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Abstract: Robots need to sense information about the external environment before moving, which
helps them to recognize and understand their surroundings so that they can plan safe and effective
paths and avoid obstacles. Conventional algorithms using a single sensor cannot obtain enough
information and lack real-time capabilities. To solve these problems, we propose an information
perception algorithm with vision as the core and the fusion of LiDAR. Regarding vision, we propose
the YOLO-SCG model, which is able to detect objects faster and more accurately. When processing
point clouds, we integrate the detection results of vision for local clustering, improving both the
processing speed of the point cloud and the detection effectiveness. Experiments verify that our
proposed YOLO-SCG algorithm improves accuracy by 4.06% and detection speed by 7.81% com-
pared to YOLOv9, and our algorithm excels in distinguishing different objects in the clustering of
point clouds.

Keywords: fusion perception; object detection; YOLO-SCG; point cloud clustering

1. Introduction

Information perception is a key technology that supports mobile robots to realize au-
tonomous, safe and efficient actions in complex environments, mainly including perception
methods such as vision, radar and multi-sensor fusion.

Vision sensors are able to acquire information such as the category, color and texture
of external objects, with the category being particularly important. Object detection often
employs the YOLO (You Only Look Once) [1] algorithm, which is the first end-to-end
network framework enabling real-time detection. It uses regression to optimize solutions
for category and location as a whole. The method enables real-time monitoring, but its
oversimplified structure brings lower accuracy. In order to solve this problem, the YOLO
series is constantly updated and iterated, deriving a series of improved models [2–4]. For
instance, YOLOv9 [4] relies on Generalized Efficient Layer Aggregation Network (GELAN)
and Programmable Gradient Information (PGI) to obtain higher accuracy and speed among
similar models. However, focusing solely on global information or local features in the
object detection process can easily lead to problems such as reduced recognition rate
and missed detection. For example, the multimodal method [5] obtains final results by
training fusion units to acquire representation vectors that fuse image features and semantic
features, while focusing too much on global information can make it difficult to infer the
correct answers. On the other hand, overemphasizing local information limits the model’s
ability to acquire global information. Object detection algorithms such as YOLOv9 divide
images into a number of grids to extract features separately, which can easily result in the
missed detection of distant small objects or overlapping objects. Therefore, introducing an
attention mechanism can enhance the ability to focus on local features while simultaneously
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capturing global features and local information. This approach allows for flexible allocation
of attention weights to enhance model performance and improve information capture
abilities [6].

The attention mechanism is a technique that mimics human ability to selectively
observe and focus on key information according to need while ignoring the rest [5]. It
aggregates algorithms to the most relevant parts of the input based on their relative impor-
tance, tending to focus on unique aspects when processing large amounts of information [7].
Currently, the attention mechanism is divided into the channel attention mechanism [8],
hybrid attention mechanism [9], self-attention mechanism [10], etc. SENetV2 establishes
an attention mechanism based on channel correlation, which automatically obtains the
importance of the feature channels and rationally assigns different weights according to the
importance of each channel feature to reduce feature redundancy [11]. Chen [8] introduced
Efficient Multi-Scale Attention (EMA), a multi-scaled channel attention mechanism, into
YOLOv7, which aggregates pixel-level features and reduces missed detections and false
detection through cross-channel interaction. In order to enhance the accuracy of pipeline
leakage detection, Peng et al. [9] integrated Convolutional Block Attention Module (CBAM)
into YOLOv5, which enables the model to focus on extracting features, attenuating the
influence of complex backgrounds and reducing computational amount by combining
with adaptive spatial feature fusion. Cao et al. [10] introduced the adaptive attention
mechanism Swin Transform (SWT) into YOLOv7 to reduce the computation load. Swin
Transformer is an adaptive attention mechanism that integrates into a convolutional neural
network to guide the network to focus on contextual spatial information and improve its
sensitivity to small objects. Wu et al. [12] extended the perceptual domain of the model in
YOLOX using attention modules, resulting in an average accuracy improvement of approx-
imately 4.24% compared with the pre-optimization period. Therefore, this paper introduces
SENetV2 into the convolutional neural network to improve its leakage detection of small
objects or overlapping objects. At the same time, Context Guided Block, a lightweight
semantic network, replaces the convolutional module to solve the problems of parameter
numbers and the increase in training cost caused by the multi-branch structure of SENetV2
while ensuring the recognition accuracy.

