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Abstract: For nonlinear systems with uncertain state time delays, an adaptive neural optimal tracking
control method based on finite time is designed. With the help of the appropriate LKFs, the time-
delay problem is handled. A novel nonquadratic Hamilton–Jacobi–Bellman (HJB) function is defined,
where finite time is selected as the upper limit of integration. This function contains information on
the state time delay, while also maintaining the basic information. To meet specific requirements, the
integral reinforcement learning method is employed to solve the ideal HJB function. Then, a tracking
controller is designed to ensure finite-time convergence and optimization of the controlled system.
This involves the evaluation and execution of gradient descent updates of neural network weights
based on a reinforcement learning architecture. The semi-global practical finite-time stability of the
controlled system and the finite-time convergence of the tracking error are guaranteed.

Keywords: approximate dynamic programming; wheeled mobile robotics; tracking control; state
time delay; finite time

1. Introduction

Adaptive intelligent control algorithms have developed rapidly with the advancement
of intelligent approximation technology, especially in neural networks (NN) and fuzzy
logic systems (FLS), and have achieved a series of excellent research results [1–9]. This
has also significantly motivated many scholars to explore the adaptive control algorithm,
laying a solid foundation for using the corresponding control theory algorithm in the field
of practical engineering applications.

Considering that control and decision-making problems are essentially optimization
problems, and optimal control plays a key role in engineering applications, the research
on intelligent majorization control algorithms in this paper has a certain role in promoting
practical engineering applications. In view of the importance of optimal control, many
scholars have conducted extensive research on optimal control algorithms and have ob-
tained certain achievements, mainly including two optimization methods [10,11], adaptive
dynamic programming (ADP) methods [12] and reinforcement learning (RL) methods [13].

The ADP approach could realize the online approximation of the optimal target by the
recursive numerical method without relying on the control algorithm of the model [14–19].
Using NNs, the performance function, designed control laws, and the uncertain part of
the nonlinear system could be approximated, which helps solve the HJB function; then,
the optimal stability is guaranteed. Similar to the learning mechanism of mammals, the
reinforcement learning mechanism aims to regulate both the critic and action adaptive
laws in order to control the long-term interaction cost of the environment. The action
NNs could modify the action laws, while the critic NNs reduce the virtual energy of the
long-term storage function. Thanks to the interoperability of the operating mechanism,
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refs. [20–24] have made outstanding contributions to online optimization control and
model-free optimization control.

Although previous ADP-based methods perform well for non-linear systems without
time delays, achieving the ideal control effect on time-delayed non-linear systems is often
challenging. Therefore, research on this topic has generated interest among experts and
scholars and has achieved preliminary results. However, the time delay in the form of
nonlinear interference is a major obstacle to applications of control theory algorithms. Some
scholars have paid attention to this and have achieved certain results. Regarding existing
methods, there are two main forms of system delay: state and input [25].

State time delays are mainly found in intricate engineering systems, for example,
wheeled mobile robot (WMR) systems and chemical engineering, which are hysteresis
induced by internal propagation of signals during system motion. With assistance from
the Lyapunov–Krasovskii functional (LKF) [25–27], the influence caused by the state time
delay is overcome, and superior control algorithms are designed.

Due to the contradiction between the convergence characteristics of existing optimiza-
tion algorithms in infinite time and the fast convergence requirements of actual engineering
systems, it has greatly inhibited the practical application and promotion of intelligent opti-
mization algorithms. Therefore, in recent years, some scholar award research has focused
on the study of convergence speed and convergence domain equilibrium. The existing
breakthrough theoretical research results on infinite convergence algorithms [28–33] have
promoted the research process of finite-time convergence control algorithms to a certain
extent and also reflect the necessity of studying the algorithm from the side. At the same
time, they also point out the key and difficult issues faced by finite-time convergence
control research.

To meet the finite-time or finite-horizon domain convergence characteristics of actual
engineering requirements, some scholars have begun relevant research. For nonlinear
discrete systems, researchers use the ADP-based approach to solve the finite-time domain
convergence problem [34,35], which greatly stimulates the authors’ research passion for
finite-time convergence optimization control algorithms.

Different from finite-horizon convergence, besides guaranteeing the time domain
of system convergence, finite-time convergence also increases the speed and accuracy of
system convergence. However, the existing research is not perfect and is still in its infancy,
but some studies with excellent performance have been obtained [36–45]. Up to now, the
finite-time optimization algorithm, considering both convergence speed and convergence
precision as well as considering energy consumption, is basically absent. Therefore, based
on the previous research, this paper not only considers the state delay, but also considers
the input delay, and uses the ADP method to effectively resolve the finite-time optimal
tracking control problem of the controlled target.

An adaptive finite-time online optimal tracking control method based on neural
networks is designed for uncertain nonlinear systems with state time delays. Firstly, the
initial nonlinear system is extended to an augmentation system, which contains tracking
error and target expectation information, and a novel discounted performance function
is presented. Secondly, a Hamiltonian function is constructed, and the appropriate LKFs
are used to resolve the problem of state delay. Then, for the solution of the ideal HJB
function, this paper introduces the method of integral reinforcement learning (IRL). Finally,
by designing the optimal control strategy and optimizing the control adaptive law, the
semi-global practical finite-time stability (SGPFS) lemma, not only is the influence of time
delays eliminated, but the stability of uncertain nonlinear systems is guaranteed. The main
innovative work includes:

(1) The time-delay effect is incorporated into the strategy design process to address the
finite-time convergence issues.

(2) The problem caused by the state time delay is solved simultaneously in the optimal
control process.
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(3) The optimal control policy guarantees that the target control system achieves optimal
control within a finite time.

