally, a flattening layer converts the multidimensional feature
maps into one-dimensional feature vectors, which are then input into the fully connected
layer to achieve fall behavior classification.

The overall network structure is shown in Figure 4.
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3.2. Adaptive Weighted Fusion
3.2.1. Confidence

In classification tasks, confidence measures the certainty of the model’s predictions.
The model assigns a probability value to each category, with the sum of the probabilities
for all categories equaling 1. The highest probability value represents the category that
the model considers most likely. In short, the category with the highest probability is the
model’s most confident prediction.

3.2.2. Decision-Level Fusion Network

The original decision fusion network was designed for binary classification problems
of fall versus non-fall and is not suitable for multiclass classification problems. Therefore,
we have modified it. The results of the three types of radar images are calculated and
aggregated. If two or more radar images produce the same output, that output is used
directly. If all outputs are different, the confidence of each output is compared, and the
result with the highest confidence is chosen, as shown in Figure 5.
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Although we have optimized the original decision fusion network to some extent,
it still has a critical flaw: the network implicitly assigns equal weights to the results of
the three different radar images. This approach is clearly inconsistent with our radar
image recognition results. In reality, the recognition accuracy of these three radar images is
different. Using traditional decision fusion methods not only diminishes the impact of the
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radar image with higher recognition accuracy but also amplifies the shortcomings of the
radar image with lower recognition accuracy.

3.2.3. The Adaptive Weighted Fusion Network

In this paper, we adopted an adaptive weighted fusion method to enhance the perfor-
mance of the decision-level network. This is an efficient strategy for addressing behavior
recognition problems in multiclass tasks based on confidence levels. In this process, the
confidence of each class prediction, which is the probability value output by the model,
plays a central role. For the recognition tasks of each type of radar image, we no longer use
the highest confidence principle alone. Instead, we employ an adaptive weighting mecha-
nism that dynamically adjusts their influence in the final fusion decision by considering
the recognition performance of different radar images on the validation set.

Specifically, the weights in the fusion network are determined by the accuracy of each
individual radar image. When dealing with radar images of different accuracies, our fusion
model automatically increases the weight of the more accurate results and reduces the
weight of the less accurate results. This means that the model will synthesize and select the
most reliable result as the final output based on the confidence and adjusted weight of each
radar image.

The advantage of this adaptive weighting strategy is that it can automatically balance
and optimize the integration of multisource information without sacrificing recognition
accuracy. Our model applies this strategy to the SE-RCNet architecture, achieving more
precise behavior recognition in the radar image dataset. Particularly in distinguishing
different types of fall behaviors, this method not only improves recognition accuracy but
also enhances the model’s adaptability and robustness under varying conditions.

3.2.4. The Adaptive Weighted Fusion Network-Specific Steps

(1) Dataset Partitioning and Initial Model Training
To ensure the fairness and scientific validity of model training and evaluation, this

study first randomly divides the collected dataset into training, validation, and test sets in
a 6:2:2 ratio. This step not only ensures comprehensive and random data coverage but also
provides a rigorous benchmark for model evaluation.

After training the SE-RCNet model on the training set, we evaluate the initial perfor-
mance of the model using the validation set and obtain the initial accuracy for various
action categories in the fall type recognition task. This accuracy reflects the model’s ability
to recognize unseen data.

(2) Radar Map Type Weight Allocation
The model trained with the training set was used to evaluate the validation set,

yielding the initial radar map recognition accuracy n = [n1, n2, n3], where nk represents
the accuracy of the kth radar map type. Then, each sample in the test set was input into
the model. For each individual sample, the model outputs logits for ten categories. These
logits are then input into the softmax function, which outputs the predicted probability for
each category. The highest probability indicates the model’s confidence.

Assume the test set outputs a logits vector z = [z1, z2, . . ., z10], where zi is the mag-
nitudes of logits for various categories in the sample. The softmax function converts this
vector into another vector s = [s1, s2, . . ., s10], where si is calculated as follows:

si =
ezi

∑n
j=1 ezj

(2)

In this expression, ezi is the natural exponent of zi. The denominator ∑n
j=1 ezj is the

sum of the natural exponents of all zj elements. n is the total number of classes, which is 10.
The result of the softmax function is a probability distribution over the categories, where
each element’s probability value is between 0 and 1, and the total sum of probabilities is 1.

To find the model’s confidence and its category, we use the following formula: the
maximum probability smax = max(s), where smax = max(s) indicates the highest value in
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the vector s. The maximum category index imax = argmax(s), where argmax(s) is the index
of the maximum value smax in the vector s. The three radar maps’ smax values for each test
set sample are normalized to obtain the normalized probability matrix m = [m1, m2, m3].

