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Abstract: The utilization of inertial measurement units as wearable sensors is proliferating across var-
ious domains, such as health care, sports, and rehabilitation. This expansion has produced a market
of devices tailored to accommodate very specific ranges of operational demands. Simultaneously, this
growth is creating opportunities for the development of a new class of devices more oriented towards
general-purpose use and capable of capturing both high-frequency signals for short-term, event-
driven motion analysis and low-frequency signals for extended monitoring. For such a design, which
combines flexibility and low cost, a rigorous evaluation of the device in terms of deviation, noise
levels, and precision is essential. This evaluation is crucial for identifying potential improvements
and refining the design accordingly, yet it is rarely addressed in the literature. This paper presents
the development process of such a device. The results of the design process demonstrate acceptable
performance in optimizing energy consumption and storage capacity while highlighting the most
critical optimizations needed to advance the device towards the goal of a smart, general-purpose unit
for human motion monitoring.

Keywords: IMU; gyroscope; accelerometer; error characteristics

1. Introduction

The use of inertial measurement units (IMUs) as wearable sensors to monitor human
motion play an important role in a variety of applications, including health monitor-
ing, pedestrian dead reckoning, fall detection, gesture recognition, occupational safety,
and sports performance analysis [1]. Novel application domains for these devices are
continuously being identified in health care [2], sports [3], rehabilitation [4], and human–
computer interaction [5].

Consequently, there has been a substantial increase in the demand for high-precision
inertial sensing platforms. But the spectrum of operational requirements that such device
must address is exceedingly broad. Therefore, the market has witnessed a substantial
proliferation of devices designed to achieve good performance in specific applications [6]
or for widespread use by reducing costs [7].

We anticipate that the future expansion of these devices into diverse applications will
necessitate a design prioritizing both flexibility and affordability. Such a design would allow
the same device to operate at high sampling rates for short periods or at moderate rates over
extended time frames. Furthermore, a substantial research gap remains in the metrological
characterization and performance evaluation of inertial platforms. Their actual working
conditions, such as energy consumption, storage capacity, and noise characterization, are
rarely addressed in the existing literature [8].

To address this gap, this study presents a preliminary design of a wearable device
of this type. Emphasis is placed on its evaluation and characterization [9–11]. The device
was assembled, then analyzed from several perspectives, including power consumption,
sampling performance, and error characterization. Precise hardware control and rigorous
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performance characterization are essential prerequisites for future design optimizations in
the pursuit of a versatile, affordable, accurate, and robust general-purpose device.

The results show a good response across the three examined areas highlight the
most critical optimizations needed to improve the device to achieve the goal of a smart
general-use unit for human motion monitoring.

2. Materials and Methods

After a series of preliminary tests, a sensor capable of satisfying the best consump-
tion/performance ratio in the context described above was selected. The optimization
of components and smaller hardware resources was also started, seeking to increase the
density of components on the PCB by means of 0402 resistors and capacitors, suppressing
unnecessary sockets, etc.

2.1. Description of the Sensor

The LSM6DSL IMU sensor from STMicroelectronics (Geneva, Switzerland) was se-
lected [12] over other well-known IMU sensors such as the MPU6050, BMI270, or ICM-42670-P.
This choice was motivated by by several factors. First, eliminating the magnetometer compo-
nent simplifies the design and reduces potential sources of error. Secondly, the LSM6DSL’s
low power consumption makes it particularly suitable for wearable devices, where battery
life is a critical consideration. Lastly, the search for a high sampling frequency further sup-
ports its selection. All these characteristics are summarized in Table 1, compiled from the
datasheets of each sensor [12–15], demonstrating the suitability of the chosen sensor for the
desired application.

Table 1. Comparison of IMU sensors.

Specification LSM6DSL MPU6050 BMI270 ICM-42670-P

Acc Range (g) ±2 to ±16 ±2 to ±16 ±2 to ±16 ±2 to ±16
Acc Sensitivity (mg/LSB) 0.061 to 0.488 0.061 to 0.488 0.061 to 0.488 0.061 to 0.488
Gyro Range (dps) ±125 to ±2000 ±250 to ±2000 ±125 to ±2000 ±250 to ±2000
Gyro Sensitivity (mdps/LSB) 4.375 to 70 7.63 to 61 3.81 to 61 7.63 to 61
Magnetometer Range (gauss) N/A N/A N/A ±4 to ±16
Power Consumption (mA) 0.65 (Acc + Gyro) 3.9 (Acc + Gyro) 0.685 (Acc + Gyro) 0.55 (Acc + Gyro)
Sampling Frequency (Hz) 12.5 to 6600 4 to 8000 12.5 to 1600 12.5 to 1600