2. System Description and Preliminaries

Considering the state time-delayed nonlinear system as

.
β(t) = p(t)β(t) + h(β(t − t1)) + g(t)u(t) + ω(t) (1)

where the delayed dynamics h(β(t − t1)) is one known function vector with an unknown
time delay t1. For the sake of simplicity in subsequent expressions, except for the hysteresis
term β(t − t1), t and other variables are omitted. g(t) denotes the input function, p(t)
denotes the state function, u(t) denotes the system control input, and ω(t) denotes the
external perturbation function.

Considering the state and the input time delays in system (1), the appropriate LKF
is introduced to deal with the state time-delay problem, respectively. And according
to Remark 1 in [26], only when the delayed dynamics α(t) are known, one can obtain
h(β1)− h(β2) = ∂h(β)/∂β|β=βκ (β1 − β2) with βκ = κβ1 + (1 − κ)β2 and 0 < κ < 1.

The following scientific assumptions are made, and corresponding lemmas are given
to ensure that the subsequent design process achieves the expected control objectives.

Assumption 1. Both function p(t) and g(t) are continuously differentiable. For the time-
delay function p(·), its Jacobi matrix ∂p(β)/∂β satisfies the Lipchitz condition ∥∂p(β)/∂β∥ ≤
η with η ≥ 0.

Assumption 2. The boundedness of the unknown input transfer function g(t) can be obtained
as g < g ≤ g. Similarly, σmin ≤ ∥σ(·)∥ ≤ σmax; φmin ≤ ∥φ(·)∥ ≤ φmax can be used to
present the boundedness of the activation functions in hidden layers of NNs φ(·) and the functional
approximation error σ(·).

Lemma 1 ([44]). For any states yi ∈ R, i = 1, 2, . . . , m, if the positive constant satisfies 0 < q < 1,
we have (

m

∑
i=1

|yi|
)q

≤
m

∑
i=1

|yi|
q

≤ m1−q

(
m

∑
i=1

|yi|
)q

(2)

Lemma 2 ([39]). For the nonlinear system
.
x = f (x), if (3) holds,

.
L(x) ≤ −ιLb(x) + σ, t ≥ 0 (3)

where L(x) is a smooth positive definite function, ι > 0, 0 < b < 1, σ > 0, one can further obtain
that the nonlinear system

.
x = f (x) is SGPFS.

In this paper, by designing an adaptive NN-based optimal controller u(t) such that
β(t), the output of the system could track βd(k) well in a finite time. The two main types
of neural networks used in this paper include critic neural networks and action neural
networks. The critic neural network is used for the estimation of the long-term utility
function, while the action neural network is used to ensure the stability of the system and
the solution of the optimal control inputs of the system.

3. Controller Design and Stability Analysis

This section is divided into subheadings, which provide a concise and precise de-
scription of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn. Depicted in Figure 1, in this section, we design an optimal
controller, which ensures the optimal control of the system and converges within a finite
time. By transforming the initial system into an augmented system, which tracks errors
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and targets expected information, a novel discounted performance function is presented.
Furthermore, a Hamiltonian function is constructed, and the time-delay problem will
be solved by using the appropriate LKFs. Then, by introducing the IRL method to the
Hamiltonian function, a finite-time optimal tracking controller based on neural networks is
designed. Finally, the adaptive law of the appropriate evaluator and the adaptive law of
the action NN are designed; the target system’s SGPFS can be ensured.

Figure 1. Finite time convergence adaptive optimal tracking control algorithm structure drawing.

3.1. System Transformation

Considering the nonstrict nonlinear system (1), we developed a controller using a
neural network to enable the system to follow the desired trajectory. Firstly, the tracking
error system can be design as

z(t) = β(t)− βd(t) (4)

Then, find the (4) derivative, and we can obtain

.
z = p(t)β(t) + h(β(t − t1)) + g(t)u(t) + ω(t)(t)−

.
βd (5)

Assumption 3. The target-given trajectory βd with the initial state as βd(0) = 0 is bounded,
and

.
βd(t) can be rewritten into the form of (6) by a command generator function that satisfies the

Lipschitz continuity property.
.
βd(t) = l(βd(t)) (6)

The algorithm is expected to adopt a new type of discounted performance function,
which includes both tracking error terms and expected trajectories and time-delay terms.
Therefore, we constructed the following widening system.

.
ψ(t) = F(ψ(t)) + H(ψ(t − t1)) + G(t)u(t) + W(t) (7)

where ψ(t) = [z(t), βd(t)], F(ψ(t)) =

[
F1(t)(z + βd)− l(βd)

l(βd)

]
, H(ψ(t − t1)) =[

H1(z(t − t1) + βd(t − t1))
0

]
, G(t) =

[
G1(t)

0

]
, W(t) =

[
D1(t)

0

]
.

Furthermore, the novel discounted performance function is

L1(t) =
∫ t+t0

t
e−χ(τ−t)

(
ΓTQΓ + U(u)

)
dτ (8)



Sensors 2024, 24, 5462 5 of 20

where Γ = [ψ(t), ψ(t − t1)]
T , χ is the discount factor, with χ > 0 is a constant, and

Q =

[
Q1 0
0 Q2

]
, where Qi is a matrix that is positive definite, and t1 satisfies t ≥ t1, and

the semi-global uniform convergence in (7) can be ensured with t ≥ t1.
Based on [46–52], and taking the input constraints into consideration, the nonquadratic

functional is proposed as

U(u) = 2
∫ u

0

(
ε tanh−1(v/ε)

)T
Rdv (9)

where ε is the saturation input, and R = diag(r1, r2), U(u) is a non-quadratic matrix.

3.2. Virtual Control

In this part, based on the Hamiltonian function, which is established based on the
discounted performance function, the virtual optimal controller u∗(t) will be designed.

