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Abstract: This study proposes a method named Hybrid Heuristic Proximal Policy Optimization
(HHPPO) to implement online 3D bin-packing tasks. Some heuristic algorithms for bin-packing and
the Proximal Policy Optimization (PPO) algorithm of deep reinforcement learning are integrated
to implement this method. In the heuristic algorithms for bin-packing, an extreme point priority
sorting method is proposed to sort the generated extreme points according to their waste spaces to
improve space utilization. In addition, a 3D grid representation of the space status of the container
is used, and some partial support constraints are proposed to increase the possibilities for stacking
objects and enhance overall space utilization. In the PPO algorithm, some heuristic algorithms are
integrated, and the reward function and the action space of the policy network are designed so that
the proposed method can effectively complete the online 3D bin-packing task. Some experimental
results illustrate that the proposed method has good results in achieving online 3D bin-packing tasks
in some simulation environments. In addition, an environment with image vision is constructed
to show that the proposed method indeed enables an actual robot manipulator to successfully and
effectively complete the bin-packing task in a real environment.

Keywords: 3D bin-packing; deep reinforcement learning; proximal policy optimization; heuristic
algorithms

1. Introduction

The three-dimensional bin-packing (3D-BP) problem is a classic combinatorial opti-
mization problem aimed at arranging objects within container boxes to maximize space
utilization [1,2]. Historically, the manual arrangement of items for packing has been labor-
intensive and often yields suboptimal packing configurations. The 3D-BP problem is widely
regarded as an NP-hard problem and can be categorized into offline and online. In the
offline 3D-BP problem, the numbers and sizes of objects are known in advance, while
the online 3D-BP problem is more challenging as it requires packing objects neatly into
containers without prior knowledge of their quantities or sizes.

In the realm of packing problems, the one-dimensional bin-packing (1D-BP) problem
stands out as a typical combinatorial optimization challenge, aiming to fit numerous items
into the fewest number of boxes with predetermined capacities [3,4]. A review of relevant
algorithms addressing the 1D-BP problem over the past two decades reveals its complexity
and provides insights into its solution [5]. As dimensions increase, from two dimensions
(2D) to three dimensions (3D), packing complexity escalates accordingly.

Early studies on 3D packing tasks primarily relied on well-designed heuristic algo-
rithms [2,6–8], often inspired by manual packing experiences. For instance, research [9]
introduced the layer-based approach three-dimensional bin-packing problem, dividing
boxes into layers along two possible directions to maximize item arrangements. Expanding
upon this approach, research [10] has proposed a three-stage layer-based heuristic to tackle
the three-dimensional single-bin-size bin-packing problem. Additionally, research [11]
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presented a multi-objective 3D packing algorithm optimizing container usage and balanc-
ing weights across containers. The research in [12] combined research [9,11] to devise a
multi-stage optimization algorithm for solving the 3D-BP problem.

Despite the effectiveness of heuristic algorithms, inherent limitations exist, such as
lack of learning capabilities [13] and exponential growth in solution time with increas-
ing problem sizes [14], rendering reliance solely on heuristic algorithms impractical for
achieving optimal packing. Recently, deep reinforcement learning (DRL) has demonstrated
promising performance across various domains, prompting its application in 3D packing
problems [15–20]. Leveraging DRL enables continuous learning from manual packing expe-
riences, aligning packing outcomes with human preferences. Particularly, addressing online
3D-BP using DRL has become a recent research trend [21,22]. Methods such as model-based
reinforcement learning proposed by the research in [23], based on research [24], optimize
container space utilization through DRL. Effective and easily implementable constrained
DRL methods within the actor–critic framework were introduced by research [25]. More-
over, research [26] proposed an adjustable robust reinforcement learning approach to tackle
online 3D-BP, effectively adjusting robustness weights to achieve an ideal balance of policy
performance across various environmental conditions.

