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Department of Electrical-Electronics Engineering, Dumlupınar University, Kutahya 43100, Turkey;
mali.ebeoglu@dpu.edu.tr
* Correspondence: kkaya4214@gmail.com

Abstract: In this study, a neural network was developed for the detection of acetone, ethanol,
chloroform, and air pollutant NO2 gases using an Interdigitated Electrode (IDE) sensor-based e-nose
system. A bioimpedance spectroscopy (BIS)-based interface circuit was used to measure sensor
responses in the e-nose system. The sensor was fed with a sinusoidal voltage at 10 MHz frequency
and 0.707 V amplitude. Sensor responses were sampled at 100 Hz frequency and converted to digital
data with 16-bit resolution. The highest change in impedance magnitude obtained in the e-nose
system against chloroform gas was recorded as 24.86 Ω over a concentration range of 0–11,720 ppm.
The highest gas detection sensitivity of the e-nose system was calculated as 0.7825 Ω/ppm against
6.7 ppm NO2 gas. Before training with the neural network, data were filtered from noise using
Kalman filtering. Principal Component Analysis (PCA) was applied to the improved signal data
for dimensionality reduction, separating them from noise and outliers with low variance and non-
informative characteristics. The neural network model created is multi-layered and employs the
backpropagation algorithm. The Xavier initialization method was used for determining the initial
weights of neurons. The neural network successfully classified NO2 (6.7 ppm), acetone (1820 ppm),
ethanol (1820 ppm), and chloroform (1465 ppm) gases with a test accuracy of 87.16%. The neural
network achieved this test accuracy in a training time of 239.54 milliseconds. As sensor sensitivity
increases, the detection capability of the neural network also improves.

Keywords: e-nose system; interdigitated electrode (IDE) sensor; linear Kalman filter; multilayer
backpropagation neural network (ML-BPNN); principal component analysis (PCA)

1. Introduction

E-nose systems have become popular in the fields of air pollutant gas detection [1]
and air quality monitoring [2] for preventing ecological pollution. In e-nose systems, there
are two critical thresholds for the detection of target gases with high precision: the first is
the design of new and novel sensor systems, and the second is the development of data
processing and compatible machine learning algorithms.

The first threshold in the design of new and novel sensor systems involves the use
of traditional e-nose systems with sensor arrays and separation columns. Thus, e-nose
systems based on micro gas chromatography (µGC), which enhances the selectivity for
target gases, come to the forefront [3]. However, scientific advancements in the production
of precise sensors to be integrated with gas chromatography are ongoing. In particular,
there are limited studies on integrated µGC applications with IDE sensor-based micro gas
chromatography [4].

The second threshold involves various methods and algorithms used in data pro-
cessing and converting raw data into information. Before data processing, the Moving
Average Method [5] and Kalman filter are commonly used to denoise raw sensor data [6,7].
Both methods filter the signal independently of frequency. However, the advantage of the
Kalman filter is its ability to denoise without losing information in noisy sensor signals.
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The improvement in performance of machine learning algorithms depends on max-
imizing the variance in the data and ensuring that the data consist of variables that are
uncorrelated with each other. In datasets, the removal of non-informative outlier data and
the reduction in data dimensions are commonly achieved through Principal Component
Analysis (PCA) [8–10].

Real-time nonlinear data obtained from sensors are effectively transformed into mean-
ingful information and used in networks with backpropagation algorithms (BPNNs), recur-
sive neural networks (RNNs), and deep convolutional neural networks (DCNNs) [11–16].

The foundation of all these machine learning algorithms lies in various mathematical
models of neural networks. ANN algorithms are widely used in processing embedded
system sensor data in Industry 4.0 [17], predicting and monitoring faults in electrical ma-
chinery [18,19], monitoring weather events and environmental impacts [20,21], diagnosing
diseases in humans and animals [22], camera observation, distance measurement, and
object detection in robotic applications [23], as well as successfully classifying gas mixtures
using various gas sensors [24–26].

The BPNN (backpropagation neural network) model is particularly preferred for
classifying gas sensor data in e-nose systems [27,28]. The main advantage of the BPNN
algorithm is its ability to solve nonlinear problems quickly and with high accuracy [29,30].
Its only drawback is the extensive mathematical calculations required for data training.
However, modern embedded system technology has mitigated this disadvantage. The
implementation of the BPNN algorithm in hardware has been made possible with Field-
Programmable Gate Arrays (FPGAs) [24,31]. For all these reasons, the BPNN algorithm and
its derivatives are a prestigious choice for target gas detection in e-nose systems. Recent
studies indicate that the detection concentration of NO2 gas with IDE sensors is above
20 ppm [32]. The detection of NO2 gas at lower concentrations is quite favorable compared
with other studies on the detection of air pollutants in the literature.