After completing the target detection for vision, the processing of the detected target
can obtain the color, texture and other information of the object in order to achieve finer
information perception. However, the above methods cannot directly provide depth
information, are greatly affected by occlusion and cannot directly perceive the shape and
size of the object, so there is a big limitation in using only a single 2D camera as an
information perception element. Li et al. [13] combined 2D detection boxes from multiple
cameras to approximate 3D detection box for the depth information. Ding et al. [14]
designed a motion target localization algorithm by improving the optical flow method, and
then reconstructed the 3D coordinates of points within the motion target area based on the
parallel structure of binocular vision. LiDAR can provide accurate distance information and
accurate perception of object shape. The processing of radar point clouds is a commonly
used clustering method [15,16] which is flexible but sensitive to model parameters, data
noise and outliers. The use of a convolutional neural network point cloud processing
algorithm can improve the detection accuracy and robustness [17,18], but it is prone to
problems such as large computational volume and poor real-time algorithm performance.
In order to improve the training and inference speed, some studies have voxelized the
point cloud [19] or used sparse convolution [20], but both methods cause permanent
loss of information and are only applicable for special scenarios. Although radar-based
environment sensing can effectively determine the spatial location of an object, the large
amount of point cloud data and the inability to obtain the color and texture information of
the object make it difficult to use for information sensing alone.

In summary, existing single-sensor methods have significant limitations in environ-
mental perception. While visual cameras can provide color and texture information of
objects and LIDAR provides accurate distance and shape perception, methods relying on
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one type of sensor cannot comprehensively understand and percept targets in complex
scenes. Therefore, in order to address the limitations of single sensors such as camera
and radar, the use of fusion can effectively improve the information perception. Veitch-
Michaelis J. [21] data-fused LiDAR point cloud data with parallax maps obtained by stereo
matching which realized simple calibration of camera and radar, but in low texture regions,
the information perception ability will be reduced dramatically. Chen [22] proposed MV3D
(Multi-View 3D Object Detection Network) to fuse LiDAR point cloud data with RGB image
information for predicting directional 3D bounding boxes. Although MV3D streamlines
the VGG16 network, the algorithm recognition time is as high as 0.36 s per frame, which
makes it difficult to achieve real-time processing. Some works have optimized MV3D by
introducing an encoder-decoder backbone [23] or a voxel feature encoding (VFE) layer [24],
which has advantages in both accuracy and detection speed. In addition, Duan [25], Liu [26]
and others have recently used attention mechanisms to fuse data from LiDAR and cameras,
achieving competitive 3D object detection performance.

All of the above works are oriented towards 3D object detection. The fusion of LiDAR
and the camera is also capable of achieving accurate depth measurement, information
perception and other tasks. Battrawy R. [27] proposed a method to fuse LiDAR with
images obtained from stereo matching for dense scene traffic estimation. Wang [28] utilized
Convolutional Neural Networks (CNNs) for the fusion of radar and camera data to achieve
object detection based on depth measurements; although the algorithm had a significant
improvement in detection speed, a sparse non-zippered pooling layer was constructed
before converting to bird’s-eye view, which lost a large amount of information. Varuna [29]
utilized the fusion of camera and radar information for the environment sensing of un-
manned vehicles, which was combined with the application of a wide-angle camera to
an autonomous mobile robot and the establishment of a sensor fusion framework, which
improves the unmanned vehicle’s ability to perceive environmental information, but the
proposed method is only applicable to a single image and cannot be used for data streaming.
Wang H. [30] used LiDAR point clouds to obtain regions of interest by clustering, projected
the regions of interest onto the image and used a YOLOv3 object detection algorithm to
detect the object on the image corresponding to the candidate region, and the proposed
algorithm’s processing time of each image frame reached 0.09 s, but due to the limitation of
the underlying model, it only has 69.36% accuracy (Easy) on the KITTI dataset. Wang [31]
proposed Bi-Consistency Guidance Incomplete Multi-view Clustering when using cluster-
ing methods to deal with incomplete data. The method focuses on identifying instances and
clustering optimization from multi-view data. While these studies confirmed the feasibility
of combining LiDAR and cameras, several challenges emerge when applying the algorithms
for a broader range, such as the complexity of processing high-dimensional point cloud
data and the algorithms’ limited accuracy. A promising direction for future research is
upgrading deep neural networks with new architectures and attention mechanisms, which
may achieve more accurate and efficient perception.