To obtain the tracking Bellman equation, we used the Leibniz rule and (9) to obtain

.
L1 = χL1 −

(
1 − e−χt0

)[
ΓTQΓ − 2

∫ u

0

(
ε0 tanh−1(v/ε0)

)T
Rdv

]
(10)

Then, we moved the right-hand side of Equation (10) to the left-hand side of the
equation and substituted it into Equation (8) to finally obtain Equation (11)

V =
(
1 − e−χt0

)[
ΓTQΓ + 2

∫ u
0

(
ε tanh−1(v/ε)

)T
Rdv

]
−χL1 +

∂L1

∂Γ
(F(ψ) + Gu + H(ψ(t − t1)) + W) = 0

(11)

In addition, we designed the optimal cost function in (12) from

L∗
1(t) = min

u

∫ t+t0

t
e−χ(τ−t)

(
ΓTQΓ + U(u)

)
dτ (12)

the following conditions should be guaranteed

V∗ =
(
1 − e−χt0

)[
ΓTQΓ + 2

∫ u∗

0

(
ε tanh−1(v/ε)

)T
Rdv

]
−χL1 +

∂L∗
1

∂Γ
(F(ψ) + Gu∗ + H(ψ(t − t1)) + W) = 0.

(13)

Based on (11) and [53], and the finite-time convergence theory [34], the optimal control
input defined as

u = −ε tanh
(

l1ψ2b−1 +
εr−1GT

2(1 − e−χt0)

∂L1

∂Ψ

)
. (14)

According to (13) and [44,53], the ideal optimal control input is abbreviated as

u∗ = −ε tanh
(

l1ψ2b−1 + Ξ
∂L∗

1
∂Ψ

)
(15)

where l1 =
R−1

2ε
is a constant greater than zero and Ξ =

r−1GT

2ε(1 − e−χt0)
.

Then, together with (14), (9) can be written as the following form

U(u∗) = 2ε2
(

l1ψ2b−1 + Ξ
∂L∗

1
∂Γ

)T
tanh

(
l1ψ2b−1 + Ξ

∂L∗
1

∂Γ

)
+ε2R0 ln

(
E0 − tanh2

(
l1ψ2b−1 + Ξ

∂L∗
1

∂Γ

)) (16)
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where R0 = [R1, . . . , Rm] and E0 = [1, . . . , 1]︸ ︷︷ ︸
m

.

The Hamiltonian function can be written as the following form

V∗ = −χL∗
1 +

(
1 − e−χt0

)
ψTQψ + 2ε2(1 − e−χt0

)
l1ψ2b−1 tanh

(
l1ψ2b−1 + Ξ

∂L∗
1

∂Γ

)
+

∂L∗
1

∂Γ
(F(ψ) + H(ψ(t − t1)) + W)

+ε2R0 ln
(

E0 − tanh2
(

l1ψ2b−1 + Ξ
∂L∗

1
∂Γ

))
= 0

(17)

Furthermore, (17) can be written as

V∗= 2ε2(1 − e−χt0
)
l1ψ2b−1 tanh

(
l1ψ2b−1 + Ξ

∂L∗
1

∂Γ

)
+

∂L∗
1

∂Γ
[F(ψ) + H(ψ) + W − (H(ψ)− H(ψ(t − t1)))]

−χL∗
1 +

(
1 − e−χt0

)
ΓTQΓ + ε2R0 ln

(
E0 − tanh2

(
l1ψ2b−1 + Ξ

∂L∗
1

∂Γ

))
= 0

(18)

To deal with the challenges brought by online tracking control, the optimal value L∗
1

should be solved using (17). Furthermore, the optimal control policy u(L∗
1) is shown in (14).

3.3. State Time Delay

Choosing the appropriate LKFs solves the problem caused by the state time delay,
which laid the foundation for the application of the IRL algorithm.

According to Assumption 2 in [36] and Remark 5 in [15], the IRL method can be used to
solve the L∗

1 , only when the function Θ1(t) = F(ψ) + H(ψ), Θ2(t) = H(ψ)− H(ψ(t − t1))
and G satisfy that

∥F(ψ) + H(ψ)∥ ≤ b1∥ψ∥ (19)

∥H(ψ)− H(ψ(t − t1))∥ ≤
n

∑
θ=1

b2,θ∥ψ(t − θ∆t)∥ (20)

∥G∥ ≤ b3 (21)

where b1, b2,θ , and b3 are positive constants, with 0 < θ ≤ n and ∆t = t1/n.
Considering the function F(ψ) and the known function H(ψ) satisfy the Lipchitz

condition, and Assumption 2, (19) and (21) can be guaranteed. However, the state time delay
t1 is uncertain, and the boundedness of (20) cannot be obtained. In addition, because of
the uncertain state time delay, the uncertain function H(ψ(t − t1)) cannot be approximated
using NN.

In order to better complete the controller design, the problem caused by the state time
delay will be handled first. Defining the new function Θ2(t) as

Θ2(t) = H(ψ)− H(ψ(t − t1)) (22)

and (22) can be written in the following form

Θ2(t) =H(ψ)− H(ψ(t − ∆t)) + H(ψ(t − ∆t))
−H(ψ(t − 2∆t)) + H(ψ(t − 2∆t))− H(ψ(t − 3∆t)) + . . .

−H(ψ(t − θ∆t)) + H(ψ(t − (θ + 1)∆t))− . . .