Figure 1 shows a block diagram summarizing the work carried out on target gas
detection with an IDE sensor-based e-nose system. Along with NO2 gas, the enhanced
BPNN algorithm successfully detected other volatile gases such as acetone, ethanol, and
chloroform with high test accuracy.
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Figure 1. Block diagram for target gas detection.

The development of the e-nose system, details of the enhanced BPNN algorithm, and
all experimental work are explained in detail. Initially, the methods used in the e-nose
system are focused on. The following Section 3 provides and discusses the results of some
laboratory tests to demonstrate the target gas detection capacity of the e-nose system.
The conclusion Section 4 emphasizes the potential future impact of this study and the
contributions it may offer to other research.
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2. Materials and Methods
2.1. Experimental Setup

In Figure 2, the experimental setup is shown. All experimental gas measurements
were conducted at the TUBITAK laboratory under constant conditions of 23 ◦C and 40%
relative humidity. In the experimental studies, pure gases of acetone, ethanol, chloroform,
and NO2 were used. The flow rates of target gas and air were controlled by calibrated
Mass Flow Controllers (MFCs). Dry air was used through a tube to clean the sensors before
gas application. Acetone, ethanol, chloroform, and NO2 gases were individually added to
dry air using bubblers in a temperature-controlled chamber fixed at −15 ◦C. Desired gas
concentrations were achieved using the Antoine equation. Stainless steel tubing was used
to maintain the gas temperature constant. The gases entering the gas mixing chamber were
applied to the IDE sensor array at a constant flow rate of 200 mL/min. The e-nose system
converted measurement results into digital data with a resolution of 16 bits, sampled at a
maximum response frequency of 100 Hz, where the maximum response was obtained.
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Figure 2. Experiment scheme for IDE sensor-based e-nose system.

In Figure 3, an electronic nose measurement circuit is shown with four arrays of IDE
sensors. IDE sensors are organic sensors and are measured with a bioimpedance spectroscopy
(BIS)-based interface circuit. The BIS circuit detects changes in impedance magnitude and
phase angle occurring in the sensor. The IDE (Interdigitated Electrode) dimensions are as
follows: size of IDE: 10 mm × 10 mm; thickness of electrodes (fingers): 20 µm; gap between
electrodes: 0.2 mm. The sensor base is silicone and coated with polymer.

2.2. Linear Kalman Filter

The Kalman linear filter algorithm has been used to minimize noise in the signals
obtained from sensor data without loss of information. Equations (1)–(3) present the
mathematical equations used in the algorithm. In the formula, the index n is a number
starting from zero. The model estimate (Pn), the Kalman gain (Kn), the actual measurement
value (Zn), and the model’s current state estimate (Xn) represent the n.th values of the
coefficients. Here, Pn−1 is the previous model estimate, Q is the process noise, and R is the
measurement noise. Here, Pn−1 denotes the previous model estimate, Q represents process
noise, and R denotes measurement noise.
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The Kalman filter predicts the current state estimate Xn based on a proportional
comparison with the real measurement error using the Kalman gain Kn. According to the
Kalman gain Kn the difference between the real measurement Zn and the previous model’s
predicted value Xn−1 is added to the last prediction [33–35].

Kn =
(Pn−1 + Q)

(P n−1 ++Q
)
+ R

(1)

Xn = Xn−1 + Kn × (Zn − Xn−1) (2)

Pn = (1 − Kn)× Pn−1 (3)

Table 1 provides the calculated sensitivities for the target gas measurements of the
IDE sensor. In the design of the Kalman filter, the IDE sensor sensitivities were used as a
reference for selecting the R value for different gases. The R value was chosen as 10−3 for
acetone, ethanol, and chloroform gases, and 10−1 for NO2 gas. The process noise value was
set to 10−4.

Table 1. IDE sensor sensitivities and R value selection.

Gas Concentration
(ppm) Sensitivity (Ω/ppm) R (Measurement Noise)

Acetone 1820 5.7 × 10−3 10−3

Ethanol 1820 5.2 × 10−3 10−3

Chloroform 1465 7.4 × 10−3 10−3

NO2 6.7 7.825 × 10−1 10−1

2.3. Principal Component Analysis (PCA)

Before applying PCA, the data were standardized because variables measured in
different ppm ranges would otherwise not contribute equally to the analysis and outliers
would obscure the results. This process ensures that the data are distributed with a mean
of zero (0) and a standard deviation of one (1). The equations used in the algorithm are
formulated as follows [36,37].