Given the NP-hard nature of the 3D-BP problem and the limitations of heuristic
algorithms, there is a clear research gap in developing effective and efficient methods for
online 3D-BP. This study aims to address this gap by combining reasonable constraints
and heuristic algorithms with DRL to improve space utilization in practical scenarios
involving robot manipulators for packing. These constraints include placement direction
constraints and partial support constraints, which are necessary due to the limitations of
robot manipulators without specially designed end effectors. The placement direction
constraints prohibit the rotation of objects along the x and y axes, while partial support
constraints increase the possibilities for stacking objects and enhance overall container
space utilization.

This study is organized into four sections. Section 1 introduces the background and
research objectives. Section 2 details the methodology for solving the 3D-BP problem using
heuristic algorithms in conjunction with a DRL system. Section 3 describes the experi-
mental environment established for the online 3D-BP task, along with the presentation of
simulation and actual experimental results. Finally, Section 4 provides the conclusions and
future work.

2. Methodology

This study adopts the classic and mainstream extreme point heuristic algorithm [27]
within the realm of heuristic algorithms and enhances it with custom-designed modifica-
tions tailored to the overall online 3D-BP tasks.

2.1. Extreme Point Sorting Method

In the packing task, the current placement point of each item utilizes the extreme point
method proposed by research [27], where each item’s stacking generates three extreme
points: upper, left-front, and right-rear. Placing items at the upper extreme point may
result in residual space due to varying item sizes. This residual space cannot accommodate
all items, leading to space wastage. To minimize space wastage, we devise the extreme
point priority sorting method to place items in positions with minimal wasted space. The
operation flow is shown in Figure 1.

The method calculates the residual space generated after placing the current item
at all placement points. If the residual space cannot accommodate all previously placed
items, it is considered wasted space. If the residual space can accommodate one item, it is
considered available space. All placement points are sorted based on wasted space, with
those producing less wasted space prioritized. The prioritization sequence for placement
points is as follows: points with no residual space, points with available space, and finally,
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points with wasted space, arranged from lowest to highest wasted space. Algorithm 1
provides the pseudocode for the extreme point priority sorting method.
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Algorithm 1: Extreme Point Priority Sorting Method

1. Input EP: List of Extreme Points
2. Input I: Item to be added to the 3D bin
3. Input K: List of items already in the 3D bin
4. function Calculate_remain_space(I, EP):
5. return space remaining
6. function Dec_waste_space(rem_spacei):
7. if space remaining < for all object ∈ K
8. return True
9. function Max_score(EP, score_list):
10. return EP list← score from high to low
11. for all i ∈ EP do
12. rem_spacei = Cauculate_remain_space(I, i)
13. if Dec_waste_space(rem_spacei) then
14. score_list← - rem_spacei
15. else
16. score_list← 0
17. end if
18. end for
19. return Max_score(EP, score_list)
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When placing objects of different sizes, L-shaped residual spaces can be formed. Before
calculating the residual space, the space generated after placement is divided into two
residual spaces: one along the x-axis and one along the y-axis. The space division method
follows the approach mentioned in the research of [5]. The outermost vertices of the object
cut the residual space along the x-axis and y-axis. To utilize the space more efficiently, the
direction with the longer residual axis is given a larger space. The overlapping space is
defined as transferable space, which is allocated to the residual space along the longer axis.

2.2. Packing Constraints

Packing constraints are rules derived from manual packing experiences, designed
to optimize the packing task. This study uses container space state representation to
implement the constraints of the heuristic algorithm and packing constraints, including a
simple non-complete support constraint.

2.2.1. Container Space State Representation

To enable the heuristic algorithm and related constraints to function effectively in the
packing task, the state of the container space must first be represented. There are various
methods for handling container space. For instance, the method used by study [28] involves
cutting the remaining container space after placing an item and using an algorithm to
determine whether the item can be placed to fit the remaining space. In contrast, study [25]
proposed creating a 2D height map for container space projection, where the values filled
in the 2D map represent the current height. However, the height map overlooks three-
dimensional information, potentially causing discrepancies in some situations. To address
this, study [13] proposed using a 3D grid to represent three different space states, wasted
space, available space, and unavailable space, using the 3D grid as input to neural networks.