+H(ψ(t − (n − 1)∆t))− H(ψ(t − t1))

(23)

where ∆t = t1/n, and both i and n are positive integers.
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By Assumption 1, the mean-value theorem is introduced to H(ψ). Therefore, one
obtains

∆ψ(t − ∆t) = H(ψ(t))− H(ψ(t − ∆t)) =
∂H(ψ)

∂ψ

∣∣∣∣
ψ=ψη

(ψ(t)− ψ(t − ∆t)) (24)

where ψη = ηψ(t) + (1 − η)ψ(t − ∆t), 0 < η < 1.
The error function caused by ∆t can be obtained as

∆ψ(t − (θ + 1)∆t) =
∂H(ψ)

∂ψ

∣∣∣∣
ψ=ψη

(ψ(t − θ∆t)− ψ(t − (θ + 1)∆t)) (25)

Defining the augmented system states as

∆ψ = [∆ψ(t), . . . , ∆ψ(t − θ∆t) . . . , ∆ψ(t − t1)] (26)

then, we can write system (24) as follows

∆
.
ψ(t) = Π

(
∆ψ(t)

)
(27)

To guarantee that system (27) is uniformly ultimately bounded (UUB), the following
lemma is proposed.

Lemma 3. If the dimension of the state vector matches that of the function Π(∆ψ), where Π(∆ψ(0))
= 0.

∆
.
ψ(t) = Π(∆ψ(t)) (28)

converges to a compact set exponentially, where the Lyapunov function satisfies

c1∥∆ψ(t)∥2 ≤ L0(∆ψ(t)) ≤ c2∥∆ψ(t)∥2 + c3 (29)

.
L0(∆ψ(t)) ≤ −c4∥∆ψ(t)∥2 + c5 (30)

where ci > 0, θ = 1, 2, . . . , 5. In addition, the uniformly ultimately boundedness of system (28) can
be guaranteed.

Proof. Inspired by the research in [26], the following proof process is given. Defining the
initial state of (28) as ∆

.
ψ(0) = ∆ψ(t), we obtain

∆
.
ψ(t) = Π

(
∆

.
ψ(t − ∆t)

)
= Π(∆ψ(t))

∆
.
ψ(t − ∆t) = Π

(
∆

.
ψ(t − 2∆t)

)
= Π2(∆ψ(t))

...
∆

.
ψ(t − θ∆t) = Π

(
∆

.
ψ(t − (n − θ − 1)∆t)

)
= Πθ+1(∆ψ(t))

...
∆

.
ψ(t − (n − 1)∆t) = Π

(
∆

.
ψ(t − t1)

)
= Πn(∆ψ(t))

(31)

If the system exponentially converges to a compact set, then∥∥∥Πθ(∆ψ(t))
∥∥∥ ≤ a1aθ

2∥∆ψ(t)∥+ a3 (32)

where positive constants satisfy a1 > 0, 0 < a2 < 1, and a3 ≥ 0.
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Furthermore, the Lyapunov function is

∆L0 =
n−1

∑
i=0

[
Πθ(∆ψ(t))

]T[
Πθ(∆ψ(t))

]
. (33)

Submitting (32) to (33), we obtain

∆L0 ≤ 2a2
1

n−1

∑
i=0

a2θ
2 ∥∆ψ(t)∥2 + 2na2

3 ≤ 2a2
1

n−1

∑
i=0

∥∆ψ(t)∥2 + 2na2
3. (34)

Considering the fact that 0 < a2 < 1, we obtain

c1

n−1

∑
i=0

∥∆ψ(t)∥2 ≤ ∆L0(∆ψ(t)) ≤ c2

n−1

∑
i=0

∥∆ψ(t)∥2 + c3 (35)

where c1 = 1, c2 = 2a2
1

1 − a2n
2

1 − a2
2

, c3 = 2na2
3.

Moreover, we can obtain

∆
.
L0(∆ψ(t)) =

1
∆t

[∆L0(∆ψ(t + ∆t))− ∆L0(∆ψ(t))]

=
1

∆t

[
n
∑

i=1

[
Πi(∆ψ(t))

]2
−

n−1
∑

i=0

[
Πi(∆ψ(t))

]2
]

≤ 1
∆t

[
[a1an

2∥∆ψ(t)∥+ a3]
2 − ∥∆ψ(t)∥2

]
≤ −

(
1 − 2a2

1a2n
2
) 1

∆t
∥∆ψ(t)∥2 + 2a2

3
1

∆t
≤ −c4∥∆ψ(t)∥2 + c5

(36)

where c4 =
(
1 − 2a2

1a2n
2
)
/∆t and c5 = 2a2

3/∆t. If a sufficiently small-time interval ∆t is
chosen, n will be sufficiently large to ensure that c4 is a positive constant.

Based on, (35) and (36), one has

∆
.
L0(∆ψ(t)) ≤ −

(
1 − 2a2

1a2n
2
)
∥∆ψ(t)∥2 + 2a2

3

≤ −
(
1 − 2a2

1a2n
2
)(

1 − a2
2
)

2a2
1
(
1 − a2n

2
) L0(∆ψ(t))

+
2
(
1 − a2

2
)(

1 − 2a2
1a2n

2
)
na2

3

2a2
1
(
1 − a2n

2
) + 2a2

3

= −b1∆L0(∆ψ(t)) + b2

(37)

where

b1 =

(
1 − 2a2

1a2n
2
)(

1 − a2
2
)

2a2
1
(
1 − a2n

2
) (38)

b2 =
2
(
1 − a2

2
)(

1 − 2a2
1a2n

2
)
na2

3

2a2
1
(
1 − a2n

2
) + 2a2

3 (39)

Furthermore, we can obtain the Lyapunov function (23), and guarantee the UUB of
system (23), which is composed by n subsystems similar to (28)

.
L0(∆ψ(t)) =

n

∑
i=1

∆
.
L0(∆ψ(t − θ∆t)) (40)
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Substituting (36) for (40), one has

.
L0(∆ψ(t)) ≤ −c4

n

∑
i=1

∥∆ψ(t − θ∆t)∥2 + c5 (41)

Similarly, one has
.
L0(∆ψ(t)) ≤ −b1L0(∆ψ(t)) + b2 (42)

when n and a1 are selected large enough, the ultimate boundedness of L0(∆ψ(t)) can be
assured for any initial condition L0(∆ψ(t − t1)) within a bounded set, guaranteeing the
UUB of system states are guaranteed.