In Table 2, the covariance matrix obtained from PCA analysis of the sensor array’s
response to 0–5460 ppm acetone gas is shown. In Table 2, due to (IDEi, IDEk) ̸= 0 where
IDEi ̸= IDEk according to the covariance matrix, there exists a linear association among
the sensor data, demonstrating the feasibility of performing PCA analysis on the sensor
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data. A value greater than zero indicates positive linear correlation, while a negative value
indicates negative linear correlation.

Table 2. The covariance matrix of the sensor array.

Sensors Sensor-1 Sensor-2 Sensor-3 Sensor-4

Sensor-1 0.999742 0.246557 −0.64649 −0.67897
Sensor-2 0.246557 0.999742 0.231877 −0.68593
Sensor-3 −0.64649 0.231877 0.999742 0.142882
Sensor-4 −0.67897 −0.68593 0.142882 0.999742

Table 3 presents the correlation matrix of the sensor array, standardized from the
covariance matrix where IDEi ̸= IDEk, providing information on the strength of linear
relationships without the need for data normalization [38]. Additionally, the correlation
matrix indicates the clusters that should be identified: negative correlation suggests no
relationship between the data, indicating separate clustering, while positive correlation
suggests clustering together. Since correlation coefficients in the matrix are <0.2, the sensor
data exhibit very low linear relationships and high nonlinear variability.

Table 3. The correlation matrix of the sensor array.

Sensors Sensor-1 Sensor-2 Sensor-3 Sensor-4

Sensor-1 1 0.0001 −0.0003 −0.0004
Sensor-2 0.0001 1 0.0001 −0.0005
Sensor-3 −0.0003 0.0001 1 0.00008
Sensor-4 −0.0004 −0.0005 0.00008 1

Equations (4) and (5) involve obtaining the eigenvalues and subtracting the eigenvalue

space. In these equations, As represents the covariance matrix of the sensor data set,
→
X

denotes the sensor data, λ stands for the eigenvalues, and I represents the identity matrix.

As
→
X = λ

→
X (4)

det (λI − A) = 0 (5)

The eigenvalues of the dataset obtained against 0–5460 ppm acetone gas are found to
be 2.2012, 1.4302, 0.2485, and 0.1190 in descending order. The highest eigenvalue indicates
the maximum variance or information, guiding us in dimensionality reduction and feature
selection processes.

Equation (6) provides the total variance formula, revealing which sensors in the dataset
have the highest variance and carry the most information.

∑ variance =
λn

matrix diagonal
(6)

The 1st principal component represents 55.03% of the total variance, the 2nd principal
component represents 35.75% of the total variance, the 3rd principal component represents
6.212% of the total variance, and the 4th principal component represents 3.008% of the
total variance.

According to Equation (7), data dimensionality reduction is performed. Here,
→
V

represents the eigenvector obtained from the eigenvalues, while i denotes the number of
rows in the sensor dataset, j represents the desired reduced dimensionality, and k denotes
the number of columns in the sensor dataset.

[Sreduce](i,j) = [Snormalization](i,k) ×
[→

V
]
(k,j)

(7)
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The entire dataset comprises 8176 data points (4 × 2044). As a result of dimensionality
reduction using PCA, the data column with the lowest variance (3.008%) was reduced. The
neural network was trained with 6132 data points (3 × 2044). Overall, 25% of the entire
dataset consists of outlier data.

This way, outliers with very little information are removed from the sensor dataset.
Throughout the entire classification process of IDE sensors, dimensionality reduction using
PCA analysis was employed to transform the 4-dimensional sensor array dataset into a 3-
dimensional dataset. Consequently, this led to higher classification performance with fewer
mathematical equations and iterations. After dimensionality reduction, the covariance of
the new matrix is zero because the eigenvectors are orthogonal to each other, meaning they
are perpendicular. There is no relationship covariance between these vectors. Therefore,
the covariance matrix of the newly formed PCA-reduced or -transformed data is zero.
This eliminates overfitting among the data before classification. With the newly obtained
dataset, which has unrelated high variance, classification work has been conducted.