Based on the above analysis, this paper proposes an information sensing system based
on multi-sensor fusion. Camera and LiDAR are used to acquire color images and depth
images of the outside world, respectively, and with vision as the core, the information
perception is accomplished by improving the accuracy of the object detection algorithm,
reducing the data processing needs of the LiDAR point cloud and fusing the data acquired
by the two sensors at the data level. The contributions of this paper are as follows:

1. We propose an object detection model, YOLO-SCG, which integrates the latest SENetV2
attention mechanism, which can effectively improve the detection ability of the model,
in addition to replacing the convolution in YOLOv9 with the Context Guided Block
that can simulate the human visual system relying on contextual information, which
can effectively improve the speed of the model.

2. It is experimentally verified that the YOLO-SCG proposed in this paper has higher
accuracy and excellent real-time performance compared with the current popular
target detection models.
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3. We propose an algorithm with visual detection as the core and radar assistance for
joint information perception. We try to incorporate the image detection information
into the point cloud to obtain finer 3D information. Finally, the effectiveness of the
proposed fusion method for information perception is verified by experiments.

2. Integration Programs and Models

Figure 1 shows our method for integrating visual and point cloud data. We have
performed basic processing on the input images and point cloud data, including feature
extraction and cropping for images, filtering of point clouds and removal of ground points,
which can simplify data processing and enhance algorithm stability. At the end of data
processing, we synchronized the space and time of the image and point cloud data. In
the second part, we first use YOLO-SCG for object detection on the input feature map,
obtaining essential object coordinate frame information, which transform it into the point
cloud coordinate system. Then, we perform Local Euclidean clustering on the point cloud
according to the information detected in the image. At the end of this part, we obtain both
two-dimensional and three-dimensional information about external objects. Finally, after
simple processing of this information, we can obtain category, color, clustering, texture,
size and so on.
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Figure 1. Multi-sensor information fusion model.

2.1. YOLO-SCG Object Detection Model

The network structure of Programmable Gradient Information (PGI) and Generalized
Efficient Layer Aggregation Network (Generalized ELAN), proposed by YOLOv9, is shown
in Figure 2. This aims to reduce the problem of information loss due to network deepening
by generating reliable gradient information and updating the network parameters.

However, YOLOv9 pays more attention to local information when performing feature
extraction, which limits the model’s ability to obtain global information, so it can better
fuse local and global information by replacing the convolutional layer in the original
network to strengthen the network’s ability of feature extraction and improve the model’s
detection performance. However, when recognizing overlapping or distant objects, its
detection accuracy reduces slightly. The introduction of the attention mechanism can
filter out irrelevant external information so that the model can focus on processing the
key information of the input data, and improve the model classification accuracy and
recognition detection accuracy. Therefore, based on the architecture of YOLOv9, we propose
a new object detection model, YOLO-SCG, to improve its classification accuracy and
object detection accuracy. The proposed model incorporates both the SENetV2 attention
mechanism and the Context Guided module, which will be described in detail in the
following subsections.
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The network structure diagram of YOLO-SCG is shown in Figure 2. The Context
Guided module is used to replace the Conv layer in the original network, and the purpose
of improving the accuracy of its semantic segmentation is realized by fusing the information.
After preprocessing, the image is sent to the backbone part of the network to extract different
feature information and semantic information, and then the extracted features are passed to
the neck (Neck) for feature fusion; the main structure of the neck remains unchanged, and
the SENetV2 attention mechanism is added to the neck in order to improve the classification
accuracy of the model.