Building on the method by study [13], this study proposes creating a 3D grid to
represent container space states, but with consideration for the support state of the space.
The container space is divided into grids with a volume of 1, where each grid’s value
indicates the current space state. The three defined space states, as shown in Figure 2, are
space occupied, empty space without item support, and empty space with item support.
This container space state representation allows for the evaluation of the rationality of item
stacking within the container.
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2.2.2. Partial Support Constraints

In traditional methods for stacking objects, complete support constraints are used
to maintain static stability. This requires that the bottom of the object be fully supported
by other objects or the container itself, prohibiting any overhanging placements. How-
ever, complete support constraints overly restrict space utilization and limit the heuristic
algorithm’s flexibility.
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In this study, we introduce partial support constraints to allow for more effective space
use while maintaining stability. This is achieved through the object’s area and the center
of the bottom of the object, with three main constraints: half the length of the object Lobject
must be less than the length of the placement space Lspace, half the width of the object Wobject
must be less than the width of the placement space Wspace, and the position directly below
the center of the object objectpos must be supported by another object or the container. These
constraints are mathematically represented by

1
2

Lobject < Lspace (1)

1
2

Wobject < Wspace (2)

objectpos = (xcenter, ycenter, zcenter) (3)

By adhering to these three constraints, objects achieve partial support, ensuring sta-
bility and preventing collapse due to inadequate support. Combining the extreme point
method with partial support constraints increases the possibilities for item placement,
thereby enhancing space utilization.

2.3. Integration of the Heuristic Algorithm with Deep Reinforcement Learning

In online 3D-BP tasks, training solely with DRL can result in poor training outcomes
due to significant discrepancies in the definition of strategy quality. Therefore, heuristic
algorithms are typically integrated into the training process. This section explains how
heuristic algorithms and constraints are integrated into DRL, divided into three parts:
extreme points and extreme point priority sorting constraints, deepest bottom left with fill,
and reward function design.

2.3.1. Extreme Points and Extreme Point Priority Sorting Constraints

This study integrates extreme points and the extreme point priority sorting method
into the action strategy of DRL. When placing objects into the target container, the current
extreme point is identified using the extreme point algorithm, which becomes the chosen
placement for the action strategy. As illustrated in Figure 3, the currently placed object
generates three extreme points: upper, right, and front. The extreme points generated by
previously placed objects are categorized as other extreme points. The upper extreme point
is classified as another extreme point in the strategy selection. Thus, the action strategy
offers three placement positions and two placement directions. Among the other extreme
points, many placement points exist. Using the designed extreme point priority sorting
method, the wasted space caused by each placement is calculated and sorted, arranging
the extreme points from least to most wasted space. To determine whether an object can be
placed in the container, the 3D grid state of the container is used to prevent unreasonable
placement scenarios.

2.3.2. Deepest Bottom Left with Fill

The Deepest Bottom Left with Fill (DBLF) heuristic algorithm [29] aims to place objects
as close to the target container’s corners and edges as possible. Building on the method
by the research in [13], this study integrates DBLF into deep reinforcement learning by
creating a 3D grid-based placement score space, similar to the 3D grid state method for
container space. The container space is divided into grids with a volume of 1, where each
grid’s value represents the placement score of an object.
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Initially, the space score values are set to decrease from the bottom-left corner to the
top-right corner, as illustrated in Figure 4. The figure shows a 2D score distribution, and
each layer follows the depicted distribution. Stacking these distributions forms the initial
3D score space. The scoring is primarily based on whether there are objects near the space.
As shown in Figure 5, if a space is already occupied, its grid score is removed; if a space is
unoccupied but has neighboring objects, its grid score is increased by 3 points; if a space is
unoccupied and has no neighboring objects, its grid score remains unchanged.
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The reward function is designed to encourage the placement of objects in higher-
scoring spaces, achieving the DBLF algorithm’s effect. This method ensures that objects are
placed efficiently, maximizing space utilization by guiding the placement towards optimal
positions within the container.
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2.3.3. Reward Function Design

This study uses Proximal Policy Optimization (PPO) [30] combined with heuristic
algorithms to train the online 3D-BP task. The reward function, a critical component in
integrating heuristic algorithms, is primarily based on the placement score of objects. The
reward score is derived from the placement space score, supplemented by the wasted
space generated after placing the object. The less wasted space produced, the higher the
reward score.