The proof is competed. □

3.4. Critic NN and Value Function Approximation

In summary, the boundedness of (19)–(21) can be obtained. The IRL method will be
extended to the solution of L∗

1 in the following section.
When the IRL interval is choose as T > 0, (8) can be written as the following form

L1(t − T) =
(
1 − e−χt0

)∫ t

t−T
e−χ(τ−(t−T))

(
ΓTQΓ + U(u)

)
dτ + e−χT L1(t) (43)

Assuming that (8) is a continuous smooth function, L1 and its gradient ∂L1/∂ψ are
approximated as

L1 = ωT
c φc(Γ) + εc (44)

∂L1

∂Γ
= ωc

∂φT
c

∂Γ
+

∂εc

∂Γ
(45)

where ωc ∈ Rlc is the constant-target online estimate parameter vector, in which lc is the
quantity of neurons within the neural network, and φc and εc are the activation function of
the critic NN and approximate error, respectively.

Assumption 4. The boundedness of the activation function and assessment of the error of the
critic NN and their gradient can be obtained as ∥φc∥ ≤ φc, and ∥εc∥ ≤ εc, ∥∂φc/∂Ψ∥ ≤
εc,0 and ∥∂εc/∂Ψ∥ ≤ εc,0, respectively.

When the IRL interval is T > 0, the Bellman equation induced in the critic NN
estimated value, can be expressed as

zB =
∫ t

t−T
e−χ(τ−t+T)(1 − e−χt0

)[
ΓTQΓ + U(u)

]
dτ + ωT

c ∆φc (46)

where
∆φc = e−χT φc(Γ(t))− φc(Γ(t − T)) (47)

The constraint on (46) can be derived based on Assumption 4, i.e., ∥zB∥ ≤ zB.
To derive the approximate tracking Bellman function, the approximation of the neural

network is evaluated to obtain
L̂1 = ω̂T

c φc(Γ) (48)

where ω̂c is the estimation of the critic law ωc.
Therefore, the estimation of (46) is

zB = R(t) + ω̂T
c ∆φc (49)

where the reinforcement learning reward is denoted by

r(t) =
∫ t

t−T
e−χ(τ−t+T)(1 − e−χt0

)[
ΓTQΓ + Û(u)

]
dτ. (50)
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To reduce the approximation error, we give a function in (51) from

ZB(t) = 1/2z2
B(t). (51)

We can obtain the following expression using the Gradient descent method.

.
ω̂c = αc

∆φc∆φT
c

∥1 + ∆φT
c ∆φc∥2 zB (52)

where αc represents the learning rate of the critic neural network.
Considering ω̃c = ωc − ω̂c, (46) and (49), we have

zB = ω̃T
c ∆φc + εB (53)

.
ω̃c = −αc

∆φc∆φT
c

∥1 + ∆φT
c ∆φc∥2 ω̃c + αc

∆φc∆φT
c

∥1 + ∆φT
c ∆φc∥2 εB (54)

3.5. Action NN and Controller Design

According to (45), the optimal control input, i.e., (14) is as follows

u = −ε tanh
[

l1ψ2b−1 + Ξ
(

ωc
∂φT

c
∂Γ

+
∂εc

∂Γ

)]
(55)

To solve the issue in the tracking HJB induced
∂εc

∂Ψ
, we obtain

∫ t
t−T e−χ(v−t+T) .

φcdv =
∫ t

t−T e−χ(v−t+T) ∂φc

∂Γ
(Θ1 + Θ2 + Gu + W)dv

= ∆φc + χ
∫ t

t−T e−χ(v−t−T)φcdv
(56)

In addition, we obtain

∆φc =
∫ t

t−T
e−χ(v−t+T)

(
∂φc

∂Γ
(Θ1 + Θ2 + Gu + W)− χφc

)
dv (57)

Equation (16) becomes

U(u) = ε2R0 ln
{

E0 − tanh2
[

l1ψ2b−1 + Ξ
(

ωT
c

∂φc

∂Γ
+

∂εc

∂Γ

)]}
−2ε

(
l1ψ2b−1 + Ξ

(
ωT

c
∂φc

∂Γ
+

∂εc

∂Γ

))
u

(58)

Then, (46) can be rewritten as∫ t
t−T e−χ(τ−t+T){(1 − e−χt1

)
ΓTQΓ − χωT

c φc

+2ε2(1 − e−χt1
)
l1ψ2b−1 tanh

[
l1ψ2b−1 + Ξωc

∂φT
c

∂Γ

]
+ εHJB

+ωc
∂φT

c
∂Γ

(Θ1 + Θ2 + W)+ε2R0 ln
{

E0 − tanh2
[

l1ψ2b−1 + Ξ
(

ωc
∂φT

c
∂Γ

)]}}
dv = 0

(59)

where
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εHJB = e−χ(τ−t+T)
{
−ε2R0 ln

[
E0 − tanh2

(
l1ψ2b−1 + Ξωc

∂φT
c

∂Γ

)]
− 2ε2(1 − e−χt0

)
l1ψ2b−1

×tanh
[

l1ψ2b−1 + Ξωc
∂φT

c
∂Γ

]
+ 2ε2(1 − e−χt0

)
l1ψ2b−1 tanh

[
l1ψ2b−1 + Ξ

(
ωc

∂φT
c

∂Γ
+

∂εc

∂Γ

)]
−ωT

c
∂εc

∂Γ
(Θ1 + Θ2 + W) + ε2R0 ln

[
E0 − tanh2

(
l1ψ2b−1 + Ξ

(
ωc

∂φT
c

∂Γ
+

∂εc

∂Γ

))]} (60)

To obtain the limitation of the HJB proximity error, we can use the boundary proximity
error. In addition, when NN is selected, the construction cannot be changed. We can only
solve this problem by uncertain weights of NN.