2.1.1. SENetV2 Module

SENetV2 is an attention mechanism that improves classification accuracy by adap-
tively adjusting the channel relationships of a convolutional network. The model uses a
multi-branch fully connected layer for squeezing and excitation operations to enable the
network to learn different features of the input data more efficiently, taking into account
the interdependence between channels and global information, and its structure is shown
in Figure 3.
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The feature map U is generated after the convolution operation Ftr, which is described
by Equation (1). V is introduced to denote the filter kernel, vc is the parameter of the Cth
filter, vS

C denotes its single channel acting on the corresponding channel X, * represents the
convolution operation and the output is generated by summing over all channels.

uc = vc ∗ X =
C′

∑
S=1

vS
C ∗ XS (1)

The attention mechanism employed by this work mainly uses the Squeeze aggregated
Excitation (SaE) module, which combines squeeze excitation operations and a multi-branch
fully connected layer to dynamically adjust channel importance by adjusting channel
weights. Figure 4 displays the internal mechanism.
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Equation (2) illustrates the global average pooling operation to compress the feature
map U into 1 × 1 × C channel descriptors. By converting each channel’s spatial posi-
tion information into a single scalar value, the operation shields the spatial distribution
information and stresses the correlations of inter channels.

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (2)

The output obtained through global average pooling is fed into the multi-branch fully
connected (FC) layer. The process serves two purposes: firstly, it learns the correlations
between channels to assign corresponding weights, enhancing the model’s perception of
different channel information. Secondly, it reduces the channel dimensionality to decrease
computational load, while employing ReLU functions to constrain model complexity.
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The second fully connected layer can be used to restore the original channel dimension.
Employing the Sigmoid activation function helps in learning nonlinear interactions between
channels and non-exclusive relationships among multiple channels, effectively capturing
channel dependencies. Meanwhile, the output represents the weights of each channel’s
importance, as illustrated in Equation (3). Finally, according to Equation (4), the obtained
C weights are multiplied with the C channels of feature map U, reassigning the channels’
importance in feature maps accordingly.

s = Fex(z, W) = σ(g(z, W)) = σ
(
W2δ

(
∑ W1z

))
(3)

∼
xc = Fscale(uc, sc) = sc·uc (4)

2.1.2. Context Guided Model

Context Guided Block (CG block) is a lightweight and efficient semantic segmentation
network, which mainly consists of a local feature extractor Floc(*), a surrounding context
extractor Fsur(*), a joint feature extractor Fjoi(*) and a global context extractor Fglo(*), as
shown in Figure 5.
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Equation (5) shows the computational process of joint local and contextual infor-
mation. Specifically, the input feature map is first halved in the number of channels by
1 × 1 convolution. This output is then fed to the local feature extractor for channel-level
convolution operations to obtain local feature information; at the same time, this output is
also fed to the surrounding context extractor to increase the size of the receptive field using
null convolution to extract broader contextual information. Next, the joint feature extractor
performs channel splicing of the local and contextual information to ensure that the model
understands the information in each pixel or localized region and the relationship of these
regions in the whole.

Xc = Fjoi(Fsur(Conv1×1(X)) + Floc(Conv1×1(X))) (5)

Equation (6) illustrates the computational process of extracting the global information
of the whole image. The obtained joint feature information is taken as an input, and the
feature information is dimensionally reduced after the global average pooling operation.
After that, the feature information is further processed through two fully connected layers.
Finally, the processed features multiply with the original input to enhance and refine the
global contextual feature information, which helps the network to better understand the
global information of the whole image.

Fglo = Xc × (Fc(GAP(Xc))) (6)
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2.2. Time and Space Are Synchronized

In this paper, the camera used has an output frame rate of 30 FPS, while the LiDAR
has an output frequency of 20 Hz. This means the camera’s sampling period is 33.3 ms
and the LiDAR’s sampling period is 50 ms. When using the ROS system for data fusion
between the LiDAR and the camera, different types of data from the camera and LiDAR are
received. The corresponding information is only output when messages are received from
each source with the same timestamp, thus achieving message synchronization output and
sensor data time synchronization. Figure 6a,b. show the data frequency before and after
time synchronization.
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The coordinate system transformation between LiDAR and camera falls under rigid
body transformation, where the objects in the coordinate system are not deformed by the
transformation but only need to be rotated and translated. The KITTI dataset provides the
relevant transformation matrices, so it is only necessary to use the matrices to convert the
point cloud and image coordinate systems by translation and rotation.