(3) Weighted Test Evaluation
We perform the Hadamard product of the probability output n from the validation

set and the highest class recognition rate m from each test set spectrum to obtain the final
probability-adjusted vector w = [w1,w2,w3], where wi represents the adjusted highest class
recognition rate of the i-th spectrum. The specific calculation formula is expressed as
follows:

w = n ◦ m (3)

Then, we sum the probabilities of the same class in W to obtain a new probability
vector w’. We use imax= argmax(w′) as the final output class of the fusion network.

The overall recognition flowchart is shown in Figure 6.
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4. Experimental Results and Analysis
4.1. Experimental Environment Setup

The computational environment for this study is configured as follows: The computer
is equipped with an Intel i7-12700 processor, 32 GB of memory, and an NVIDIA GeForce
RTX 3070 graphics card. The development environment is based on Anaconda 3, using
Python 3.9.18. The construction, training, and performance evaluation of the deep learning
models are carried out using TensorFlow 2.10.0 and Keras 2.7.0.

4.2. Comparative Experiment

In this section, we compare the proposed SE-RCNet network and adaptive weighted
network with current mainstream deep learning networks and fusion methods on both
the self-built dataset and the public dataset. Due to the specificity of the fall behavior
recognition task, missing important positive samples (i.e., failing to detect fall behaviors)
has a more severe impact than misclassifying samples (i.e., incorrectly detecting non-fall
behaviors as fall behaviors). Therefore, in addition to using accuracy as a metric, more
evaluation metrics are needed to comprehensively measure the overall performance of the
network.

To this end, we introduce precision, recall, and F1-score as evaluation metrics in
addition to accuracy. Among these metrics, TP (true positive) represents the number of
times the model correctly identifies fall behaviors, TN (true negative) represents the number
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of times the model correctly identifies non-fall behaviors (i.e., the total number of correctly
identified non-fall behaviors), FN (false negative) represents the number of times the model
fails to identify fall behaviors (i.e., incorrectly identifying fall behaviors as other behaviors),
and FP (false positive) represents the number of times the model incorrectly identifies fall
behaviors (i.e., incorrectly identifying other behaviors as fall behaviors). The F1-score is a
comprehensive metric that considers both precision and recall, providing a more complete
assessment of the model’s performance.

Accurac =
TR + TN

Total Cases
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-score = 2 × Precision × Recall
Precision + Recall

(7)

The system studied in this paper consists of two main subsystems: the radar image
preliminary recognition network and the fusion optimization method. Since these two
systems are technically progressive, we will evaluate the performance of each system
separately.

First, we will assess the performance of the radar image preliminary recognition
network. This subsystem is primarily responsible for extracting features from radar images
and performing initial recognition. Then, we will evaluate the performance of the fusion
optimization method. This subsystem optimizes and fine-tunes the initial recognition
results, thereby improving overall recognition accuracy and robustness.

On this basis, we will compare the system studied in this paper with other existing net-
works to comprehensively evaluate its performance in fall behavior recognition. Through
this phased evaluation and comparative analysis, we can gain a deep understanding of
the advantages and disadvantages of each subsystem and verify the effectiveness of our
system in handling highly similar fall behaviors.

4.2.1. Network Model Comparison

This paper compares the recognition performance of different deep learning models
in fall detection. The selected comparison networks include CNN-4, DenseNet121 [21],
ResNet50 [22], and Xception [23].

CNN-4 is a basic convolutional neural network structure with fewer layers and pa-
rameters, making it suitable as a baseline comparison model. DenseNet121, due to its
densely connected layers, promotes gradient flow and feature reuse, thereby improving the
overall performance of the model. ResNet50 addresses the degradation problem in deep
neural networks, demonstrating excellent performance and stability, and is considered a
classic network in the field of deep learning. Xception, by adopting depthwise separable
convolutions, significantly reduces computational complexity while maintaining efficient
model performance. These models represent different deep learning architectures and
design philosophies. By comparing their performance, we can comprehensively evaluate
the superiority of the SE-RCNet model in radar image processing and behavior recognition
tasks. Table 5 lists the recognition rates of all networks.

Figure 7 shows the cross-entropy loss values (as in Figure 7a,c,e) and accuracy (as
in Figure 7b,d,f) curves with increasing training epochs using the SE-RCNet network for
five-fold cross-validation on individual spectrograms. As seen from the figures, after
100 training iterations, the accuracy and cross-entropy loss values for all three spectrograms
tend to stabilize. Table 5 lists the average results of five-fold cross-validation on the three
spectrograms for each network. Experimental data indicate that our proposed SE-RCNet
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model performs excellently in radar spectrum feature extraction and action recognition
tasks, outperforming other comparison models across multiple evaluation metrics.

Table 5. Cross-Validation Performance on Custom Spectrograms.