2.2. Description of the Microcontroller

Choosing the right microcontroller is critical to optimizing both performance and
energy efficiency in embedded systems. After a thorough evaluation of various micro-
controller families, the STM32L051 emerged as the optimal choice due to its outstanding
low power consumption, which is essential for applications where energy efficiency is
paramount. Compared to other options, such as the ESP32-S3, AT32UC3, and Atxmega32C4,
the STM32L051 has a much lower active power consumption of just 4.4 mA. This is sig-
nificantly lower than that of its counterparts, ensuring that the system meets performance
benchmarks while maintaining energy efficiency. The characteristics of this unit, coupled
with its ultra-low idle and sleep power consumption (1.2 mA in idle and 0.29 µA in sleep
mode), make it a superior choice over other microcontrollers such as the AVR or ESP
families. It also benefits from being available in a pinless package that is only 7 mm wide,
which, together with the elimination of the external clock, optimizes the space on the PCB.
Table 2, based on microcontroller datasheets [16–19], provides a detailed comparison of the
STM32L051 with other prominent microcontroller families, highlighting its advantages in
terms of power efficiency and integrated features.
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Table 2. Comparison of microcontroller families.

Specification STM32L051 ESP32-S3 AT32UC3 Atxmega32C4

Max Frequency [MHz] 32 240 50 32
Flash Memory [KBytes] 32 384 32 32
RAM [KBytes] 8 512 16 4
ADC 16-channel 20-channel 8-channel 16-channel

12-bit 12-bit 12 bit 12-bit
Active Power [mA] 4.4 66.7 8.3 7.5
Idle Power [mA] 1.2 32.9 2.9 2.7
Sleep Power [uA] 0.29 8 4.7 1
Other BlueTooth 5

WiFi

2.3. Description of the Device Design

The device design consists of two PCBs placed on both sides of the battery and con-
nected by a flex cable, as can be seen in Figure 1a,b. Only the SD card socket and the
contacts for the socket are located on the main side, and most of the system components
are located on the other side. This saves space and miniaturizes the entire assembly. The
final device with its case is shown in Figure 1c,d.

(a) Top view (b) Lateral view (c) Sensor with case (d) Pogo [P]ins

Figure 1. Bimu sensor.

For battery management, the circuit utilizes an STNS01PUR integrated chip from
STMicroelectronics, which combines a battery management system (BMS) for safe charg-
ing with a 3.1 V LDO voltage regulator. This chip provides overcharge, over-discharge,
and overcurrent protection to prevent the battery from being damaged under fault condi-
tions. Additionally, it features a charger-enable input to stop the charging process when
battery overheatingis detected by external circuitry. The charging process is conducted via
two of the Pogo pins, designated as GND and +5 V, while the remaining pins are employed
for memory reading operations. When shutdown mode is activated, the battery power
consumption is minimized to less than 500 nA, maximizing battery life during shelf time
or shipping. The battery is a 220 mAh 402030 LiPo with an integrated NTC thermistor.
To simplify the device’s operation and eliminate the need for push buttons, we opted to
utilize the tilt function of the IMU accelerometer. The test parking functionality (sync
SD) is activated by shaking the sensor when it is tilted beyond a specific threshold of
4 g, enhancing the device’s functionality. Additionally, a low-power RGB LED is used
to indicate different modes and sensor states through a combination of its three colors,
patterns of continuous or intermittent flashing, and fading in and out.
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2.4. Test Procedures

This section details the test procedures used to validate and assess the proposed
system’s performance. We systematically evaluate the solution’s accuracy, reliability, and ef-
ficiency, highlighting its potential in scenarios with high data capture rates.

Before obtaining any result, the IMU box alignment matrix is calculated to ensure
the accurate orientation of the device axes relative to the box axes within the device.
The experiment begins by aligning each box axis with gravity as a consistent reference. This
alignment is achieved by placing the device in the end effector of a UR3 robot (Figure 2a).
The theoretical acceleration matrix (A) represents ideal outputs under perfect alignment,
while the measured matrix (B) records actual outputs given the current device orientation.
The alignment matrix (R) is derived as

R3×3 = A3×m(BT
m×3)

−1 (1)

(a) (b)
Figure 2. Sensor data characterization. (a) Robot for accurate sensor positioning. (b) Optical table
anti-vibration.