Approximating the control input (55) by critic NN, we have

u1 = −ε tanh
(

l1ψ2b−1 + Ξω̂c
∂φT

c
∂Γ

)
(61)

where ω̂c is the estimated value of ωc.
However, the function of (61) is only to estimate the current critical NN weight, which

fails to keep the system (1) stable. Hence, to guarantee the stability of the system and solve
the optimal control strategy, we introduce another NN as the action NN.

û1 = −ε tanh
(

l1ψ2b−1 + Ξω̂a
∂φT

c
∂Γ

)
(62)

where ω̂a represents the weight vector of the action neural network, denoting the present
evaluation value of ωc.

Then, the interval IRL Bellman equation error is estimated as

ẑB =
∫ t

t−T
e−χ(τ−t+T)

[
ΓTQΓ + Û(u)

]
dτ + ω̂T

c ∆φc (63)

where

Û(u) = 2
∫ û

0

(
ε tanh−1(v/ε)

)T
Rdv (64)

Therefore, (52) can be rewritten as

.
ω̂c = αc

∆φc∆φT
c

∥1 + ∆φT
c ∆φ∥2 ẑB (65)

defining the input assessment error as

zu = û1 − u1 = ε

(
tanh

(
l1ψ2b−1 + Ξω̂a

∂φT
a

∂Γ

)
− tanh

(
l1ψ2b−1 + Ξω̂c

∂φT
c

∂Γ

))
(66)

To minimize (66), we use the following formula

Zu(t) = zT
u (t)Rzu(t). (67)

We can utilize the gradient descent method to derive the following equation

.
ω̂a = −αa

[
Ξ′ ∂φT

a
∂Γ

sech2
(

l1ψ2b−1 + Ξ
∂φT

a
∂Γ

ω̂a

)
zu + ηω̂a

]
(68)

where Ξ′ = RΞ, and η is a positive design variable.
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3.6. Stability Analysis

According to the proposed lemmas and assumptions, the following theorem is given
to analyze the effectiveness of the proposed algorithm.

Theorem 1. Based on the definition in [43], Lemma 1–4, Assumptions 1–4, and the design of the
proposed control policy (62) and the control laws, (65) and (68), the proposed optimal tracking
control algorithm ensures that the partially uncertain nonlinear system (1) is SGPFS.

Proof of Theorem 1. The candidate function of the Lyapunov function is designed as

L(k) = L0(k) + L1(k) + L2(k) + L3(k) + L4(k) (69)

where
.
L0(∆ψ(t)) ≤ −c4

n
∑

i=1
∥∆ψ(t − θ∆t)∥2 + c5 and L1(k) is given in (8) as the optimal

value function. Then, the provided expressions are applicable:

L2 =
n

∑
i=1

(∆ψ(t − θ∆t))TQ3(∆ψ(t − θ∆t)) (70)

L3 = 1/αcω̃T
c ω̃c (71)

L4 = 1/αaω̃T
a ω̃a (72)

Based on (24) and (31), the first derivative of L2 can be given as

.
L2 = 2

n
∑

j=1
∆ψ(t − i∆t)Q3∆

.
ψ(t − i∆t)

= 2(∆ψ(t − n∆t))TQ3(∆ψ(t)) + . . . + (∆ψ(t − ∆t))TQ3(∆ψ(t − (n − 1)∆t))

+(∆ψ(t))TQ3(∆ψ(t − n∆t))

(73)

Using Young’s inequality ±aTb0 ≤ µaTa/2 + b0
Tb0/(2µ), one has

.
L2≤ µ(∆ψ(t − n∆t))TQ3(∆ψ(t − n∆t)) +

1
µ
(∆ψ(t))TQ3(∆ψ(t)) + . . .

+µ(∆ψ(t − ∆t))T

×Q3(∆ψ(t − ∆t)) +
1
µ
(∆ψ(t − (n − 1)∆t))TQ3(∆ψ(t − (n − 1)∆t))

+µ(∆ψ(t))TQ3(∆ψ(t))

+
1
µ
(∆ψ(t − n∆t))TQ3(∆ψ(t − n∆t))

(74)

.
L2 ≤ c0

n

∑
i=1

∥∆ψ(t − θ∆t)∥2 (75)

where c0 = (µ + 1/µ)Q3.
Based on (44), the first derivative of L3 is

.
L3 = ω̂T

c
∂φ

∂Γ
(Θ1 + Θ2 + Gu + W) (76)

Considering (57), with the IRL interval chosen small enough, we have ρ1 φc = φc(t − T),
ρ1 = 1 ± ρ0, ρ1 ∈ U(1, ρ0), and ρ0 is a sufficiently small positive constant.(

χ +
1
T

)
φ − φc(t − T)

Te−χT ≈ ∂φ

∂Γ
(Θ1 + Θ2 + Gu + W) (77)
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Then, (76) can be written as

.
L3 =

(
χ +

1
T

)
ω̂T

c φ − 1
Te−χT ω̂T

c φc(t − T)

≤
((

χ +
1
T

)2
+

1
T2e−2χT

)(
ω̂T

c φ
)T

ω̂T
c φc

(78)