The feasibility of the chosen placement position and direction also affects the reward
score. If an object cannot be placed, a penalty is applied by deducting an appropriate
amount from the reward score. The final total reward score considers the current space
utilization rate for overall scoring. The reward function in the online 3D-BP environment
uses a proportional addition format. When an object cannot be placed, it signifies the end
of an episode. The total reward for that episode, Rtotal , can be expressed by

Rtotal = γ·∑
n
i=0 Si

n
+ β·waste f irst + β·(σ− Sratio) (4)

where Si is the score obtained from placing the i object, and n is the total number of objects
placed in that episode. The first term represents the average placement score for the episode.
waste f irst is the area of the unused space at the bottom of the container at the end of the
episode. σ is a standard for space utilization, which is not a standard deviation but an
average value of the standard measure for space utilization, adjusted after running the
bin-packing task multiple times. The exact number of runs can vary. Sratio is the overall
space utilization ratio for the episode, which can be expressed by

Sratio =
∑n

i=0 vi

L·W·H ·100 (5)

where vi is the volume of the current object, and L, W, H are the length, width, and height
of the container, respectively. The third term represents the difference between the space
utilization and the standard value. β and γ are constant proportions that must satisfy
the condition 2β + γ = 1. In Equation (4), Si refers to the score obtained from placing
the i object, which is also the reward Rstep for each placement step. The formula can be
expressed by

Rstep = Si =

{
ρ·Sscore(posi, orii)− µ·wastei, i f actioni = 0 or actioni = 1

ω·Si−1+τ·Sscore(posi, orii), i f actioni = 2
(6)

where Sscore refers to the grid score, which is the sum of the scores of the grids occupied
by the placed object. posi represents the position of the i placement, orii i denotes the
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orientation of the i placement, and wastei is the wasted space generated during the i object
placement. Si−1 is the score obtained from the previous placement, and actioni is the
action taken for the i placement. The constants ρ, µ, τ, and ω are predefined ratios. When
actioni = 0, 1, it indicates that the action strategy selects the front extreme point or the
right extreme point. In these cases, Si is calculated by subtracting the ratio of wasted space
from the placement score. When actioni = 2, it indicates that the action strategy selects
other extreme points, which have been filtered through the extreme point priority sorting
method. These selected points are generally the best current positions. To prevent the
heuristic algorithm from overly interfering with the learning of the action strategy, Si is
set to the sum of the placement score from the i−1 placement and a proportion of the grid
score from the current placement. The reward parameters used in the function are listed in
Table 1.

Table 1. Parameter table of reward function.

Parameters Definition Value

σ Standard for space utilization 80
β Constant 0.2
γ Constant 0.6
L Length of container 400 (cm)
W Width of container 300 (cm)
H Height of container 200 (cm)
ρ Constant 0.7
µ Constant 0.3
τ Constant 0.2
ω Constant 0.8

During the bin-packing process, two situations may arise: (i) The currently chosen
placement position is not feasible, while other positions are feasible. (ii) The currently
chosen orientation is not feasible, while another orientation is feasible. For these situations,
two penalty mechanisms are designed to deduct placement scores and described by

Si =


Si − 10, i f Dstack(posi, orii) = False

and Dstack(posn, orii) = True
Si − 5, i f Dstack(posi, orii) = False

and (D stack(posi, orin) = True
or Dstack(posn, orin) = True)

(7)

where Dstack is used to determine if the placement is feasible through the grid state Sstate.
If the grid states occupied by the placement position comply with the constraints, the
Dstack outputs True; otherwise, it outputs False. The variables posn and orin represent the
new placement position and orientation, respectively. If either of the two situations occur,
the episode continues, but an appropriate placement score Si is deducted as a penalty for
making an incorrect choice. By integrating these penalties and constraints into the reward
function, the deep reinforcement learning model is guided to improve its decision-making
process, leading to more efficient and optimal packing solutions.