This misalignment was quantitatively assessed and corrected using an alignment
matrix. As depicted in Figure 3, the original signal exhibited noticeable discrepancies when
compared to the corrected signal. After applying the calibration matrix, the corrected signal
demonstrated a significant improvement, closely matching the intended orientation and
minimizing the observed deviations.

Figure 3. Accelerometer calibration.
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2.4.1. Sampling Frequency

In evaluating the LSM6DSL and STM32L051K8 system, we focused on the constraints
of the SPI communication protocol. Using a digital analyzer, we scrutinized the SPI signals
between the sensor, microcontroller, and SD memory card. We specifically adjusted the
sensor’s sampling frequency at various rates to identify the point at which the SPI buffer
became saturated.

The sensor was precisely configured to operate within a measurement range of ±4 g
for acceleration and 250 degrees per second (dps) for angular velocity.

2.4.2. Power Analysis

A systematic approach was employed by integrating a 0.1 Ω shunt resistor for precise
current measurement. Additionally, an FLIR E60 camera was utilized to analyze temper-
ature variations, enhancing the assessment of thermal dynamics within the system. This
setup allowed for the monitoring of charging efficiency and thermal performance under
various operational conditions and modes. The documentation and analysis of energy
consumption across different states provide a comprehensive understanding of the system’s
energy dynamics, facilitating phase optimization.

2.4.3. Standard Deviation

The standard deviation (2) is a statistical measure that quantifies data dispersion
and, within the scope of this study, enables the evaluation of consistency and precision of
measurements along each axis. The method employed to calculate this parameter involved
the sensor collecting data over a 10-min duration. The sensor was situated on a stable,
vibration-isolated table (Figure 2b).

s =

√√√√ 1
N − 1

N

∑
i=1

(xi − x)2 (2)

2.4.4. Drift

Drift refers to any systematic change or undesired variation in sensor measurements
over time, occurring independently of external changes in operating conditions. To charac-
terize drift, the sensor was placed on a stable, anti-vibration table for 24 h. Subsequently,
a linear regression analysis was applied to estimate the drift along each axis (x, y, and z).

2.4.5. Fixed Bias

The fixed bias represents a consistent error in sensor measurements that is inherent due
to its systematic nature. To neutralize this error, measurements from opposite directions
are summed, which effectively doubles the fixed bias for each sensor type (3). Samples
were collected over 150 s by positioning the device at opposite angles for accelerometer
readings along each axis and by applying reverse angular velocities for each axis during
gyroscope evaluation using a robot arm, as illustrated in Figure 2a.

Bias =
1
2
[s+x + s−x , s+y + s−y , s+z + s−z ] (3)

2.4.6. Scale Factor

The scale factor measures how the sensor responds to specific measurements within its
range. It is calculated by subtracting the averages of two measurements to eliminate fixed
bias effects, then doubling the sensor output (4). For accelerometers, the specific reference
measurement is local gravity, and for gyroscopes, it is the rotational speed of the device.

Scaleacc =
1
2

1
sre f

[s+x − s−x , s+y − s−y , s+z − s−z ] (4)
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2.4.7. Power Spectral Density

Following [11], noise characteristics were analyzed using power spectral density.
In this analysis, the sensor was kept at rest for ninety minutes during two separate tests.
Power spectral density (PSD) quantifies the intensity of unwanted signals across different
frequencies, providing insights into the sensor’s response to environmental variations
and electronic interferences. This comprehensive analysis is crucial for understanding the
sensor’s operational fidelity under real-world conditions.

2.4.8. Allan Deviation

An Allan deviation test was also conducted as described in [11]. The sensor was
kept at rest for ninety minutes during two separate tests. The Allan deviation assesses the
stability of the sensor’s measurements over time, identifying the types of noise that affect
the sensor. This detailed examination is essential for determining the long-term reliability
and accuracy of the sensor in various operational scenarios.

3. Results
3.1. Sampling Frequency

The device was designed to operate at a maximum frequency of 4000 Hz, which
establishes its upper limit for data acquisition speed. Each sensor access requires a reading
time of approximately 112 µs . This reading duration encompasses the time needed for the
sensor to capture the data and make them available for processing.