When performing the transformation of the coordinate system, the rotation matrix
formula is as follows:

R = Rz ∗ Ry ∗ Rx

=

cosαcosβ cosαsinβsinγ − sinαcosγ cosαsinβcosγ + sinαsinγ
sinαsinβ sinαsinβsinγ + cosαcosγ sinαsinβcosγ − cosαsinγ
−sinβ cosβsinγ cosβcosγ

 (7)

Expressing the point Pl(xl , yl , zl) in the LiDAR coordinate system in chi-square form
is transformed to the point Pl(xc, yc, zc) in the camera coordinate system as follows:

xc
yc
zc
1

 =

[
R T
0 1

]
xl
yl
zl
1

 (8)

where T is the translation matrix and
[

R T
0 1

]
is the transformation matrix between the

LiDAR coordinate system and the camera coordinate system, which is provided by the
KITTI data, and is used in this paper for the transformation between coordinate systems.

2.3. Euclidean Clustering and Bracket Box Construction

Euclidean clustering is an algorithm implemented based on the Euclidean distance
measurement. It uses a K-dimensional tree (Kd-tree) to calculate the Euclidean distance
between the point cloud. Based on the calculation results, it finds the closest neighboring
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points, and the point cloud that is within a fixed threshold represents a subset. The role of
Kd-tree is to improve the search speed. The Euclidean distance between points (x1, y1, z1)
and (x2, y2, z2) in space is calculated as Equation (9):

d =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (9)

After the point cloud clustering, a bounding box model is used to describe the shape of
the obstacle point cloud. We use the AABB (Axis-Aligned Bounding Box) algorithm for this
purpose. In the AABB model, each edge is parallel to a coordinate plane. The dimensions of
the rectangular bounding box in 3D dimensions can be different and may not necessarily be
cubic. The AABB bounding box contains two important vertices, Pmin = [xmin, ymin, zmin]
and Pmax = [xmax, ymax, zmax], whose three-dimensional dimensions are respectively com-
puted as in the following Equations:

L = xmax − xmin (10)

W = ymax − ymin (11)

H = zmax − zmin (12)

where L, W and H are length, width and height, respectively; if W > L, then exchange
the corresponding values to get the size of the obstacle-enclosing box. In the real-world
environment, the coordinate axes may not always be parallel to the surrounding obstacles;
in this case, AABB will surround all the point clouds of this obstacle.

3. Experimentation and Analysis
3.1. Hardware Configuration and Evaluation Metrics

The system used in this experiment is Ubuntu 18.04, the GPU is GeForce RTX2080Ti,
memory is 32 G, CUDA 10.2 and Python 3.9. During the training procedure, the batch size
is 4, while the learning rate is 0.01.

The performance evaluation metrics used in this paper for the object detection task are
precision Equation (13), recall Equation (14) and mean average precision Equation (15). In
addition, we added the size of the parameters of the model and the amount of computation
to the evaluation metrics. It was computed for the convolutional layer, the fully connected
layer and the other layers in the network structure that have parameters.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

AP =
∫ 1

0
Precision(Recall)d(Recall) (15)

mAP =

i=n
∑

i=0
AP

n
(16)

where TP is the number of positive samples predicted to be positive, FP is the number of
negative samples predicted to be positive, FN is the number of negative samples predicted
to be negative and AP is the average accuracy.

3.2. Datasets

For this experiment, the VOC 2007 datasets was chosen for training to detect as many
classes as possible in an open environment. VOC, the full name of which is Visual Object
Classes, is a dataset provided by the PASCAL VOC project for object detection and image
classification. It consists of 9963 images, with horizontal resolutions ranging approximately
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375~500 and vertical resolutions around 350~500. The dataset covers 20 different types of
objects, including common targets such as “aircraft”, “bicycle”, “person”, etc. The scene in
the dataset is complex, with large differences between similar targets in a single image and
varying degrees of occlusion. Therefore, using this dataset for training can improve the
model’s generalization ability. The current study employs a split ratio of 6:3:1 to divide the
training set, testing set and validation set.

For the radar-related experiments, since the VOC dataset only contains image data, it is
necessary to use the KITTI dataset for additional testing. The KITTI dataset is widely used
for research in autonomous driving and computer vision, created by the Karlsruhe Institute
of Technology and the University of Stuttgart. The dataset provides rich sensor data,
including high-resolution images, LiDAR point clouds, GPS/IMU data and vehicle attitude
information, covering various urban environments such as city streets and rural roads.