3. Results and Discussion
3.1. System Architecture and Experimental Environment

The overall system architecture of this study is shown in Figure 6. In the motion
control section of the robot manipulator, the MoveIt! motion planning module is utilized
to plan the movements of the robot manipulator. This ensures that the manipulator can
avoid all obstacles in its path and move quickly and accurately to the target position. In
the visual assistance part, RGB-D images from a depth camera are used to obtain the
three-dimensional length information and position of the target object. The obtained target
object position is then converted into coordinates so that the robot manipulator can reach



Sensors 2024, 24, 5370 9 of 17

the target object to retrieve it. The information about the target object obtained is one of the
inputs for the deep reinforcement learning system. Finally, the Robot Operating System
(ROS) is used to transmit information between various modules and components, allowing
the robot manipulator to complete the online 3D packing task. An actual experimental
environment of this study is shown in Figure 7. The depth camera is mounted above the
inspection area on the workbench to obtain the position and information of the target
objects. The robot manipulator is installed on the right side of the workbench, with its end
effector being a suction cup used for picking up target objects.
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3.2. Result of Model Training

The model is based on the one provided by research [31], which shares similar con-
straints with this online 3D-BP task, considering only two orientations for the current
object, ori(0, 0, 0) and ori(0, 0, 90). The dimensions of the objects and the container box
are shown in Table 2.

Table 2. Object information of Model 1.

Object Size (cm) Color

Object 1 30 × 40 × 20 Orange
Object 2 30 × 50 × 20 Blue
Object 3 40 × 50 × 20 Purple
Object 4 30 × 50 × 40 Green
Object 5 40 × 50 × 30 Light blue

Container 400 × 300 × 200 Wood color (transparent)

To evaluate the proposed method, 100 test runs were conducted using the same model.
The results are illustrated in Figure 8. Figure 8a,b show the packing results with space
utilization rates of 90.08% and 90.06%, respectively. Figure 8c depicts the space utilization
rate for each round of the 100 tests The proposed method achieved an average space
utilization rate of approximately 83%, with the highest utilization reaching about 92% and
the lowest around 74%. Figure 8d shows the number of objects placed in each of the 100 test
tests. The average number of objects placed per round is around 455, with the maximum
being 510 and the minimum being 405.

To compare the proposed HHPPO method with the model provided by research [31],
Table 3 shows an improvement in the same model, with an average space utilization
increase of 3%. The top 5% space utilization increased by up to 6%, and the bottom 5%
space utilization improved by 3.4%. Additionally, Table 4 shows that the average number
of objects placed increased by approximately 15. The test results confirm the effectiveness
of the proposed method.

Table 3. Space utilization in each round between research [31] and the proposed method.

Space Utilization Research [31] HHPPO Comparison

Highest 85% 92% Increase 7%
Top 5% 83.2% 89.2% Increase 6%
Average 80% 83% Increase 3%

Bottom 5% 72.4% 75.8% Increase 3.4%
Lowest 70% 74% Increase 4%

Table 4. Number of objects placed in each round between research [31] and the proposed method.

Space Utilization Research [31] HHPPO Comparison

Highest 475 505 Increase 30
Top 5% 473 500 Increase 27
Average 440 455 Increase 15

Bottom 5% 410 424 Increase 14
Lowest 395 405 Increase 10

We also performed predictions on Model 2. The dimensions of the objects and the
container box are shown in Table 5. We conducted 100 tests, and the results are illustrated in
Figure 9. Figure 9a,b show the object placement results for a space utilization rate of 85.07%,
from top and bottom views, respectively. Figure 9c presents the space utilization rate for
each round of the 100 tests. It shows that the proposed method achieves an average space
utilization rate of approximately 65% for Model 2. The highest space utilization rate is
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around 80%, and the lowest is about 48%. Figure 9d displays the number of objects placed
in each of the 100 tests. The average number of objects placed per round is approximately
80, with the maximum being 105 and the minimum being 63. The result presents more
challenges in achieving high space utilization compared to Model 1. This is because
the sizes of all objects are closer to the size of the target container, making it difficult to
completely fill the container. Moreover, the varying lengths and widths of the objects add
to the complexity of stacking them neatly.
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3.3. Experimental Results of Model Implement