In addition to the sensor reading time, the microcontroller requires an additional
108 µs to process the data read from the sensors. During this time, the microcontroller
performs necessary computations and transmits the processed data to the memory for
storage. Thus, the combined cycle of reading and processing totals an average of 220 µs for
each operation.

3.2. Power Analysis

The power consumption report delineates distinctive patterns across four key phases
of device operation, each represented by a specific color code.

During the idle phase (blue), the device exhibits a current consumption of 5.9 mA,
which represents the minimum current necessary to maintain the device’s standby func-
tionalities. The file-opening phase (purple) is characterized by a notable increase in power
consumption, reaching a peak of 44 mA, which can be attributed to the energy demand
associated with data manipulation. In the capture phase (green), the device consumes
8.5 mA, which reflects the additional power requirements associated with data acquisition.
The saving phase (orange) demonstrates a notable increase in energy consumption, reaching
up to 53 mA, which is indicative of the substantial power required for write operations to
the SD card. A comprehensive overview of these values can be found in Table 3. The mean
consumption for a 32 MHz microcontroller clock frequency and sampling at 4000 Hz is
18 mA, which provides an estimated sensor autonomy of 12.2 h.

Table 3. Power consume.

Idle phase 5.9 mA
File initialization phase 44 mA

Measurement phase 8.5 mA
Save phase 53 mA

Average consume 18 mA

The STNS01 battery charger is designed for single-cell batteries, using a CC-CV (Con-
stant Current–Constant Voltage) algorithm for batteries up to 4.2 V. Charging starts in
constant current mode and is adjustable up to 0.2 mA. Upon reaching the float voltage of
4.2 V, the charger shifts to constant voltage mode, maintaining the voltage and gradually
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reducing the charging current, as shown in Figure 4. The process ends when the current
drops below 10% of IFAST, signaling the completion of the charge cycle.

Figure 4. Battery charging.

In the thermal image presented in Figure 5, the charging process of a sensor is observed,
wherein the STNS01 chip functions as a Battery Management System (BMS). The thermo-
graphic profile clearly shows the STNS01 as the predominant heat source, achieving a
maximum temperature of 43.7 °C. This temperature is within the expected and safe opera-
tional limits for the circuit.

Figure 5. Thermal image of sensor charging process, highlighting the STNS01’s role as a BMS.

3.3. Standard Deviation

The obtained results reveal the standard deviations of the accelerometer in the X,
Y, and Z axes (Figure 6), providing a quantitative measure of the noise level present in
the measurements. The standard deviation in the X axis is 0.912 mg, that in the Y axis is
0.812 mg, and that in the Z axis is 0.956 mg. It is noteworthy that, despite the presence of
noise, the results exhibit relatively low standard deviations.

Gyroscope data also indicate low variability in the measurements. The standard
deviations in the X, Y, and Z axes of the gyroscope are 0.0931 dps, 0.4142 dps, and 0.2658 dps,
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respectively. This consistency in the gyroscope results complements the overall quality of
the measurements.

Figure 6. Standard deviation for accelerometer.

3.4. Drift

Following a continuous 24-h data collection period, the calculated drift values for the
x (Figure 7), y, and z axes of the accelerometer are −0.4523 × 10−6 g, 2.7690 × 10−6 g, and
0.2511 × 10−6 g, respectively. In the case of the gyroscope, the drift is 4.4976 × 10−5 dps
for the X axis, −4.5143 × 10−5 dps for the Y axis, and 2.1891 × 10−5 dps for the Z axis.
These values are significantly lower than the sensitivity threshold; thus, they can be
considered negligible.

Figure 7. Accelerometer drift for x axis.

3.5. Fixed Bias

The fixed bias values for the accelerometer (Figure 8a) are notably close to zero, mini-
mizing systematic errors. The mean fixed bias for the x axis is 4.33 mg, that for the y axis is
−8.52 mg, and that for the z axis is 3.07 mg. These results suggest minimal systematic offset
along each axis. Conversely, the gyroscope’s fixed bias results (Figure 8b) deviate further
from the ideal zero values. The mean fixed bias along the x axis is 0.90840 dps, that along
the y axis is −1.69095 dps, and that along the z axis is 0.02031 dps. These deviations may
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stem from manufacturing tolerances, sensor imperfections, or environmental conditions,
introducing systematic errors in measurements and impacting the gyroscope’s accuracy.