2.4. Backpropagation Neural Network (BPNN)

In Figure 4, the neural network architecture that achieved the highest test performance
in gas classification is shown. The neural network consists of three hidden layers and one
output layer. After dimensionality reduction using PCA, the input dimension of the neural
network reduced from 4 to 3. The optimal number of hidden layers that provided the best
validation result in the neural network was determined to be 3. The choice of 4 hidden
layers is related to the classification of 4 different gases and the high degree of nonlinearity
in the data. Since there are no mixed gas data in the neural network design, the network
structure was designed with a single output label.
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Figure 5 shows the flow diagram of the BPNN algorithm developed for the e-nose
system. Unlike traditional BPNN networks, this algorithm is equipped with a deep learn-
ing method. The performance of the BPNN has been enhanced by using Xavier weight
initialization and controlling the cost calculation with weight decay.
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According to Equation (8), the total number of neurons in the hidden layers of the
neural network is determined not to exceed 39. Here, Nh represents the total number of
neurons in the hidden layer, and n denotes the number of input neurons [39].

Nh =
(

4n2 + 3
)

/(n 2 − 8
)

(8)

The classification performance of the neural network and the number of neurons in
the hidden layer vary according to the sensor sensitivity. To prevent overfitting of the
neural network, weight decay has been added to the loss calculation for regularization.
Additionally, to test for overfitting between training and testing, and to prevent the network
from making predictions based on learned patterns, the data were split into 60% for training
and 40% for testing, which the network has never seen before. The experimental groups
utilized 6132 data points.

Due to the elimination of overfitting through PCA, no separate validation process
was conducted in the neural network training. Sigmoid activation functions were used in
both the hidden and output layers, as other activation functions did not achieve the same
training and testing performance.
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The mathematical equations of the neural network algorithm are provided below [40–42].
In training the model, the Xavier initialization method was used for initializing neuron
weights to achieve higher performance in target gas detection [43,44].

Equation (9) specifies that neuron weights are initialized using Xavier initialization
rather than random initialization. Here, ni represents the number of neurons in the current
layer, nj represents the number of neurons in the next layer, and wi denotes the neuron
weight in the layers.

Generally, Xavier initialization is used in deep neural networks to ensure that weight
gradients across all layers have the same variance. This helps in maintaining the variance
in weights throughout all iterations and prevents the vanishing gradient problem. As a
result, learning performance improves. The weights are initialized within the range [−1, 1],
and bias values are initially set to zero. After each iteration, computed neuron error values
are assigned as biases.

Wi =

[
−

√
6√

ni + nj
,

√
6√

ni + nj

]
(9)

Equations (10)–(12) provide the forward propagation equations and the sigmoid
activation function used in each layer of the neural network. Here, the i.th neuron in the
layer represents the j.th neuron from the previous layer. Equation (12) gives the mean
squared error (MSE) loss function equation.

f (x) =
(

bij + ∑n
i=1 xijwij

)
(10)

f (act) =
1

1 + e−x (11)

E =
1
2
(target − output)2 (12)

To minimize the error, the gradient descent function is used. The change in error with
respect to weights is calculated using the derivative. Equation (13) provides the gradient
descent equation for weight updates. Here, wi represents the new weight value, and α
denotes the learning rate. Throughout all training models, α is set to 0.1, which is found to
achieve the highest learning efficiency.

wi = wi−1 − α × dE
dwi−1

(13)

In Equation (14), the overall cost calculation between the model prediction and the
targets given to the model is performed. Weight decay regularization has been added to
the model loss calculation. Here, λ denotes the regularization constant, which has been
chosen as 0.0001 in the algorithm [45,46].

L =
1
m

m

∑
i=1

√
(output − target)

2
+ 0.5 ∗ λ ∗

∣∣∣w2
∣∣∣ (14)

3. Result and Discussion

Our research shows that all IDE sensors can be measured at a constant room tem-
perature and a humidity range of 20–80%. Sensor impedance variation is higher at low
humidity (20%) and high humidity (80%). At 40% humidity, the sensor impedance has a
constant value of 0.8415 Ω on average. Humidity sensitivity is negligible. In Figure 6, the
response of Sensor-4 to 0–11,720 ppm chloroform gas is depicted. The sensor impedance
change is 24.86 Ω. The sensor was exposed to 600 s of gas followed by 600 s of dry air.
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Table 4 presents the sensor sensitivities for different concentration ranges of each
gas. Sensor sensitivities were obtained by dividing the impedance change by the gas
concentration. The sensor value showing the highest impedance change within the sensor
array was taken as the reference. As the gas concentration increases, the sensor impedance
change becomes lower. This results in lower sensor sensitivity at higher concentrations.
Additionally, decreased sensitivity reduces the accuracy of target gas detection.

Table 4. Sensor sensitivies (S = impedance/concentration).