The information on the objects used in the experiment is shown in Table 6. The
experiments in this study are divided into two parts: online 3D-BP tasks simulated in
Gazebo and tasks executed by a real robot in a real environment. Figure 10 shows the
online 3D-BP task in the Gazebo simulation. Figure 11 depicts the storyboard of the online
3D-BP task in the real environment, and Figure 12 shows the front and rear views of the
completed online 3D-BP task.
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Figure 10. Snapshot of the online 3D-BP task simulation in Gazebo based on the proposed method.
(a) The robot sucks the first object and approaches the packing bin. (b) The robot moves the first
object towards the pre-determined position inside the bin. (c) The robot sucks the second object and
approaches the packing bin. (d) The robot moves the second object towards the pre-determined
position inside the bin. (e) The robot sucks the third object and approaches the packing bin. (f) The
robot moves the third object towards the pre-determined position inside the bin. (g) The robot sucks
the fourth object and approaches the packing bin. (h) The robot moves the fourth object towards the
pre-determined position inside the bin. (i) The robot sucks the fifth object and approaches the packing
bin. (j) The robot moves the fifth object towards the pre-determined position inside the bin. (k) The
robot sucks the sixth object and approaches the packing bin. (l) The robot moves the sixth object
towards the pre-determined position inside the bin.
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Figure 11. Snapshot of the online 3D-BP task with real robot manipulator based on the proposed
method. (a) The robot sucks the first object and approaches the packing bin. (b) The robot moves the
first object towards the pre-determined position inside the bin. (c) The robot sucks the second object
and approaches the packing bin. (d) The robot moves the second object towards the pre-determined
position inside the bin. (e) The robot sucks the third object and approaches the packing bin. (f) The
robot moves the third object towards the pre-determined position inside the bin. (g) The robot sucks
the fourth object and approaches the packing bin. (h) The robot moves the fourth object towards
the pre-determined position inside the bin. (i) The robot sucks the fifth object and l approaches the
packing bin. (j) The robot moves the fifth object towards the pre-determined position inside the bin.
(k) The robot sucks the sixth object and approaches the packing bin. (l) The robot moves the sixth
object towards the pre-determined position inside the bin.
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Table 6. Object information of implement model.

Object Size (cm) Color

Object 1 21 × 28 × 10 Red
Object 2 21 × 25 × 12 Green
Object 3 12 × 25 × 23 Blue
Object 4 21 × 4 × 12 Yellow
Object 5 11 × 7 × 18 Pink
Object 6 22 × 6 × 11 Orange

Container 35 × 35 × 24 Wood color
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4. Conclusions

This study proposes the use of a PPO algorithm combined with heuristic algorithms
to achieve online 3D-BP tasks. By leveraging visual assistance, the task can be completed
in simulated and real-world environments using an actual robot manipulator. The main
contributions comprise two parts: (i) In the heuristic algorithm for bin-packing, the pro-
posed extreme point priority sorting method enhances space utilization by ranking the
extreme points generated by the extreme point method based on wasted space. A 3D grid
representation of container space is introduced, along with some partial support constraints
designed according to the methods outlined in this study. (ii) In the deep reinforcement
learning integration, a method combining heuristic algorithms with deep reinforcement
learning is presented. The PPO algorithm is used, incorporating reward function design
and the action space of the policy network. This combination integrates the extreme
point method, DBLF algorithm, and the designed extreme point priority sorting heuristic
algorithms, demonstrating promising results in the experiments. These contributions col-
lectively advance the effectiveness and efficiency of the online 3D-BP task, providing an
approach that can be applied in both simulated and real-world environments. In future
work, unpacking algorithms will be used to create a more robust and efficient method
to achieve efficient online 3D-BP tasks in dynamic environments. The objectives are to
improve space utilization by minimizing the gaps between boxes through an advanced
unpacking algorithm.
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