(a) Accelerometer Z axis (b) Gyroscope Z axis

Figure 8. Fixed bias.

3.6. Scale Factor

The obtained scale factor results for both the accelerometer and gyroscope demonstrate
exceptional performance and consistency. The accelerometer exhibits a mean scale factors
close to the ideal value of 1:along the x axis of 1.00744, along the y axis of 0.99888, and along
the z axis of 1.00100 (Figure 9) Similarly, the gyroscope’s mean scale factors, despite slightly
deviating from 1, indicate remarkable consistency. Along the x axis, the scale factor is
1.01115, that along the y axis is 0.99969, and that along the z axis is 0.99201.

(a) Accelerometer Z axis (b) Gyroscope Z axis

Figure 9. Scale factor.

3.7. Power Spectral Density

Noise density plots in power spectral density (PSD) provide valuable insights into
sensor performance, as illustrated in Figure 10 for accelerometer and gyroscope PSDs.
The noise density in the accelerometer for the X and Y axes (Table 4) closely matches
the datasheet specification of 80 µg/

√
Hz [12], except for the Z axis, which exhibits a

significantly higher value. Conversely, the gyroscope’s power spectral density (PSD) for
the Y and Z axes is approximately 20 mdps/

√
Hz, compared to the specified 4 mdps/

√
Hz

in the datasheet [12]. In this case, the X axis is the closest to the desired value, with a PSD
of 7.26 mdps/

√
Hz.



Sensors 2024, 24, 5388 10 of 14

Figure 10. Accelerometer power spectral density.

Table 4. PSD.

Accelerometer Gyroscope

X Axis Y Axis Z Axis X Axis Y Axis Z Axis

86.865340
µg/

√
Hz

72.835314
µg/

√
Hz

395.418727
µg/

√
Hz

7.259788
mdps/

√
Hz

35.164361
mdps/

√
Hz

22.681209
mdps/

√
Hz

3.8. Allan Deviation

Allan deviation analysis of the accelerometer Figure 11a and the gyroscope reveals
critical insights into its noise characteristics, highlighting Angular Random Walk, Bias
Instability, and Rate Random Walk.

(a) Accelerometer Allan deviation for Z axis (b) Gyroscope Allan deviation for Z axis

Figure 11. Allan deviation.

The Allan deviation plot (Figure 11b) for the Z axis provides valuable insights into the
sensor’s noise characteristics. The blue line represents the Allan deviation over various
integration times (τ). Initially, at short integration times, the plot exhibits a negative slope
close to −0.5, indicating the presence of Angular Random Walk (ARW). The fitted red
dashed line for ARW confirms this, with a slope of −0.5, suggesting that the dominant
noise source at high frequencies is ARW, which is typical for white noise in gyroscope
measurements. The ARW coefficient (N) is extracted and represented by point ‘N’ on
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the graph, showing the expected behavior of the gyroscope in the presence of random
walk noise.

As the integration time increases, the plot transitions to a flatter region, as highlighted
by the purple dashed line, indicating bias instability (B). This flat region signifies that the
noise is dominated by a constant bias drift over time. The bias instability coefficient (0.664B)
is identified, representing the minimal variance achieved over the specified τ. At longer
integration times, the plot exhibits a positive slope close to 0.5, suggesting the presence of
Rate Random Walk (RRW). The yellow dashed line fitted for RRW confirms this behavior,
indicating that low-frequency noise begins to dominate, leading to a divergence in the
Allan deviation. The coefficient (K) for RRW is also extracted, providing a comprehensive
understanding of the gyroscope’s noise performance across different time scales. This
analysis is crucial for applications requiring precise gyroscopic measurements over varying
durations, as it helps in identifying and mitigating the impact of different noise sources.

4. Discussion

The experiments indicate that the sampling frequency is contingent upon two key
factors, namely the SPI interface and the processing time of the microcontroller. While the
sensor was engineered to possess superior sampling capabilities when compared to sensors
currently on the market, future iterations could benefit from modifications in these two
aspects in order to enhance the overall optimization of the device.

The power consumption analysis reveals that the primary peaks occur during the
processes of opening and saving data to the SD card. It can be seen, therefore, that achieving
optimal energy management is closely linked to the size of the acquisition buffer storage,
as larger buffers can reduce the frequency of these high-power operations. This suggests
that by adjusting the buffer size correctly, the number of times the system needs to access
the memory can be reduced, thereby enhancing overall energy efficiency.