Based on (54) we have

εB =
T
t1

ω̂T
c φc + ω̂T

c

(
e−χT φc − φc(t − T)

)
(79)

Then, the approximate of (54) is

.
ω̃c = −αc

∆φ∆φT

∥1 + ∆φT∆φ∥2 ω̃c

+αc
∆φ

∥1 + ∆φT∆φ∥2

(
T
t1

ω̂T
c φc + ω̂T

c
(
e−χT φc − φc(t − T)

)) (80)

And, for the first difference of (71)

.
L3 = − ∆φc∆φT

c

∥1 + ∆φT
c ∆φ∥2 ω̃T

c ω̃c

+
(
ωT

c − ω̂T
c
) ∆φc

∥1 + ∆φT
c ∆φ∥2

(
T
t1

ω̂T
c φc + ω̂T

c
(
e−χT φc − φc(t − T)

)) (81)

Using Cauchy’s mean value theorem, (81) changed into

.
L3 =

1

∥1 + ∆φT
c ∆φc∥2 −

[
∥∆φ∥2ω̃T

c ω̃T
c +

(
ωT

c ∆φc
)T

ωT
c ∆φc

−1
2

(
T
t1

(
e−χT − ρ1

)
− T2

t2
1

)(
ω̂T

c φc
)T

ω̂T
c φc

] (82)

Based on (68) and (66), we have

.
ω̃a = αa

[
Ξ′ ∂φa

∂Γ
sech2

(
l1ψ2b−1 + ΞT ∂φT

c
∂Γ

ω̂a

)
×(

tanh
(

Ξω̂a
∂φT

a
∂Γ

+ l1ψ2b−1
)
− tanh

(
l1ψ2b−1 + Ξω̂c

∂φT
c

∂Γ

))
−ηω̃a + ηωc]

(83)

Then, the first derivative of L3 is
.
L4 = −ηω̃T

a ω̃a + ω̃T
a J0 (84)

where

J0 = Ξ′ ∂φa

∂Γ
sech2

(
l1ψ2b−1 + ΞT ∂φT

a
∂Γ

ω̂a

)[(
tanh

(
Ξω̂a

∂φT
a

∂Γ
+ l1ψ2b−1

)
−tanh

(
l1ψ2b−1 + Ξω̂c

∂φT
c

∂Γ

))
+ ηωc

] (85)

By using Cauchy’s mean value theorem, we have

.
L4 ≤ −(η − 1/(2αa))ω̃

T
a ω̃a +

αa

2
J2
0 (86)
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Above all, the first difference of (69)

.
L ≤ −c1

(
ω̂T

c φ
)T

ω̂T
c φ − c2ω̃T

c ω̃c − c3ω̃T
a ω̃a − c6

n

∑
i=1

∥∆ψ(t − θ∆t)∥2 + J2 (87)

where cθ > 0, θ = 1, 2, 3, c1 =


T
t1

(
e−χT − ρ1

)
− T2

t2
1

2∥1 + ∆φT
c ∆φc∥2 −

(
χ +

1
T

)2
+

1
T2e−2χT

, c2 =

∥∆φc∥2

∥1 + ∆φT
c ∆φc∥2 , c3 =

(
η − 1

2αa

)
, c6 = c4 − c0 and J2 =

(
ωT

c ∆φc
)T

ωT
c ∆φc

∥1 + ∆φT
c ∆φc∥2 + c5 +

αa

2
J2
0 .

To make the finite-time convergence, we deal with the equation and add and subtract
several terms on the right side

.
L≤ −c1

((
ω̂T

c φc
)T

ω̂T
c φc

)β
+ c1

((
ω̂T

c φc
)T

ω̂T
c φc

)β

−c1
(
ω̂T

c φc
)T

ω̂T
c φc − c2

(
ω̃T

c ω̃c
)β

+ c2
(
ω̃T

c ω̃c
)β

−c2ω̃T
c ω̃c − c3

(
ω̃T

a ω̃a
)β

+ c3
(
ω̃T

a ω̃a
)β − c3ω̃T

a ω̃a − c6

(
n
∑

i=1
∥∆ψ(t − θ∆t)∥2

)β

+c6

(
n
∑

i=1
∥∆ψ(t − θ∆t)∥2

)β

− c6
n
∑

i=1
∥∆ψ(t − θ∆t)∥2 + J2

(88)

To make the system (1) stable, and the finite time, we consider Lemma 1. Therefore,
the constant must be greater than zero.

αa >
1

2η
(89)

and there are the following formulas:

2
∥∥∥1 + ∆φT∆φ

∥∥∥2
((

χ +
1
T

)2
− 1

T2e−2γT

)
t2
1 − T

(
e−χT − ρ1

)
t1 + T2 < 0 (90)

with
e−χT > ρ1 (91)

Tχ + 1 >
1

e−χT (92)

then

t1 >

e−χT − ρ1 +

√√√√(e−χT − ρ1)
2 − 8∥1 + ∆φT

c ∆φc∥2

((
χ +

1
T

)2
− 1

T2e−2χT

)

2∥+1∆φT
c ∆φc∥2

((
χ +

1
T

)2
− 1

T2e−2χT

) T. (93)