Gas Concentration
(ppm) Sensor Array Sensor Impedance

(ohm)
Sensitivity
(Ω/ppm)

NO2 6.7 Sensor-2 5.2428 0.7825

NO2 13.3 Sensor-1 4.3594 0.3277

Acetone 1820 Sensor-4 10.4969 0.0057
Ethanol 1820 Sensor-3 8.6485 0.0047
Chloroform 1465 Sensor-3 9.8752 0.0067

Acetone 3640 Sensor-2 5.1599 0.0014
Ethanol 3640 Sensor-3 6.5480 0.0017
Chloroform 2930 Sensor-4 5.4573 0.0018

Figure 7 depicts the graphical variation in impedance amplitude for sensors within the
sensor array responding to acetone, ethanol, and chloroform gases. Sensors were exposed
to gas for 600 s after cleaning. Sensor-4 exhibited an impedance change of 10.4969 Ω at
1820 ppm acetone gas, Sensor-3 showed a response of 8.6486 Ω at 1820 ppm ethanol gas, and
Sensor-3 responded with an impedance change of 9.8752 Ω at 1465 ppm chloroform gas.

In Figure 8, the impedance change graph for Sensor-2 is provided in response to
the periodic concentration increase in NO2 gas in the range of 0–46.7 ppm. The gas
protocol applied to the sensor consists of 300 s of dry air cleaning followed by 300 s of
gas exposure. In the classification study, impedance change data were used against NO2
gas concentrations where sensor sensitivity and classification performance were highest,
specifically at 6.7 and 13.3 ppm NO2. After 13.3 ppm of NO2 gas, the classification test
performance for gas detection fell below 70%.
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As seen in Table 5, as sensor sensitivity decreases, neural network classification perfor-
mance also decreases.

This is because the impedance change is slower relative to the increase in applied
gas concentration. The performance criteria include the gradient norm, which is the total
magnitude of the vector comprising the errors and biases of neurons in the hidden and
output layers. This magnitude is equal to the square root of the sum of squares of these
vector values. In the gradient descent algorithm, the goal is to zero out the errors and biases
of neurons computed across all layers after backpropagation. Achieving a zero value for
this criterion indicates that the neural network has attained maximum performance for the
specified mean squared error (MSE) value from training and test data.

In Figure 9, the mean squared error (MSE) variation of the neural network algorithm
for the classification of 6.7 ppm NO2, 1820 ppm acetone, ethanol, and 1465 ppm chloroform
gases is shown, with a training accuracy of 84.19% and a test accuracy of 87.16%. The
network completed its training with an MSE value of 0.02997 at the 70th iteration in
239.54 milliseconds. For achieving high test accuracy, the variation in MSE with iterations
should be linear. The horizontal MSE variation only increases training accuracy without an
equivalent increase in test accuracy.
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Table 5. Results of gas classification using BPNN.

No. NO2
(ppm)

Acetone (ppm)
Ethenol (ppm)
Chloroform (ppm)

Neuron
Number Training (%) Test

(%) MSE Gradient

1 6.7
1820
1820
1465

[8-10-8] 84.19 87.16 0.029970 0.000068

2 13.3
1820
1820
1465

[10-12-14] 89.74 81.70 0.009999 0.000000

3 6.7
3640
3640
2930

[8-10-8] 86.61 76.5 0.019959 0.000067

4 13.3
3640
3640
2930

[12-13-14] 73.28 71.76 0.034974 0.000000
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4. Conclusions

In this paper, two original studies have been successfully completed and presented to
researchers: The first is the design of an e-nose system consisting of an IDE-based sensor
array. The IDE sensors used in the e-nose system were custom-made for this study. IDEs
are chemically capacitive sensors with no equivalents in the literature. The second is the
development of a BPNN algorithm for classifying the high nonlinearity target gas data
obtained from the e-nose system. Our neural network model is enhanced with methods
used in deep neural networks, differing from the traditional BPNN algorithm. Experimental
results have achieved a test accuracy of 87.16% in classifying NO2 (6.7 ppm), acetone (1820
ppm), ethanol (1820 ppm), and chloroform (1465 ppm) gases.

The IDE-based e-nose system introduced to the literature, along with the BPNN
algorithm developed for gas detection, has yielded practical results for air pollutant gas
detection. The developed BPNN model will also serve as a reference for classifying other
highly nonlinear gas sensor data.

In future studies, we plan to integrate the IDE sensor array with a micro gas column.
This will enable the detection of gas mixtures using a more powerful e-nose system consist-
ing of IDE-based µGC. The performance of the developed BPNN network in the separation
of gas mixtures will be demonstrated.
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