Model
Accuracy Precision Recall F1-Score

TD TR RD TD TR RD TD TR RD TD TR RD

SE-RCNet 0.933 0.941 0.960 0.935 0.942 0.955 0.945 0.944 0.953 0.940 0.943 0.954
CNN-4 0.898 0.914 0.931 0.898 0.914 0.939 0.894 0.904 0.929 0.896 0.906 0.933

DenseNet121 0.888 0.930 0.949 0.891 0.931 0.949 0.932 0.928 0.947 0.908 0.929 0.948
ResNet50 0.930 0.936 0.952 0.935 0.935 0.956 0.936 0.939 0.950 0.936 0.937 0.953
Xception 0.875 0.884 0.914 0.885 0.894 0.915 0.894 0.888 0.909 0.889 0.891 0.911
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Figure 7. The accuracy and Cross-Entropy Loss Curves of Single-Spectrogram Detection for
5-Fold Cross-Validation over the Number of Training Epochs. (a) Cross-entropy loss variation in the
range–distance diagram. (b) Accuracy variation in the range–distance diagram. (c) Cross-entropy
loss variation in the distance–time diagram. (d) Accuracy variation in the distance–time diagram.
(e) Cross-entropy loss variation in the time–distance diagram. (f) Accuracy variation in the time–
distance diagram.
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As a classic image recognition network, ResNet50 also performs quite well on our cus-
tom dataset, second only to SE-RCNet. However, the performances of CNN-4, DenseNet121,
and Xception networks on various metrics are slightly inferior to those of SE-RCNet and
ResNet50.

To evaluate the performance differences of different deep learning models in the fall
detection task, this study employed one-way analysis of variance (ANOVA), which is used
to test whether there are significant differences among multiple sample means. In this study,
we considered the models as the factor and the F1-scores of the models as the response
variable. Statistical analysis was conducted using the SciPy library. This statistical method
helps determine whether there are significant differences in accuracy among the models,
providing scientific basis for model selection. The results show significant differences in
F1-scores among the models across the three types of radar spectrograms. Specifically, for
the time–distance spectrogram (F(4, 20) = 36.618, p < 0.001), the time–distance spectrogram
(F(4, 20) = 115.425, p < 0.001), and the range–distance spectrogram (F(4, 20) = 38.679,
p < 0.001), all results indicate that the differences are statistically significant. Additionally,
we conducted post hoc tests using Tukey’s HSD test to examine the differences between
each pair of models. The post hoc test results are shown in Figure 8.
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From the recognition results on the public dataset shown in Table 6, it can be seen that
SE-RCNet’s advantage also lies in its ability to recognize different types of fall behaviors.
By analyzing ten different fall behaviors in the K-band ultra-wideband radar fall detection
spectrum dataset, SE-RCNet can more accurately distinguish these complex action types.
This further demonstrates the model’s superior performance in handling diverse data and
recognizing complex behavior patterns.

Table 6. Cross-Validation Performance on Public Spectrograms.

Model
Accuracy Precision Recall F1-Score

TD TR RD TD TR RD TD TR RD TD TR RD

SE-RCNet 0.575 0.698 0.665 0.570 0.722 0.674 0.562 0.721 0.678 0.566 0.721 0.676
CNN-4 0.550 0.676 0.620 0.549 0.689 0.640 0.530 0.695 0.604 0.555 0.692 0.607

DenseNet121 0.510 0.669 0.559 0.505 0.690 0.632 0.515 0.681 0.604 0.507 0.686 0.607
ResNet50 0.548 0.689 0.663 0.518 0.689 0.671 0.536 0.695 0.663 0.524 0.692 0.667
Xception 0.330 0.512 0.495 0.325 0.551 0.583 0.326 0.557 0.539 0.325 0.554 0.553

4.2.2. Comparison of Fusion Methods

In this section, we evaluate the fine-tuning effect of using an adaptive weighted fusion
network for radar spectrum feature extraction and action recognition tasks, based on the
initial classification results of the SE-RCNet network, we compared the performance of the
adaptive weighted fusion network with that of the decision fusion network. We selected
accuracy, precision, recall, and F1-score as the evaluation metrics. Below are the detailed
experimental results and analysis.
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From Table 7, it can be seen that the adaptive weighted fusion network performs
excellently across multiple evaluation metrics. It achieved an accuracy of 0.975, a precision
of 0.973, a recall of 0.973, and an F1-score of 0.972. Compared to the highest recognition
results from individual spectrograms, these metrics improved by 2.08%, 1.87%, 2.94%, and
2.40%, respectively. This indicates that the network not only possesses high accuracy but
also exhibits outstanding balance across all performance metrics. As shown in Figure 9,
after adaptive weighted fine-tuning, only a small amount of confusion occurred between
falling at a 45-degree angle to the left and falling at a 45-degree angle to the right. All other
action types achieved 100% recognition.