The PSD results show discrepancies that may arise from variations in calibration
during production, differences in environmental conditions during testing, or potential
measurement errors. It is essential to understand these factors in order to conduct a
comprehensive evaluation of the sensor’s actual performance.

In light of the findings, it is advised that three additional refinements be made to the
design. First, the sensor–controller connection should utilize a dedicated SPI interface,
while the SD card should be connected via the SDIO interface. This will enhance storage
speed and eliminate potential bottlenecks in the sampling and storage process. Second,
replacing the BMS components with an LDO and using the microcontroller for battery
management will reduce power consumption and heat generation from the current BMS
components, which can affect the IMU results. Finally, eliminating the SD socket will save
space and costs while increasing the device’s hermeticity.

A comparison of our design, named Bimu, with other similar devices on the market,
including the NilsPod (Portabiles, Erlangen, Germany), Physilog®5 (Gait Up, Lausanne,
Switzerland), Shimmer 3 (Shimmer Research, Dublin, Ireland), and XSens Dot (Movella,
Henderson, NV, USA) is presented in Table 5, revealing a number of distinctive features.
Bimu is a compact device, with competitive dimensions of 45.5 × 24 × 9.7 mm. It boasts
a substantial 32 GB of onboard memory—the highest among the devices under review—
which allows for the extensive collection of data without the necessity of data offloading.
Furthermore, Bimu has the second-highest battery capacity of 220 mAh and a maximum
sampling rate of 4000 Hz, enabling detailed, high-fidelity data acquisition, which is crucial
for event-driven motion analysis. Additionally, while some devices feature integrated
sensor fusion, Bimu and Portabiles require post-processing. Bimu outputs raw signals,
with no on-sensor signal processing. However, this limitation is potentially addressable
through future firmware updates, alongside the incorporation of additional functionalities
like gait or balance analysis.
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Table 5. Comparison with other commercial devices.

Specifications Bimu Portabiles Gait Up Shimmer Xsens Dot

Dimensions (mm) 45.5 × 24 × 9.7 28 × 23 × 11.5 47.5 × 26.5 × 10 51 × 34 × 14 36.3 × 30.35 × 10.85

Onboard Memory 32 GB 250 MB 8 GB 8 GB -

Battery Capacity 220 mAh 120 mAh 140 mAh 450 mAh 70 mAh

Max. Sampling
Rate 4000 Hz 1024 Hz 512 Hz 1024 Hz 120 Hz

Accelerometer
Range (±16 g) ● ● ● ● ●

Gyroscope Range
(±2000 deg/s) ● ● ● ● ●

Temperature Temperature Altimeter

Charging Options Custom cable Wireless Micro USB Micro USB/Dock Micro USB/Dock

Waterproof IP64 IP68

Developer Options Python API Python API Java API Xsens SDK

Matlab Instrument
Driver

Matlab Instrument
Driver

Matlab Instrument
Driver xSens DOT App

C#/C++ API LabVIEW
Instrument Driver Xsens DOT Server

C#/C++ API

Raw Data ● ● ● ● ●

Onboard Sensor
Fusion ● ● ●

Other
Functionalities Pedometer Gait, balance,

motor test

5. Conclusions

This study presents the design and characterization of a wearable IMU device with
potential applications in health care and sports. The device performs well in terms of energy
efficiency and data storage but requires optimization in the areas of sensor connectivity and
battery management. Through noise analysis, it was identified that there is low variability
in the majority of axes; however, discrepancies in the Z axis warrant further investigation.
Bias measurements indicated minimal errors in the accelerometer, although the gyroscope
showed more significant deviations. Scale factor tests confirmed the sensor’s reliability,
with results close to ideal values.

For researchers working in similar domains, our findings highlight the importance of
optimizing sensor characteristics to meet specific application needs. The detailed evaluation
of noise, bias, and scale factors in this study is directly relevant to those interested in
developing or refining wearable IMUs. As the wearable technology market continues to
expand, future research should build on these insights, exploring further enhancements to
improve device performance and adaptability across a broader range of applications.
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The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
ARW Angular Random Walk
BMS Battery Management System
FIFO First In, First Out
IMU Inertial Measurement Unit
LDO Low Dropout Regulator
MDPI Multidisciplinary Digital Publishing Institute
NTC Negative Temperature Coefficient
PCB Printed Circuit Board
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