3.3. YOLO-SCG Ablation Experiment

To investigate the resulting enhancement effects of integrating the SENetV2 attention
mechanism and the Context Guided block into the YOLOv9 network and to evaluate
whether these two methods outperform other attention mechanisms and convolutional
blocks, we designed ablation experiments. We conducted comparative analyses of the
effects produced by incorporating various attention mechanisms and convolutional blocks
into the network structure. We made various modifications to YOLOv9 and tested them
using different configurations, with each experimental setup corresponding to a compre-
hensive set of evaluation metrics.

3.3.1. Comparison of Different Attention Mechanisms

Figure 7 shows the results of the ablation experiment after integrating various attention
mechanisms into YOLOv9.
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Integrating SENet (Squeeze and Excitation Networks) and SENetV2 into YOLOv9 can
increase object detection accuracy via introducing squeeze excitation operations. The fea-
ture maps can be processed by dynamically adjusting the importance of different channels.
Compared with SENet, SENetV2 further integrates a multi-branch fully connected layer to
learn the correlation between these channels, resulting in a 4.29% increase in mAP(mean
Average Precision), but at the same time leads to a 0.6% increase in parameter numbers.
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We also investigated introducing the local average pooling and global average pooling
operations of Mixed Local Channel Attention (MLCA) into YOLOv9. Firstly, it extracts local
spatial information through local pooling. Subsequently, it introduces two branches: the
first branch obtains global information by global average pooling, while the second branch
uses convolution operations to capture local interaction information between channels
and leverage useful features. Furthermore, fusing two branches obtains global contextual
information, resulting in a 3.16% increase in detection accuracy but raising the computation
complexity, with an increase of 1.23% in parameters.

The introduction of EMA in YOLOv9 improves target detection accuracy by both
reshaping some channels of the feature map into batch dimension and dividing the channel
dimension into multiple sub-features to ensure uniform distribution of channel information,
as well as encoding the global information in parallel and capturing pixel-level relationships
across the latitudinal interaction module, resulting in 3.39% increase in detection accuracy.
However, due to its parallel branches, its parameters increased by 5.12%.

Global Attention Mechanism (GAM) is integrated into YOLOv9, and its 3D alignment
is introduced to preserve global feature information across three dimensions, while the
channel dependency across latitude is enhanced through Multilayer Perceptron (MLP); this
maintains better global consistency, but it pays less attention to local features, resulting in
only a 0.05% increase in detection accuracy.

A comprehensive analysis shows that the incorporation of the SENetV2 attention
mechanism produces a better enhancement that not only improves the model performance
but also achieves the overall best performance in terms of all evaluation metrics.

3.3.2. Comparison of Different Module Replacement Convolutions

The experimental results of replacing the convolutional layer using different modules
are shown in Table 1. The Context Guided self-attention mechanism is used to replace the
convolutional layer of the original network, which fuses local features, surrounding context
and global context information to enhance the capturing of the relationship between the
object and the background and improve the accuracy of object detection. Experimental
results show that this method significantly improves the accuracy of object detection, with
a 4.18% improvement in mAP, while the amount of parameters is reduced by 8.06%. We
also use three convolution modules, DynamicConv, DualConv, and SPD-Conv, respectively,
to replace the convolution layers. DynamicConv improves the model performance by
dynamically adjusting the convolution kernel but also increases the model parameter count
and computational complexity. DualConv uses two convolutional kernels for convolution
operation to optimize the information processing and feature extraction capability, which
reduces the amount of model parameters by 8.8%, but the detection accuracy is not as
good as Context Guided due to the redundancy of information. SPD-Conv (Space-to-
Depth Convolution) captures multi-scale features and increases the receptive field by using
different dilution rates. However, its complex structure leads to longer training times and a
higher risk of overfitting. Comparative analysis reveals that replacing the convolutional
layer using the Context Guided attention mechanism meets the requirements in all aspects
of performance.

Table 1. Ablation experiments-comparison of different convolutions.