Taking Lemma 1 to c1
(
ω̂T

c φc
)T

ω̂T
c φc, c2ω̃T

c ω̃c and c3ω̃T
a ω̃a, as x = 1, and y = c1

(
ω̂T

c φc
)T

ω̂T
c φc, or y = c2ω̃T

c ω̃c, or y = c3ω̃T
a ω̃a, or y = c6

n
∑

i=1
∥∆ψ(t − θ∆t)∥2 with µ1 = b, µ2 = 1 − b

and l = (1 − b)
1 − b

b . Then, we have

c1

((
ω̂T

c φc

)T
ω̂T

c φc

)b
≤ bl + c1

(
ω̂T

c φc

)T
ω̂T

c φc (94)
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c2

(
ω̃T

c ω̃c

)b
≤ bl + c2ω̃T

c ω̃c (95)

c3

(
ω̃T

a ω̃a

)b
≤ bl + c3ω̃T

a ω̃a (96)

c6

(
n

∑
i=1

∥∆ψ(t − θ∆t)∥2

)b

≤ bl + c6

n

∑
i=1

∥∆ψ(t − θ∆t)∥2. (97)

Considering (94)–(97), (88) can be rewritten as

.
L≤ −c1

((
ω̂T

c φc
)T

ω̂T
c φc

)b
− c2α−b

c
(
ω̃T

c α−1
c ω̃c

)b

−c6Q−1
3

(
n
∑

i=1
(∆ψ(t − θ∆t))TQ3(∆ψ(t − θ∆t))

)b

−c3α−b
a
(
ω̃T

a α−1
a ω̃a

)b
+ 4bl + J2.

(98)

Inspired by reference [45], we have
.
x̂(t) = −χx̂(t) + κυ(t), if υ(t) > 0, ∀t > t0,

.
x̂ > 0,

x(t) > 0, ∀t > t0.
.
L ≤ −cLb + π (99)

where
c = min

(
c1, c2α−b

c ,−c3α−b
a , c6Q−1

3

)
(100)

π = 4bl + J2. (101)

Based on (89)–(93), (99)–(101), and the lemma in [39], the boundedness of all singles in
the closed loop nonstrict system is SGPFS for ∀t > t1.

Furthermore, by using (62), we obtain the optimal control strategy, which guaran-
tees that the target nonlinear system system’s state and the stability of input delays are
maintained, and that the tracking error converges to a sufficiently small neighborhood
around zero.

The proof is completed. □

4. Results of Simulation Example

The WMR system [54] in Figure 2 illustrates the effectiveness of the proposed algo-
rithm. 

m
.
v cos βw − mv

.
βw sin βw + mdw

.
ϕ

2
= F1

DP + F2
DP − fDP

−mg sin θ cos o
I

.
ω = −F1

DPd1 + F2
DPd1 − τR

(102)

where m represent the robot mass, and I denotes the rotational inertia around the motion
center. βw is the angle between the robot speed and the xm axis, and o is the angle of
inclination of the ground environment where the robot is located.

Then, rewrite (102) as a vector form

M
.
v + Vv + G = B(τ − TDe)− FR (103)

where, according to [55], we have M =

[
m cos βw 0

0 I

]
, V =

[
−m

.
βw sin βw md2

.
ϕ

0 0

]
,

v =

[
v
ω

]
, FR =

[
fDP
τR

]
, τ =

[
τ1
τ2

]
, G =

[
mg sin θ cos o

0

]
, B =

1
rs

[
1 1

−d1 d2

]
, TDe ={RCs

01 + ks
RC1

s1 + As
RC1

cos
(
nLϑ2 − ξs

01
)}

F1
N{

RCs
02 + ks

RC2
s2 + As

RC2
cos
(
nLϑ2 − ξs

02
)}

F2
N

.
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Considering the symmetry of the quality matrix and incorporating the time delay in
the state, the state-space form can be used to represent the dynamic system of WMR.

.
v(t) = f (t)v(t) + h(v(t − t1)) + g(t)u + ω(t) (104)

where f (t) = −M−1V, g(t) = M−1B is an unknown function, and ω(t) = M−1(BTDe + FR −G)
denotes the resistance torque with the same effect and unknown resistance.

The desired trajectories indicate the forward and steering angular velocity, are given
as xd,1 = 1.2 + 0.5 sin(0.05t) and xd,2 = 0.5 cos(0.05t).

Depending on the actual WMR system, the initial values are βw(0) = [0, 0]T , rand(1, 4)
and rand(1, 4), and αc = 0.13, αa = 0.12, λ = 0.05, γ = 0.10 and R = 1, Q = [1, 0; 0, 1] in
this simulation. Then, the following simulation results are presented.

Figure 2. The structure of the wheeled mobile robot.

With the state time delay handled by appropriate LKFs, the impact of delay is success-
fully suppressed. From Figures 3 and 4, we can obtain that the tracking performance of the
proposed algorithm has good tracking performance.

Figure 3. Tracking trajectories of the states.

In addition, the adaptive update of the critic and the action can be reflected in
Figures 5 and 6, which ensures the boundedness of the adaptive law. Moreover, the track-
ing trajectory of the WMR is shown in Figure 7. According to the process, the signal in the
wheeled mobile robotic system is SGPFS. Compared with previous work [56], with similar
control effects, this paper additionally considers finite-time control and the final simulation



Sensors 2024, 24, 5462 17 of 20

results achieve finite-time convergence, reflecting the control advantages of the proposed
algorithm.

Figure 4. Tracking errors.

Figure 5. The adaptive laws of the action NNs.

Figure 6. The adaptive laws of the critic NNs.
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Figure 7. Tracking trajectories of the position.

5. Conclusions

A finite-time adaptive online optimization tracking control algorithm was suggested
for nonlinear systems incorporating state time delays. By using appropriate LKFs, the issue
arising from time delays in both state and input variables has been resolved. Then, a novel
nonquadratic HJB function was defined, where finite time was selected as the upper limit of
integration, which contains information of the state time delay on the premise of containing
the basic information. With the premise of meeting specific requirements, the ideal HJB
function was solved by using the IRL method. Furthermore, the SGPFS was guaranteed
with the definition of the optimal control policy and the update of the adaptations of the
critic and action NNs.
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