Table 7. Comparison of Fusion Method Results in the Self-Built Dataset.

Accuracy Precision Recall F1-Score

TD Diagram (Before Fusion) 0.937 0.933 0.938 0.935
TR Diagram (Before Fusion) 0.945 0.941 0.943 0.942
RD Diagram (Before Fusion) 0.963 0.963 0.953 0.958
Adaptive Weighted Fusion 0.983 0.981 0.981 0.981
Improvement (Adaptive
Weighted Fusion) 2.08% 1.87% 2.94% 2.40%

Decision Fusion 0.975 0.973 0.973 0.972
Improvement (Decision Fusion) 1.25% 1.04% 2.10% 1.46%
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To further verify the effectiveness of the adaptive weighted fusion network, we con-
ducted comparative experiments on public datasets. The results demonstrated in the
confusion matrix of the fusion method on the public dataset in Figure 10 indicate that the
adaptive weighted fusion network still outperforms traditional decision fusion networks
on the public dataset. As shown in Table 8, the adaptive weighted fusion network achieved
an accuracy of 0.764, a precision of 0.768, a recall of 0.769, and an F1-score of 0.768 on the
public dataset, while the traditional decision fusion network scored 0.689, 0.688, 0.691, and
0.689 on the respective metrics.

These results indicate that the adaptive weighted fusion network not only performs
exceptionally well on self-built datasets but also demonstrates superior performance on
public datasets. This can be mainly attributed to its ability to dynamically adjust the weights
of sub-models. By adaptively adjusting the weights of each sub-model, the network can
optimize the contribution of each sub-model in the final decision based on the current
context and characteristics of the input data. This approach allows it to better adapt to
different environments and data distributions, thereby improving the overall robustness
and generalization capability of the model.
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Table 8. Comparison of Fusion Method Results in Public Datasets.

Fusion Methods Accuracy Precision Recall F1-Score

Adaptive Weighted Fusion 0.764 0.768 0.769 0.768
Decision Fusion 0.689 0.688 0.691 0.689

Overall, the adaptive weighted fusion network demonstrates high adaptability and
stability in handling radar spectrum feature extraction and motion recognition tasks. Its
dynamic adjustment mechanism enables it to maintain efficient recognition performance
even in complex and variable environments.

5. Conclusions

This paper proposes a novel fall behavior recognition network, SE-RCNet, which
significantly enhances recognition performance by integrating residual connections and
Squeeze-and-Excitation (SE) modules. Comparative experiments show that SE-RCNet
achieved average F1-scores of 94.0%, 94.3%, and 95.4% when processing three types of
radar maps, significantly outperforming existing deep learning models.

Additionally, to further improve recognition accuracy and effectively utilize radar
data, this paper introduces an adaptive weighted fusion method. This method innovatively
adjusts the weight proportions dynamically based on the actual accuracy of each radar map,
overcoming the limitations of traditional decision fusion strategies in radar map weight
allocation. Experimental results demonstrate that this fusion method not only outperforms
traditional single radar map recognition methods but also achieves an F1-score of 98.1% on
our custom dataset with SE-RCNet, surpassing the decision fusion method. This indicates
that the method can effectively address false positives and false negatives in fall recognition.

To verify the generalization capability of the SE-RCNet model and its adaptive
weighted fusion method, we conducted evaluations on a public fall recognition dataset.
The results show that the model and fusion method perform better on this dataset com-
pared to traditional methods, confirming their high stability and reliability across different
environments when compared to other network models and fusion algorithms.

However, in real life, human behavior is continuous and complex, not just simple,
isolated actions. Current fall detection systems typically can only recognize single, obvious
fall events, which limits their effective use in real-world environments. While our adaptive
weighted fusion method can significantly improve the model’s recognition accuracy, it also
presents challenges in terms of model and algorithm deployment, potentially reducing real-
time recognition. However, with the continuous improvement in hardware performance
and the emergence of hardware acceleration technologies (such as GPUs and FPGAs) and
the deployment of edge computing. For the challenges posed by obstacles and electro-
magnetic interference, which can degrade radar system performance, our network and
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fusion method are specifically designed to improve recognition accuracy under such chal-
lenging conditions. By applying the adaptive weighted fusion algorithm to the results of
the three radar maps, we enhance the system’s adaptability and robustness across various
environments. Specifically, the adaptive weighted fusion algorithm can dynamically adjust
the weight parameters of each model according to different environmental conditions,
thereby achieving higher recognition performance. Therefore, future work will focus on
recognizing continuous behavioral actions to enhance the general applicability of fall pre-
vention systems and reduce misrecognition rates. Additionally, we will strive to improve
the system’s ability to recognize human behavior in various interference environments.
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