Model P R
mAP

Parameter Numbers
0.5 0.5:0.95

YOLOv9 0.879 0.851 0.884 0.783 60,678,400
YOLOv9 + DynamicConv 0.899 0.869 0.904 0.806 60,925,694

YOLOv9 + DualConv 0.914 0.878 0.913 0.808 55,290,560
YOLOv9 + SPD-Conv 0.907 0.887 0.915 0.810 56,740,232

YOLOv9 + Context Guided 0.911 0.885 0.921 0.815 55,456,256
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3.4. YOLO-SCG Comparison Experiment

In this section, the comparison experiments of the proposed model with other models
are given, and the specific data is shown in Table 2. The proposed model in this paper has
better performance in terms of precision, recall, and F1_score. Due to the incorporation of
the Context Guided lightweight network, the model reduces the number of parameters.
For mAP@0.5, YOLO-SCG (0.880) reduces the value by 0.45% with respect to the original
YOLOv9 (0.884) model, and improves the value by 6.54% with respect to the more pop-
ular YOLOv5s (0.826). However, in a comparison of mAP@0.95, the value improved by
2.3% compared to YOLOv10s, and YOLO-SCG improved the value by 4.06% relative to the
original YOLOv9. This indicates that while the model’s performance is comparable to the
original model in detecting regular objects, YOLO-SCG maintains high detection accuracy
in situations involving small targets and overlapping objects. In addition, we compared
our model with other real-time object detectors on the MS COCO dataset. As shown in
Figure 8, our model exhibits higher accuracy than other models with the same number
of parameters.

Table 2. Comparison of different models.

Model P R F1_Score
mAP Parameter

Numbers FPS
0.5 0.5:0.95

Faster-RCNN 0.742 0.680 0.716 0.763 0.427 —— 19
YOLOv5s 0.782 0.789 0.724 0.826 0.640 7,089,004 55
YOLOv7 0.839 0.829 0.831 0.850 0.669 36,512,236 71
YOLOv9 0.879 0.851 0.868 0.884 0.813 60,678,400 64

YOLOv10s 0.903 0.881 0.889 0.885 0.826 8,096,880 66
YOLO-SCG 0.914 0.886 0.892 0.880 0.846 57,515,194 69
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3.5. Information Acquisition by Multi-Sensor Fusion

Cameras are greatly affected by light, which may lead to image quality degradation
under different lighting conditions and make it difficult to directly obtain the distance
information of objects, posing challenges for depth perception and 3D reconstruction. In
this paper, we try to perform object detection on the image and then perform local clustering
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on the point cloud according to the obtained results, aiming to get a more accurate and fast
information perception model.

3.5.1. Robustness Evaluation of Object Detection Model

The detection effect of the proposed YOLO-SCG object detection algorithm is shown
in Figure 9. As seen in areas A and B of the figure, although the YOLOv9 object detection
algorithm achieves better accuracy, it still misses detection in some extreme cases (such
as occlusion or low light). However, YOLO-SCG is sufficient to eliminate this leakage
phenomenon after ensuring the detection effect of the original model.
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To evaluate the robustness of the model under external environmental disturbances,
we conducted experiments simulating various conditions. For images of the same scene,
10, 8 and 9 are detected in a normal environment, simulated foggy day and rainy day,
respectively. Among them, Figure 10b shows the detection effect in a normal environment,
which shows that the model can clearly recognize both distant and near objects. Figure 10c,d
simulates detection in foggy and rainy conditions, and it can be seen that the proposed
model is able to recognize all the objects at normal distances regardless of the weather.
However, detecting distant objects poses some challenges in heavy rain and thick fog
scenarios, resulting in 1–2 instances of missed detections. Nevertheless, this challenge
remains within acceptable limits.
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3.5.2. Evaluation of the Effectiveness of Localized Euclidean Clustering

Next, this paper uses conventional Euclidean clustering as a comparison, as shown
in Figure 11a. When dealing with independent objects (those that are far away from
other objects), clustering methods can successfully distinguish between different objects.
However, when the objects are close to each other or overlap, clustering the point cloud
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data is unable to distinguish different objects. More seriously, the algorithm will categorize
different objects as a single object. This may result in failing to recognize movable objects or
recognizing stationary objects as moving. The clustering effect using our proposed method
is shown in Figure 11b, where vision-based object detection obtains the detection frame
and transforms it to the point cloud coordinate system, followed by performing Euclidean
clustering within the coordinate frame. This method effectively enhances the refinement of
clustering and reduce the number of point clouds to be clustered.
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clustering method.

Figure 12 compares the results of the proposed method and two clustering algorithms
for point clouds. Figure 12a shows the detection effect of YOLO-SCG, which recognizes
six cars in the image despite the large occlusion produced; Figure 12b shows the effect of
clustering using Region Growing alone, in which the method fails to cluster the object at
distant locations. Figure 12c depicts that integrating YOLO-SCG with Euclidean Clustering
can recognize six cars more accurately.
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3.5.3. Multi-Sensor Fusion for Information Perception

The above experiments evaluated and verified the advantages of our proposed object
detection algorithm and the feasibility of the multi-sensor fusion algorithm. Subsequently,
there is a need to organize and summarize the collected information. In Figure 11, the
visual detection of objects in front mainly detects cars and pedestrians; after local point
cloud clustering of the point cloud within the same field of view as the camera, we are able
to obtain distance and size information about the objects. The information perceived for
pedestrians in the A and B areas in Figure 11 is shown in Table 3, which mainly includes
the information of category, distance, size, color and texture.

Table 3. Access to information display.

Class Distance (m) Sizes (m) Color

Car 9.43 2.17 ×4.77 × 1.61 Black
Person 5.51 0.72 × 0.33 × 1.5 Red

To test the effectiveness of the proposed multi-sensor fusion algorithm, we conducted
a comparative study using 30 consecutive frames of fused data, focusing on distant cars
as an example. We statistically compared the performance of our improved information
perception algorithm against the traditional Euclidean clustering algorithm in measur-
ing errors of typical values of the actual size of objects in the environment. In order to
evaluate the proposed method, we compared it with three methods, namely Euclidean
clustering, Region Growing and Hierarchical Clustering. Table 4 shows the four methods’
average relative measurement errors and leakage rates. Since visual object detection is
introduced as an a priori frame followed by clustering, the proposed method in this paper
has a smaller error in all the metrics compared to the traditional clustering method. In
Table 4, the Euclidean clustering method resulted in a miss detection rate of 23.3%, and the
Region Growing and Hierarchical Clustering generated 13.3% and 16.6% missed frames,
respectively, which include undetected objects and merged objects. In contrast, our method
failed for two frames. Regarding perception speed, Hierarchical Clustering’s detection
speed is 22 fps since it requires a complete hierarchy structure and involves similarity
calculation. Using YOLO-SCG as prior information for Euclidean Clustering is 32.2% faster
than normal Euclidean Clustering. In general, this method improves the efficiency, accuracy
and stability of clustering.

Table 4. Average relative error and leakage rate.

Methodologies Distance (m) Length (m) Width (m) Height (m) Leakage Rate FPS

Euclidean clustering 1.74 0.21 0.77 0.14 23.3% 31
Region Growing 1.68 0.19 0.74 0.15 13.3% 37

Hierarchical Clustering 1.25 0.20 0.70 0.14 16.6% 22
Ours 0.95 0.16 0.71 0.13 6.67% 41

In 30 frames of detection, the Euclidean clustering method resulted in a miss detection
rate of 23.3%, which include undetected objects, merging with other objects, etc.; in contrast,
our method failed to recognize only 2 frames.

4. Conclusions

In this paper, we propose an information perception model that integrates image-
based object detection with point cloud clustering to achieve enhanced multi-information
perception of surrounding objects. For the object detection aspect of images, YOLO-SCG,
an improved object detection model based on YOLOv9, is proposed. This model combines
the latest attention mechanism and lightweight convolution, maintaining higher detection
accuracy while reducing the number of parameters (11.8%). The final detection accuracy of
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the model can reach 0.846 mAP@0.95, which is higher than that of YOLOv7, YOLOv9 and
other models. We also use object detection data to aid in local clustering of point clouds.
YOLO-SCG is used to detect objects in front of us, and the detection results are transmitted
to the point cloud for local clustering, finally obtaining more accurate clustering effects.

In the future, our work will focus on optimizing the fusion algorithms for LiDAR and
cameras. To combine the advantages of the two sensors, we need to explore and optimize
fusion methods for better information perception. However, a challenge emerges in fusing
these heterogeneous data with consistency and reliability due to the different radar and
camera data formats. Overcoming this challenge could enhance the radar-camera data
fusion and obtain more accurate and comprehensive information in complex environments.
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